
http://www.cambridge.org/9780521842761


This page intentionally left blank



Molecular Reaction Dynamics

Molecular Reaction Dynamics is a brand new version of the text by Levine and
Bernstein. The book delivers an updated treatment of this fundamental topic.
An appreciation of how chemical reactions occur and their control is essential
to chemists and to those in interdisciplinary fields such as materials and
nanoscience, drug design, and astrochemistry. The first half of the book
describes experimental techniques for initiating and probing reaction dynamics
and the essential insights gained. The second part explores key areas including
photoselective chemistry, stereochemistry, chemical reactions in real time, and
chemical reaction dynamics in solutions and interfaces. Typical of the new
challenges are molecular machines, enzyme action, and molecular control. With
problem sets included, this book is aimed at advanced undergraduate and
graduate students studying chemical reaction dynamics, as well as physical
chemistry, biophysics, and materials science.

R L  is Max Born Professor of Natural Philosophy at the
Hebrew University of Jerusalem and Distinguished Professor of Chemistry at
the University of California, Los Angeles. He is active in the area of chemical
reaction dynamics and his published scientific work has earnt the recognition of
the Israel Prize and the Wolf Prize. He is a member of the Israel National
Academy of Sciences and a foreign member of the National Academy of
Sciences of the United States and of Academiae Europaeae.





Molecular Reaction Dynamics

Raphael D. Levine



  
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge  , UK

First published in print format 

-    ----

-    ----

© R. D. Levine 2005

2005

Information on this title: www.cambridge.org/9780521842761

This book is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

-    ---

-    ---

Cambridge University Press has no responsibility for the persistence or accuracy of
s for external or third-party internet websites referred to in this book, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (NetLibrary)
eBook (NetLibrary)

hardback

http://www.cambridge.org/9780521842761
http://www.cambridge.org


I am grateful to the many people who, over the years, joined me
to watch the molecules dance to the tune of time.

This book is dedicated to Mira who is able to make us join the dance.



The cover illustration is by the late Israeli physical chemist and artist
Jacob Wilf. Jacob was my friend and we had many scientific
discussions. One result is that he has drawn several paintings
depicting themes from Molecular Reaction Dynamics such as

harpoon reactions, stereodynamics and cluster impact. The painting
shown on the cover is titled ‘surprisal analysis’ and was dedicated to

me by the artist. The topic of surprisal analysis is discussed in
Section 6.4.2. The works of Wilf on a variety of scientific themes

were exhibited at the Israel National Academy of Sciences and other
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Preface

Molecular reaction dynamics unfolds the history of change on the molecular
level. It asks what happens on the atomic length and time scales as the chemical
change occurs. This book is an introduction to the field.

Molecular reaction dynamics has become an integral part of modern chem-
istry and is set to become a cornerstone for much of the natural sciences. This
is because we need a common meeting ground extending from nanoscale solid
state devices through material and interface chemistry and energy sciences to
astrochemistry, drug design, and protein mechanics. For some time now the quan-
titative understanding on the molecular level has provided this common ground.
At first, the scaffolding was the concept of the molecular structure. Once we
understood the spatial organization we felt that we had an entry to real under-
standing. The required input was provided by the different experimental methods
for structure determination and, from the theory side, by quantum chemistry and
by equilibrium statistical mechanics. But now we want more: not just the static
structure, we also ask how this structure can evolve in time and what we can do
to control this evolution. We want to write the history of the change or, better yet,
to be a conductor and orchestrate the motion. This is what this book is about.

In going from statics to dynamics we need new experimental tools and also
theoretical machinery that allows for the dependence on time. This means that
the stationary states that are usually the subject of an introductory quantum
mechanics course have to be extended to non-stationary ones. Fairly often, clas-
sical dynamics is sufficient to describe the time evolution but there are a number
of interesting exceptions. Non-equilibrium statistical mechanics is necessary to
describe systems with many degrees of freedom and their far-from-equilibrium
pattern formation.

Molecular reaction dynamics is not yet able to do all that has to be done.
There are places where we lack understanding of the principle and not only of
the details of a particular family of processes. Indeed, as we move into more
complex systems the gaps in our understanding are wider than the passes. As
just two examples, we do not have a complete understanding of the atmospheric
chemistry of the outer planets nor can we describe how an enzyme mobilizes
chemical energy to its active site. But we do have enough of the basics in place
that it is a good time to stop and survey where we are, where we need more work
on the foundations, and where there are whole areas that call for applications,

xi



xii Preface

where different subjects need to be better connected, and what new families of
processes are there to be deciphered. This book is a primer for what we already
know.

As was the original (1974) intention, this book seeks to describe why a particu-
lar experiment was carried out, what we have learned, what concepts are necessary
to describe and understand the experiment, and how we move forward. The prob-
lems that follow each chapter provide additional applications and illustrations.
A concept that is much more prominent in the present version of the book is
coherence, and we bring it in as soon as possible. Much recent progress has come
through the outstanding development of computational means. These include not
only the ability to compute the forces between atoms at realistic accuracy, but also
the computation of the (classical or quantal) motion subject to these forces and the
ability to visualize the resulting dynamics. Our debt to these developments will
be clear throughout the book, but what we will be concerned with is what we have
learned rather than how to implement a computation. The need for visualization
arose not only because of the increasing concern with more complex systems, but
also because of the technological ability to achieve a time resolution sufficient to
probe intramolecular motions. Instead of just imagining how the reaction unfolds
in time, we can directly image the transformation experimentally. In a different
dimension, the experimental ability to image the distribution of the products of
the reaction in space has a major impact. We are almost ready to be able to image
in both space and time. Another key initiative is the bold forays into dynamics
in the condensed phase and interfaces. The integration of our understanding of
gas phase, isolated collision dynamics and of dynamical proceedings dressed by
their environment is already making promising progress. Because the chemical
change is localized in space and time we can often think of a change in a complex
system as a reaction center “solvated” by the rest of the system. Therefore, issues
similar to dynamics in the condensed phase arise in the need for rational drug
design or the understanding and development of molecular machines and other
applications where the molecules are large.

This book is based on my class notes at the Hebrew University of Jerusalem and
at the University of California, Los Angeles. The level is that of senior undergrad-
uate or graduate students. The prerequisite is a class in chemical kinetics. Some
familiarity with spectroscopy and with statistical mechanics is beneficial but not
essential, and introductory material is provided where necessary. The scope of
the book is more than can be covered in a lecture course of one semester. The
first six chapters develop the tools and illustrate their applications. The examples
are usually simple ones that can be used to make the point. The development in
these chapters is linear, there are sections that can be skipped, but the order of
topics is sequential. There are people who will want to get as quickly as possible
to Chapter 5. This is understandable, but I recommend first to go at least through
Sections 2.1, 2.2, and 2.3. In the following six chapters the text is arranged
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around applications where each chapter has a common theme. This part of the
book offers a choice of material because the different chapters are almost, but
not quite, independent of one another. Starred sections take you away from the
main line of development.* There are endnotes that provide more details and also
cite original sources for the results quoted. References to review-type articles are
provided to enable further reading. (A complete bibliography, with titles, is at the
very end of the book.) Revision problems with hints follow each chapter. Some
of these problems are easy but others are not.∗

∗ Both in class and in writing I use too many footnotes. I hope that it does not distract you too much.
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Chapter 1
Understanding chemical reactions
at the molecular level

“chem·i·stry (kem′ i strë), n., pl. -tries. The science that deals with or investi-
gates the composition, properties, and transformations of substances and vari-
ous elementary forms of matter.” The dictionary definition emphasizes chemical
transformation as a central theme of chemistry.

By the end of the nineteenth century, the young science of physical chemistry
had characterized the dependence of the rate of the chemical transformation on
the concentrations of the reactants. This provided the concept of a chemical reac-
tion rate constant k and by 1889 Arrhenius showed1 that the temperature depen-
dence of the rate constant often took on the simple form k = A exp(−Ea/RT ),
where A is referred to as the pre-exponential factor and Ea as the activation energy.
Arrhenius introduced the interpretation of Ea as the energetic barrier to the chem-
ical rearrangement. Only later did we understand that reactions also have steric
requirements and that the Arrhenius A factor is the carrier of this information.

It was next realized that the net transformation often proceeds by a series of
elementary steps. A key progress was the identification of the reaction mecha-
nism, which is a collection of elementary processes (also called elementary steps
or elementary reactions) that leads to the observed stoichiometry and explains
how the overall reaction proceeds. A mechanism is a proposal from which you
can work out a rate law that agrees with how the observed rate of the reaction
depends on the concentrations. The fact that a mechanism “explains” the experi-
mental results, however, is not a proof that the mechanism is correct. Bulk kinetic
studies are carried out at a controlled temperature, that is, under conditions of
thermal equilibrium. The measured thermal rate constants refer to an average
over all accessible reactant states weighted by the populations of those states at
that temperature. As might be expected, such averages hide detailed information
about what factors really cause the reaction to proceed. What we need is the
ability to examine the individual processes and preferably to do so with selection
of the energetic (and orientation) states of the reactants.

One of the greatest challenges in chemistry is to devise experiments that can
reveal how chemical transformations occur that are otherwise hidden behind ther-
mal averages and multi-step mechanisms and to develop the theoretical frame-
work for describing and understanding these chemical changes. With this book

1



2 Understanding chemical reactions

you are invited to a dance of molecules. With an appreciation of the dance steps
comes the power to understand and predict chemical behavior, if not become a
molecular choreographer.

1.1 What is molecular reaction dynamics?

Reaction dynamics is the study of the molecular level mechanism of elementary
chemical and physical processes. It seeks to understand what actually takes place
at that level when a change, chemical or physical, occurs. As an example, when
molecular chlorine gas is introduced into a vessel containing bromine vapor, a
chemical reaction does take place, and it can be monitored in time by a change
in the color. The net chemical change in the vessel is Cl2 + Br2 → 2BrCl. The
reaction rate is observed to be of second order, that is, the rate of disappearance of
Cl2 or Br2 is first order in the concentration of each reactant. Yet on the molecular
level the elementary reaction

Cl2 + Br2 → 2BrCl

does not take place. In other words, when a single chlorine molecule strikes
a single bromine molecule, the two molecules bounce off each other without
exchanging atomic partners, and this fact has been demonstrated experimentally.2

Molecular reaction dynamics is the study of elementary processes and the
means of probing them, understanding them, and controlling them. We will also
apply molecular reaction dynamics to reactions in solution and to reactions on
surfaces, exploring the elementary steps in catalysis. As a bridge between the
gas and condensed phase we discuss clusters of molecules. Molecular reaction
dynamics is not limited to neutral reagents and products but also includes pos-
itively and negatively charged species (cations and anions), either in their bare
state or solvated in solution. Biochemical reactions provide important examples
of processes where electrostatic effects are central. Current rational drug design
includes the consideration of the approach of the intended drug to its receptor and
how both are modified as a result of their interaction. Molecular reaction dynam-
ics has applications in all branches of chemistry because chemists are not content
just to prepare a desired product. Nor is it sufficient to optimize conditions such
as temperature or solvent or catalyst so as to get high reaction rate and purity.
Chemists nowadays require a molecular-level understanding of reactivity.

Molecular reaction dynamics is becoming relevant well outside the traditional
boundaries of chemistry and increasingly addresses technological issues. The
reason is that from modern genetics to size-reducing nanoscience the molecular
point of view provides a unified framework. First we needed to understand the
structural aspects. But these are now well in hand and we are increasingly trying
to unravel the time-history of the event. The need to understand change on the
molecular scale is now common throughout the natural sciences.



1.1 What is molecular reaction dynamics? 3

The study of dynamics allows us to raise additional questions, questions that do
not quite make sense when we study the net change, at or near equilibrium, in the
bulk. For example, we can wonder if exciting vibrational motion in either or both
reactant diatomic molecules will make the Cl2 + Br2 four-center reaction proceed
more rapidly. In bulk chemical kinetics, when the reactants are intentionally
arranged to be in thermal equilibrium, a particular mode cannot be energized
preferentially. To learn about a selective role of internal energy in promoting a
reaction it is necessary to work under non-equilibrium conditions.3

Section 1.2 provides a case study of the kind of new questions raised by
dynamics. In doing so, it also points to where we are going to go in the fol-
lowing chapters. We will, for example, discuss how lasers can act so as to pre-
pare the reactants or, better yet, to access directly the transition region from
reactants to products.4 When the laser is intense enough it can even alter com-
pletely the dynamical course. As an example, an intense laser field can be tailored
to alter the ratio of products in two dissociation pathways of acetophenone:5

C

CH3

 O

CH3 + CO

+ C
O

CH3

Different options for control using lasers feature throughout our road ahead.
Spectroscopy provides essential information about the structure of molecules

through radiation–matter interactions. The application of spectroscopy, techni-
cally made possible using lasers, to molecular dynamics has allowed us to extend
the asking of structural questions into the time domain, even for times comparable
to or shorter than the periods of molecular vibrations. We will seek to understand
how the reactants evolve over time into products. In so doing we must recog-
nize that during a chemical transformation molecules must become less rigid and
more floppy. It is the electrons, which are fast moving compared to the slower
nuclei, that set up the energy landscape for the motion of the nuclei. Sometimes
the electrons may not move quite as fast as we assume.

The technical details of the experimental and theoretical methods of molecular
dynamics can be intricate but the concepts are simple. An understanding of these
concepts – the ability to read the language – is all that is necessary to be able to
view the very process of chemical change. This book is a primer of the language
for expressing chemical transformations as dynamical events, proceeding in space
and time.



4 Understanding chemical reactions

1.1.1 Much of chemistry is local: from the elementary
act to complex systems

We begin our journey with elementary events. Our first example will be a simple
chemical transformation, a hydrogen atom transfer between two atoms, in the
gas phase. There are numerous systems that are chemically more exciting; say,
the mechanism of C H bond activation6 by metal complexes, in solution, or
how does an enzyme transfer chemical energy liberated at a localized site to a
functionally relevant receptor site?7 We adopt a bottom-up approach that almost
all of chemistry is local in character; even a complex process is a sequence of
elementary steps, each involving only a few atoms. Just as organic chemists break
a complete synthesis into its essential steps (Corey, 1991), so we want to chart
what are the possibly few atom events that, played in rapid succession, make up
a complex reaction.

Chemistry is local because chemical forces are short range. An atom sees
only its immediate surroundings. It is therefore possible to break the evolution
from reactants to products into simpler steps. Our first task is to examine and
understand the elementary dynamical events; only then can we build up to more
complex processes.

A key factor in our ability to understand complex systems is the coming of
age of modern computational chemistry.8 It is the fast motion of the electrons
that determines the forces that act on the nuclei. Quantum chemistry provides the
methods for analyzing electronic structure and thereby allows the determination
of the equilibrium configuration for the nuclei and the energy of the electrons at
that point.∗ In the same computation we can also determine the forces at that point
and not only the potential. This allows the computation of the frequencies for the
vibrations about the stable equilibrium. Next, methods have been introduced that
enable us to follow the line of steepest descent from reactants to products and,
in particular, to determine the stationary points along that route, and the forces
at those points.9 Our ability to do so provides us with the means for quantitative
understanding of the dynamics.

1.2 An example: energy disposal in an exoergic
chemical reaction

Typical of the kind of information that is available from the experimental tech-
niques of molecular dynamics is the determination of the energy disposal in
exoergic atom–molecule exchange reactions. One example of such a system is
the H-atom transfer reaction

Cl + HI → ClH + I

In the course of this reaction the relatively weak HI bond is broken and replaced
by the stronger HCl bond. The reaction liberates chemical energy, as shown

∗ The electronic energy is the potential energy for the nuclei. The change in the electronic energy

when the nuclei are displaced is the force. See also Sections 5.0.1 and 7.0.2.
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Figure 1.1 The energetics of the reaction Cl + HI → ClH + I. The plot is drawn so as
to have a zero of energy common to the reactants and products. This is achieved by
taking the zero of energy when all three atoms are at rest and far apart from each
other. The reactants or products, where two atoms are bound, are then below the
zero. The exoergicity, �E0, of the reaction is the difference in the bond dissociation
energies. Here �E0 is negative because the new bond is stronger. The figure further
shows the vibrational levels for the old, HI, or the new, HCl, bonds. For this purpose
the potential energies of the HI and HCl bonds are plotted as a function of the bond
stretch coordinate, 1 Å = 10−10 m = 0.1 nm. If the molecular reactant is cold, i.e.,
an HI molecule in its ground state, then the energy of the reactants is just the
translational energy ET of the relative motion of Cl and HI. As shown in the figure,
this energy is sufficient to form the products up to and including the fourth
vibrational state of HCl.

graphically in Figure 1.1. The exoergicity is about 134 kJ mol−1 or, equiva-
lently, see Appendix, 32 kcal mol−1, or about 1.39 eV. This amount of energy is
large by chemical standards when we recall that the H H bond energy is about
435 kJ mol−1. Do not confuse the exoergicity of the reaction with the exother-
micity (or heat) of a bulk chemical process. In the bulk there are subsequent
collisions where the nascent products collide with other molecules. We focus
attention on the elementary chemical event. We are dealing with the nascent
products of an isolated triatomic system, ClHI. We ask: when this system of
three atoms evolves into the products HCl + I, where is the liberated energy to
be found?

In a short while we discuss how to obtain an experimental answer to our
question. What is important is the idea that we center attention on the isolated
system and ask to probe the products prior to their engaging in any further action.
The question is: immediately after the reactive collision of Cl + HI is over, how
is the energy distributed among the reaction products? Even if both products are
formed in their electronic ground states, we need to determine the partitioning
of the excess energy of the chemical reaction into the three remaining modes
of energy disposal. They are: vibration of HCl; rotation of HCl; and relative
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Figure 1.2 Two distributions, P(v), of vibrational states of HCl, drawn on a log scale
vs. the vibrational quantum number v. Left: the distribution measured for the
nascent HCl product of the Cl + HI reaction (adapted from the observed
chemiluminescence (in the infrared) of the vibrationally excited HCl(v) by D. H.
Maylotte, J. C. Polanyi, and K. B. Woodall, J. Chem. Phys. 57, 1547 (1972). See also
Polanyi (1987)). The observed distribution of HCl(v) immediately after the reaction is
qualitatively different from the distribution at thermal equilibrium, which is shown
on the right. The distribution at thermal equilibrium is exponentially decreasing with
the excess vibrational energy of HCl. Not so for the distribution on the left, which is
loosely described as showing a population inversion.

translation of I and HCl recoiling from one another.10 But what is the distribution
of energy among these three modes?

When a reaction is studied in the “bulk” gas phase, the nascent products soon
collide with other molecules, energy is transferred upon collision (thus becoming
effectively partitioned among all molecules), and the overall reaction exoergicity
is finally liberated in its most degraded form, i.e., heat. In macroscopic terms, the
reaction is exothermic, i.e., �H 0 < 0. The microscopic approach of molecular
dynamics, however, is concerned with the outcome of the individual reactive
collisions. The experimental challenge, as discussed in Section 1.2.5, is to arrest
the collisional relaxation of the nascent reaction products and to probe them as
they exit from the reactive collision. In this sense, it is customary to speak about
the nascent or newborn reaction products.

1.2.1 Distribution of products’ energy states

Figure 1.2 shows on the left a typical experimental result, illustrating the dis-
tribution of energy among the vibrational states of nascent HCl. A vibrational
quantum of HCl is about 35.5 kJ mol−1, so that a large fraction of the available
energy (134 kJ mol−1 + the thermal energy of the reactants) goes into vibrational
excitation of HCl, and thus, by difference, only a small fraction into translational
recoil of HCl and I or into the rotation of HCl.
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The vibrational distribution on the left of Figure 1.2 can be compared with that
on the right, which is expected when a reaction is run under “bulk” conditions and
the system has run to equilibrium. Then a Boltzmann equilibrium distribution
would be produced: the most probable state is v = 0 and the relative populations
decline exponentially with the vibrational quantum number. Of course, the bulk
population does not arise from a single elementary process but rather from a
succession of energy-degrading collisions of the vibrationally energy-rich HCl
molecules with various other molecules.

Molecular dynamics in its “purist” approach tries to seek out (and understand)
the truly elementary events. Thus it is more interested in the left than in the right
panels of Figure 1.2. It is, however, concerned not only with the primary reactive
collision process but also with the subsequent non-reactive, inelastic energy-
transfer steps that take the system from the nascent distribution of products to
the fully relaxed one. The Cl + HI system is not exceptional. Many exoergic
reactions release a substantial part of their energy into internal modes of product
excitation.11 A key problem facing us is to understand this observation in terms
of the forces that act during the collision. In this introductory case study we use
a model.

1.2.2 Simple view of products’ energy disposal:
the spectator

We need a model, oversimplified of course, which will at least provide a simple
interpretation of the observed energy disposal in the Cl + HI → HCl + I reaction.
Let us try to take advantage of any “handle” that may help us approximate the
dynamics of the problem.

One aspect of the collision is that it involves the transfer of a light atom (H)
between two much heavier atoms. Recall that the I atom is about three times
heavier than the Cl atom, which in turn is more than 30 times heavier than the H
atom. The ClHI triatomic system is similar in that respect to the H+

2 molecule-
ion, where it is the light electron that “mediates” between the two heavy protons.
When a molecule undergoes an electronic transition we obtain insight into the
distribution of the final vibrational states from the Franck–Condon principle, dis-
cussed in detail in Chapter 7. The principle says that during the very fast electronic
transition the heavy nuclei do not change their momentum, the nuclei merely act
as spectators during the rapid electronic rearrangement. A spectator is someone
who is not involved, i.e., does not feel any impulse. From Newton’s second law we
expect that a spectator is likely to be “heavy,” because its momentum is resilient
to change, the mass being the measure of the inertia to change. It thus follows
that a spectator has a constant momentum.

To apply similar ideas to the present problem we must assume that the H
transfer reaction is over in a time short compared to the time required for the
heavy nuclei to move substantially. The model is then that the heavy iodine
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atom acts as a spectator during the (rapid) transfer of the light hydrogen atom
to the heavy chlorine atom. This means that the final momentum of the I atom
after the collision (p′

I) is essentially the same as the initial momentum of the
I atom:

p′
I = pI (1.1)

It is easy to realize that this spectator model can account for the observation that
very little of the reaction exoergicity is released as translational energy of the
products. The Cl atom approaches the HI molecule with a particular momentum
and “captures” the H. But the H atom is so light that the momentum of the I atom
is left nearly unchanged, and so too is that of the Cl atom, which is part of the HCl
product. But if energy is to be conserved without altering the translational motion,
it follows that the exoergicity of the reaction must be “deposited” in the internal
motion of the HCl. The quantitative version of our conclusion is the subject of
Problem B. Here we proceed to look for additional experimental evidence that
can lend support to the model.

1.2.3 Products’ angular distribution

The spectator model makes a statement about vectors, namely that not only
the magnitude but also the direction of the momentum of the iodine atom is
unchanged in the collision (Newton’s second law requires a force to change the
direction of the momentum). Hence, the product iodine atom should appear in
the same direction as that of the incident HI while the product HCl will appear
in the direction of the incident chlorine atom. Leaving the details for later, it
is sufficient to say that this description, which we colorfully call the spectator
stripping picture, is qualitatively the behavior found experimentally. The product
HCl appears mainly in the “forward” direction (i.e., in the direction of the incident
chlorine atom). Note again that such a statement is only possible because we are
focusing our attention on the isolated collision.12 In the bulk, the products would
soon collide with other molecules and very rapidly lose all memory of their
nascent direction of motion.

The observation that the angular distribution of products is rather anisotropic
implies that no long-lived ClHI intermediate “complex” is formed. If the reaction
duration were long compared to the period of rotation of such an intermediate,
almost all memory of the initial directions of the reactants would be erased and
the products’ angular distribution would not distinguish between the forward and
backward directions. An insertion reaction for which this is the case is shown
later in Figure 1.4. If there were a long-lived intermediate we would also not
expect a very specific energy disposal because then there would be time for the
energy to become approximately “equipartitioned” among the different modes
of this intermediate.
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1.2.4 From specific energy disposal to the mode-selective
control of chemical reactions

Consider the endoergic reaction

I + HCl → IH + Cl

The reverse exoergic Cl + HI reaction is observed specifically to populate the
final vibrational states of HCl. Using our model and any other means, can we
predict the energy requirements of this endoergic reaction and, in particular, can
we enhance the reaction rate by a selective preparation of the reactants?

Since we are dealing with an isolated collision, the reaction endoergicity has
to be supplied by the initial energy of the reactants, I and HCl. This energy can be
provided by the relative translational energy of the colliding pair and/or by the
internal energy of HCl. When the energy of the I and HCl reactants just exceeds
the endoergicity, not enough energy is available to form a vibrationally excited
HI product and the final momentum of the HI product is also small. If, Eq. (1.1),
the momentum of the I atom is to be nearly unchanged during the collision, the
necessary energy for the reaction cannot be provided by the relative translational
energy of the reactants, I + HCl, for this would require a high initial momentum
of the I reactant relative to the center of mass. The reaction endoergicity, at least
just above the energy threshold for reaction, must therefore be provided by the
initial internal energy of the HCl.

The conclusion of a selective energy requirement, which is based on the
model, can be much strengthened by consideration of the principle of micro-
scopic reversibility.13 Recall that the experiments on Cl + HI showed that at low
energies vibrationally cold HI leads mainly to the formation of vibrationally hot
HCl, with only a smaller fraction of the energy released as translation. Because
vibrationally cold HCl is formed with a very low probability in the forward reac-
tion, it follows that for the reverse reaction involving the collision of vibrationally
cold HCl with an I atom at high translational energies, most collisions are non-
reactive. By this we mean that reaction will occur only rarely on such collisions.
In contrast, collisions of vibrationally hot HCl molecules with I atoms will be
fruitful even at low translational energies.

Selective preparation∗ of reactant energy states as a means for controlling not
only the rate but also the chemical nature of the products has now been well

∗ How can reactions take place starting with bulk thermal reactants for which the proportion of

molecules in the higher vibrational states is exponentially small? It is a requirement of chemical

kinetics that reaction rates be measured for reactants that are maintained in thermal equilibrium.

If necessary, a buffer gas is added whose role is to insure that thermal equilibrium is maintained,

by collisions. In the bulk the very few vibrationally hot, i.e., excited, HCl molecules react with I

atoms produced by thermal dissociation of I2. This displaces the remaining HCl molecules from

their thermal equilibrium because the mean vibrational energy is now lower. Collisions with the

buffer gas restore the thermal equilibrium or, on a molecular level, collisions repopulate the higher

vibrational states of HCl and also dissociate I2 molecules. Next, the vibrationally hot HCl molecules

are preferentially removed by reaction with I atoms. Equilibrium needs to be restored, and so on.

All this is hidden when we just focus attention on the thermal reaction rate constant.
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demonstrated. As an example, the rate of the H + HOH → H2 + OH reaction
is enhanced when the H O stretch motion is excited.14 Say now that instead
of H2O one considers HOD where D is the heavy isotope of H. The O H and
O D vibrations have sufficiently different frequencies that the two modes rep-
resent nearly independent vibrations of HOD. The reactions of H atoms with
H OD excited with four vibrational quanta produce primarily H2 + OD, whereas
reactions of H atoms with HO D excited with five vibrational quanta produce
primarily HO + DH:

H +
H

D
O

H2 + OD H OD excited by four quanta
HO + DH HO D excited by five quanta{

The model introduced in Problem G concludes that the bond that is unaffected is
a spectator in such reactions. Here we follow a more chemical argument: OH is
isoelectronic with the F atom. The F + H2 exoergic reaction selectively populates
the vibrational states of the HF product. The H + H (OH) reaction is expected
to have similar forces to the H + HF reaction and the masses are also similar.
Therefore, by microscopic reversibility, H (OH) vibrational excitation should
promote the endoergic H + H (OH) reaction.

1.2.5 The experiment

The entire discussion in this section is based on the experimental determination of
the vibrational energy partitioning in the nascent reaction products. The original
experiment by John Polanyi and his coworkers was a tour de force. The back-
ground and the early results are described in his Nobel Prize lecture (Polanyi,
1987); for an early account, see Polanyi (1972). Nowadays we could use a pump–
probe technique. What we want is to be able to probe the nascent products before
they undergo any relaxation by interaction with the surroundings. This condition
can be achieved if we can slow time down so as to catch the products as soon as
they emerge from the reactive collision. The technique of pump and probe, which
uses two fast laser pulses delayed in time with respect to one another, can achieve
this. We need a precursor that, upon photolysis, promptly dissociates to yield the
reactive atom or radical. The photolysis pulse, known as the pump, is “on” for
only a brief time interval. How brief we will see shortly, but the necessary short
time pulses are nowadays routinely available. A short time after the pump a sec-
ond short laser pulse, known as the probe, interrogates the nascent products. The
experiment is in the bulk so that the time interval between the pump and probe
pulses needs to be of the order of the time between two successive collisions that
a molecule undergoes in the bulk. In this way we insure that the products arise
from only those reactive atoms that have undergone one, reactive, collision. Prior
to this one collision the reactive atoms have not been deflected or slowed down
by collisions with other molecules. The same short delay between the pulses also
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Figure 1.3 HD rotational and vibrational state distributions measured for the H + D2

reaction at a collision energy of 1.3 eV. The energy is determined by the recoil
energy of the H atom in the photodissociation of HI at a wavelength where it
dissociates primarily to ground state I atoms. The experimental results shown
[adapted from D. P. Gerrity and J. J. Valentini, J. Chem. Phys. 81, 1298, (1984) and
Valentini and Phillips (1989)] used CARS spectroscopy to determine the state of HD.
E. E. Marinero, C. T. Rettner, and R. N. Zare, J. Chem. Phys. 80, 4142 (1984) used
resonance enhanced multiphoton ionization, REMPI, for this purpose.15 The figure
also shows curves. Those on the left are the so-called linear surprisal representation,
see Section 6.4. The plot on the right shows the same experimental data on a
logarithmic scale. The curves [adapted from N. C. Blais and D. G. Truhlar, J. Chem.
Phys. 83, 2201 (1985)] are a dynamical computation by the method of classical
trajectories, Section 5.2.

insures that the products have not had the time to undergo subsequent collisions
that relax the energy distribution. Probing detects truly nascent products.

The experimental desideratum is that the probe laser follows the pump laser
within one time interval between two successive collisions. Either laser pulse
needs therefore to be individually shorter than that time interval. The frequency
of collisions of course depends on the pressure in the bulk sample. The lower
the pressure the less frequent are the collisions and the less demanding are the
conditions on the duration of the laser pulses. On the other hand, the lower the
pressure the fewer the molecules in the sample and the lower is their measured
response to the probe laser. Chapter 2 will demonstrate that laser pulses below
about 50 ns are sufficiently short.

Figure 1.3 shows a complete vibrational and rotational state population distri-
bution for the nascent HD product of the H + D2 → DH + D reaction studied by
the pump and probe technique.

An experimental arrangement that uses many of the techniques that we have
mentioned is shown schematically in Figure 1.4.
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365 nm

193 nm

121 nm

OH beam

Rotatable detector

VUV cell

HNO3

D2
D*

D2

Figure 1.4 A crossed molecular beams arrangement for determining both the
occupancy of the internal states and the angular distribution in space of the products
of the D2 + OH → D + DOH reaction. Within a vacuum chamber, not shown, OH
radicals are produced by photolysis of HNO3 using pulsed light at a wavelength of
193 nm. The OH radicals are collimated by a skimmer and cross a beam of D2

molecules at a right angle. The relative collision energy is 6.6 kcal mol−1. The D
atoms are detected by electronically exciting them from the 1s to the 2p state using
UV light, at a wavelength of 121 nm (VUV). Another pulsed laser, at 365 nm, excites
the short-lived 2p state to a state of high principal quantum number, shown as D*.
These excited D atoms are longer living16 and are counted by a detector whose
angle with respect to the molecular beams can be changed. This determines the
products’ angular distribution. The internal energy of HOD is determined by
conservation of energy from the kinetic energy of the D atoms that is measured by
the time they take to fly from the pulse-initiated reaction to the detector that is 29 cm
away. [Adapted from H. Floyd Davis; see Strazisar et al. (2000). Lin et al. (2003)
discuss the F + CD4 reaction in a crossed beam arrangement.]

The reaction exoergic D2 + OH → D + DOH is observed to form DOH
primarily in the v = 2 state of the D O stretch with only a small amount of
bending excitation and essentially no energy in the OH vibration. This is as
expected from the discussion of the reversed reaction in Section 1.2.4. The DOH
product is backwards scattered as is DF from the D2 + F reaction, which is
consistent with a mechanism where reaction occurs when the two reactants run
head-on into one another.

1.2.6 Launching the system in the transition state region:
the first steps toward control

The transition state region separates the reactants from the products (Polanyi and
Zewail, 1995). For the atom–diatom reactions that we discussed, it is the region
where the system is most like a triatomic molecule. It is an unstable triatomic
because it proceeds to evolve into the separated products. Quite often it has only
a fleeting existence, as indicated by the anisotropic angular distribution of the
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products showing that there is a memory of how the system was formed. We
cannot therefore keep the system in the transition state region for long but we
can launch it there and seek to see how it evolves. As an example, we earlier
drew an analogy between a light H atom exchange between two heavy atoms and
the light electron that is exchanged between the two protons in H+

2 . Is ClHI at
all similar to H+

2 ? One can have a look, for example, in the following way.17 The
negative ion ClHI− is a stable precursor and can be prepared in the gas phase.
It is known that in this negative ion the light H atom is sandwiched by the two
heavy atoms. Therefore, if we could only form the neutral species at the same
atomic arrangement as the ion, we would be in the transition state region of the
neutral triatomic system.

The extra electron of ClHI− can be rapidly detached by a short laser pulse.
We then form a neutral triatomic species that finds itself with the three atoms
close by. We know the energy of the neutral ClHI because the kinetic energy of
the outgoing electron can be measured and the laser wavelength is known. We
also have a good idea about its geometry because the electron departs so rapidly
that the nuclei are where they were in the ground vibrational state of the cold
ClHI− molecule that we started with. Launching systems into non-equilibrium
geometries so as to probe the subsequent dynamics is a theme that will recur in
this book all the way to reactions in condensed phases.

1.2.7 The steric requirements of chemical reactions

Not only energy is required to drive a reaction successfully. Almost always there
is also a preferred direction of attack. The steric requirements of the reaction
is a theme that takes us all the way to the docking of a drug at an active site
of an enzyme. The experimental study that directly demonstrates such require-
ments started with colliding beam experiments that use oriented methyl iodide
molecules. It is found that the reaction probability for the “favorable” config-
uration, Rb + ICH3, meaning that the Rb atom approaches from the I end, is
significantly greater than that for the “unfavorable” orientation, Rb + H3CI. A
graphical summary of the experimental results18 is provided in Figure 1.5.

An iodine atom is bulky compared to the CH3 group so that the methyl can
shield the iodine from the attack only when it is directly in the way. For our earlier
example, the Cl + HI reaction, the steric hindrance will be more effective and the
cone of acceptance for reaction is expected to be much narrower because the Cl
atom needs to reach the small H atom, which we expect to be effectively shielded
by the bulky I atom. The computational evidence is that in less than a third of
all Cl + HI collisions can the Cl atom come within the cone of acceptance for
reaction, a cone spanned by the H atom.

There is much more to stereodynamics, the topic of the entire Chapter 10.
Much of the recent work in the gas phase uses lasers to prepare oriented reactants



14 Understanding chemical reactions
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Figure 1.5 The cone of approach of Rb to CH3I that does not lead to reaction to
yield RbI, determined by experiments where Rb atoms approach oriented CH3I
molecules. The C, H, and I atoms are drawn according to their conventional size. The
angle between the relative velocity of Rb and CH3I and the axis of CH3I is γ, the
angle of attack. The probability of reaction to produce RbI is highest for Rb coming
towards the I end and decreases when Rb comes in sideways. Reaction is
vanishingly small for an approach in the region labeled as the cone of non-reactivity
[adapted from Parker and Bernstein (1989)].

or probe the products.19 Here we take a look at another steric aspect: is the
collinear approach always the favored one?

1.2.7.1 Abstraction vs. insertion
The reactions we have discussed so far are all what a chemist will call abstractions.
These reactions are characteristic of atoms from the first or seventh columns.
Abstraction reactions typically are specific in their energy and angular disposal.
As an example of a different behavior we show the angular distribution of the
products where an (electronically excited) O(1D) atom inserts into the H H bond.
This results in the formation of a water (H O H) molecule and we expect the
H O H bending motion to be energy-rich because in an insertion the O atom
needs to attack in a direction perpendicular to the H H bond and much energy
is made available due to a replacement of one H H bond by two O H bonds.
Unlike the molecules we usually encounter, here we deal with a very energy-rich
water molecule. It can and does fall apart,20 but it will stay bound for a while.
Why? Imagine the gyrations of this energy-rich species. Because of the insertion
mode, the energy is initially made available to the HOH bending motion. To form
the products we need an H atom to separate from OH. In other words we need
energy in an O H stretch mode. It takes a while before the energy made available
by the formation of HOH is channeled also into the stretch modes. When an O H
bond finally breaks it hardly remembers if the O atom initially came from the
right and the H2 from the left, or vice versa. The products’ angular distribution
will therefore exhibit a forward–backward symmetry21 as shown in Figure 1.6.



1.2 Energy disposal in an exoergic chemical reaction 15
I(

q)

en
er

gy
 / 

kJ
 m

ol
−1

Scattering angle, q, in the center of mass

1.0

0.5

exp.

QCT

1A′′

1A′

1A′+1A′′

O(1D)+D2

0.0

0

−200

−400

−600

H2O(X1A1)~

1A′

1A′′
O(3P)+H2

OH(X2Π)+H

O(1D)+H2

Figure 1.6 Left: observed angular distribution (solid line) of the OD product from the
O(1D) + D2 insertion reaction [adapted from Casavecchia et al. (1998)]. The scattering
angle θ is defined as the angle that the velocity of the departing OD product makes
with the velocity of the incident O atom in the center of mass system, Section 2.2.7.
Shown on the right are the energies of the different species. The low-energy path to
products proceeds via a D2O intermediate. In the collision we form an energy-rich
D2O molecule that has enough energy either to dissociate back to the reactants or to
proceed to the OD + D products. The observed angular distribution of OD shows a
slight preference for backwards scattering. This is because OD can also be formed
by abstraction when the approach of O(1D) to D2 is collinear and this route does not
go through D2O as an intermediate but proceeds via the electronically excited 1A′ ′

state [for more on the abstraction channel see Y.-T. Hsu, J.-H. Wang, and K. Liu,
J. Chem. Phys. 107, 2351 (1997)]. We expect that when the O atom runs head-on into
D2, OD will scatter backwards. Dynamical computations (dashed line, QCT) by the
method of classical trajectories, Chapter 5, verify that the abstraction reaction
contributes primarily in the backwards direction and that the OD formed by the
insertion reaction indeed shows no forwards–backwards preference with respect to
the incident O atom. This is further discussed in Chapters 4 and 10.

1.2.8 The time scales of the chemical change

The discussion so far has emphasized the selection of the reactants and the inter-
rogation of products. From this information we infer the molecular-level details
of what must have happened as the reactants evolved to the products. Can we
view the motion during the very chemical act? If this approach were techni-
cally feasible we could probe the reaction as it unfolded. The entire Chapter 8 is
devoted to such, technically demanding, experiments. An understanding requires
examining the implications of the Heisenberg time–energy uncertainty principle.
This principle implies that by probing the system over a short time interval we
lose the ability to precisely know the energy of the system. However, for the
time scales of interest to us, Table 1.1, the resulting uncertainty in energy is not
only tolerable but also sufficient to allow us to localize the system in space. The
localization comes about because an uncertainty in energy means an uncertainty
in momentum. For the simple case of a free particle of mass m, E = p2/2m so that
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Table 1.1 Time scales for fast and ultrafast motions

Time

femto

nano

pico

(s) Intramolecular time scales Chemical time scales

period of electronic motion
in low n orbitals, increases
as n3

vibrational motion; fast for
stretch motions, particularly
so in hydrides, slower for
heavy atoms and/or shallow
wells

rotational motion slower for
larger molecules with large
moments of inertia

radiative decay from
electronically excited states

duration of reaction; fast for
direct reactions or
dissociation on a repulsive
potential but slow to much
slower for sticky collisions
that proceed via an
intermediate. Can be
comparable to time
between collisions

time between collisions in
the liquid phase (pressure
and viscosity dependent)

intramolecular energy
redistribution; faster at
higher internal energies

time between collisions in
the gas phase (decreases
with increasing pressure)

On the left are periods of intramolecular motions that are relevant to chemistry. On the right are the different per-
turbations that can result in a physical or chemical change. The duration of a chemical reaction spans a wide 
range, from the very fast direct reactions and direct photochemical bond breaking to the much longer times when 
the energy-rich species [e.g., D2O formed by a collision of O(1D) + D2 as shown in Figure 1.6, or by excitation of a 
stable molecule] live for a while before breaking apart. When we discuss biological function or molecular motors 
we will encounter even longer time scales.

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

δE = (p/m)δp. The uncertainty in energy is δE = �/�t, where �t is the required
time resolution. Hence we can localize the particle to within δE = �/δp = v�t,
where v = p/m is the velocity. Here then is what we need from our laser pulse.
Its duration, �t, needs to be short enough so that we can localize the motion
within the range of distances that we want to probe. In other words, what we
need are pulses short compared to the intramolecular time scale of the motion
we want to follow. Two such characteristic times suggest themselves. One is
the duration of the reactive event; the time it takes the reactants to rearrange
into products. This time is often in the range of a few hundreds of femtosec-
onds (fs) or less (100 fs is the time needed to cover a distance of 0.3 Å when
moving at a thermal velocity of 3·104 cm s−1). If our time resolution is better
than 100 fs, we can already watch the receding products. Achieving even shorter
times, lesser than a vibrational period, will allow us to watch bound intramolecu-
lar motions. Some relevant time scales are shown in Table 1.1. As shown, periods
of motions characteristic of molecules can span quite a wide range. For a protein,
the stretch motions, say the C H modes, can be rather fast, of the order of 10 fs,
while the skeletal deformations are far slower. Even for electronic motion the
range is wide. Electrons of low principal quantum number n move much faster
than the motion of atoms. This is not necessarily true for electronically excited
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states. States of high n, known as Rydberg states, have a particularly slow-moving
electron.

Quantum mechanically, a system that is localized in space and time is not
in a stationary state. A non-stationary wave function, known as a wave-packet,
changes with time and is the solution of the Schrödinger time-dependent equa-
tion of motion, rather than the more familiar time-independent equation, as dis-
cussed further in Chapters 7 and 8. Here we just note that the superposition of
states in quantum mechanics allows us to write a non-stationary state as a linear
combination of stationary states. For example, the uncertainty in energy that
we noted means that states of different energy (and momentum) contribute to
such a linear combination. We have δE as the range of energies of the stationary
states that make significant contributions to the linear combination that is the
non-stationary state.

The required technology is currently available22 and is making much headway
in providing real-time dynamics, even in biochemical systems. The development
of ever-shorter pulses keeps making progress but the time–energy uncertainty
principle tells us to examine what we want because when we probe a system
over a very short time, say a time sufficient to probe electronic motion, we have a
corresponding serious loss in the energy resolution. So, in principle, we are forced
to make a choice: how short a time resolution do we really require? How serious
is this choice? Let us discuss electronic excitation of a diatomic molecule as in
Figure 1.7. The separation in energy between two vibrational states of the upper
well is hν, where ν is the vibrational frequency. The inverse of the vibrational
frequency is the period of the vibration. If our time resolution is better than a
vibrational period, our energy resolution is inherently poorer than the spacing
between two adjacent vibrational states of the upper state. Several vibrational
states will then contribute to the linear combination that is the non-stationary
state prepared by the short time pulse, as shown in Figure 1.7. The advantage is
that such a state is localized within the potential well, unlike the more familiar
stationary vibrational states, states that are delocalized over the entire allowed
range (see Problem H).

Using ultrafast pump excitation we can launch such a localized wave-packet
in the transition state region of a chemical reaction and then probe the tempo-
ral evolution23 toward the products (Bernstein and Zewail, 1988; Zewail, 1996,
2000).

1.2.9 Reaction dynamics in solution and on surfaces

Finally, we will examine our understanding of the dynamics in the condensed
phase, where much of real chemistry takes place. We discuss both reactions in
solution and reactions on surfaces, with special attention paid to the new features
that are not present in the gas phase.

Chemists traditionally use the environment in which the reaction takes place to
control reaction rates and the branching between different possible products. We



18 Understanding chemical reactions

R / interatomic distance

energy spread
of ultrafast pulse

spatial localization
of wave-packet

range of vibrational
states that contribute
to the wave-packet

en
er

gy

Figure 1.7 Preparing a localized vibrational state by an electronic excitation of a
diatomic molecule using an ultrashort laser pulse. Shown are the interatomic
potentials vs. distance for the ground and electronically excited states. By the
uncertainty principle the light pulse spans a range of frequencies. Those frequencies
that contribute significantly are within the range delineated by the two vertical
arrows that originate from the vibrational ground state. The energy width of the
laser pulse shown is small compared to the electronic excitation energy but is larger
than a vibrational spacing. Therefore the pulse prepares the molecule in a definite
excited electronic state but in a range of final vibrational states, as shown. Note that
in accordance with the Franck–Condon principle, discussed in detail in Chapter 7, we
do not allow the nuclei to change their relative separation R during the fast
electronic excitation. The localized vibrational wave-packet ψ(R, t) formed in the
excited electronic state can be written as a linear combination of stationary (and
delocalized) vibrational states,ψv(R), ψ(R, t). = �v Av exp(−iEvt/�)ψv(R), where v is
the vibrational quantum number and the energies Ev are shown. The contribution of
each vibrational state is specified by the amplitudes Av. Problem H shows that the
amplitudes can be chosen such that the initial wave-packet is localized and that for
motion on a harmonic potential it remains localized as it evolves over time.

want to discuss the different ways for thinking about the role of the environment.
At the same time we need to alert you to the fact that what can be measured for
reactions in solution and how to implement these measurements is different from
in the gas phase and needs its own discussion (Fleming, 1986; Cong and Simon,
1994).

In solution the first key notion is that of solvation, the incessant interaction
with the solvent. The essential qualitative aspect is the cage that the solvent builds
around the reactants or products, as shown in Figure 1.8.

If the chemical reaction is fast, the observed rate of change is determined not
by the crossing of the chemical barrier by the caged reactants but by the rate of
the reactants diffusing towards one another and getting into the cage.

Solvation also has an energetic aspect. This allows us to understand the rate at
which reactions of ions in solution, such as electron transfer, take place: the rate
is governed by the need of the solvent to reorganize. The quantitative expression
of this idea is the Marcus theory24 that we will discuss in Chapter 11.
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Figure 1.8 Contrasting direct photodissociation in the gas phase and in a solvent
[adapted from Schwartz et al. (1994)]. As we shall discuss, the coming back together
of the two fragments owing to the “fence” presented by the solvent may initially be
coherent in that the wave-packet describing the relative motion has not yet
dephased,25 see Problem H. On a longer (>picosecond) time scale the
recombination will be diffusive. When the fragments are polyatomic a diffusive
recombination means that the fragments will lose their relative orientation. They can
even recombine to a different isomer of the parent.

The discussion of solvation emphasizes the motion of the solvent with respect
to the solute. But for an activated chemical reaction to take place we need to cross
a chemical barrier. How does the solvent affect this crossing? We sketch a unified
point of view, where both the solvent and the solute are allowed to evolve during
the chemical change.

Like a liquid, a surface can act as an energy sink or source. A surface
often forms strong, directed, chemical bonds with the absorbed molecules. This
modifies the reactants but also the structure of the surface. There are therefore
several linked stages, with different time scales, in any overall surface-assisted
reaction. In this book we emphasize the unraveling of the dynamics of some
elementary processes,26 but recognize that we have not quite reached the stage
where our fundamental understanding is sufficient for the very many technolog-
ical applications of surface processes, partly so because the morphology of the
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surfaces that are involved is more complex than the ideal surfaces that are used in
careful laboratory studies. Progress in probing local surface structure promises
that much further progress is possible, including the ability not only to probe but
also to control the position of individual molecules on the surface (Ho, 1998; Hla
and Rieder, 2003).

*1.2.9.1 Chaos and spatiotemporal pattern formation
What we want to do is first understand and second control the chemical process.
In closing this introduction we have to take note that nature will cooperate with
us, but not all the way. In this book the term “chaotic” will be used in several
places. It will arise in two main contexts. First, even in the description of an
isolated, individual, collision it can be that the classical dynamics is chaotic,
meaning that rather small changes in the classical initial conditions lead to marked
differences in the outcome of the collision. This severely limits our ability to
control because real molecules are quantum mechanical and we cannot specify
initial conditions as tightly as classical mechanics allows. Of course, we will put
this to advantage by developing statistical theories. But the limitation must be
borne in mind. Next, when we discuss macroscopic systems that are away from
equilibrium we will also find that the time evolution of the ensemble can manifest
nonlinearities and feedbacks that are not quite expected from what we know
about systems near equilibrium.27 We close by pattern formation for reactions on
surfaces (Imbihl and Ertl, 1995) as an example where the role of dynamics has
been elucidated. The surface structure is not static and it responds to the chemical
reaction that is taking place. This active role of the environment brings us closest
to how the feedback mechanisms regulate biochemical processes. Unraveling the
molecular-level dynamics of such complex systems is already an active subject.
The unprecedented structural information that is becoming available means that
the understanding of the dynamics can only gather momentum and that control
is forthcoming.

1.2.10 The road ahead

Our ability to develop simple models and to predict trends is, of course, based
on familiarity with a large body of experimental results and more elaborate the-
oretical developments. The aim of the present book is to provide an introduction
to the necessary background to be able to understand such results in the field of
molecular dynamics. Much of the chemistry that is interesting to us takes place in
solution or on the surface of a catalyst or in close proximity to a protein, etc. Yet
we began with an isolated bimolecular collision in the gas phase. This is because
our first task is to marshal the evidence for our claim that chemistry is local,
meaning that the configurational change that we call a chemical reaction occurs
over a short range. We will need to set the distance scale for both physical and
chemical changes. Then we will examine the different processes that can take
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place and their time scales. We will pause to develop the tools for describing such
processes. Next we shall try to exercise control.28 As our understanding grows
we discuss ever more complex systems.

Appendix: Units

Table A.1 Useful physical constants (rounded)

Units

Designation of quantity Symbol Value SIa cgs

Avogadro’s number NA 6.0221 1026 kmol−1 1023 mol−1

Atomic mass unit (12C-12) amu 1.6606 10−22 kg 10−24 g
Electron charge/mass ratio e/me 1.7588 1012 C kg−2 107 emu g−3

Electron charge e 1.6022 10−19 C 10−20 cmu
Electron mass me 9.1095 10−31 kg 10−28 g
Bohr radius (a.u.) a0 5.2918 10−11 m 10−9 cm
Rydberg constant Rx 1.09737 107 m−1 105 cm−1

Speed of light in a vacuum c 2.99792 108 m s−1 10−3 cm−1

Planck’s constant h 6.6262 10−34 J s 10−27 erg s
Dirac’s h (h/2π ) h 1.05459 10−34 J s 10−27 erg s
Hartree (a.u.) au 4.3598 10−18 J 10−11 erg
Gas constant R 8.3144 103 J kmol−1 K−1 103 erg mol−1 K−1

Boltzmann’s constant (R/NA) k 1.38066 10−23 J K−1 10−16 erg K−1

Adapted from Pure Appl. Chem. 51, 1 (1979).
a SI: Système International d‘Unités (International System of Units), adopted in 1960. Special symbols
for units: C, coulomb; J, Joule; K, K.

Table A.2 Useful conversion factorsa

Length
1 ångström (Å) = 10−10 m = 10−1 nm;
1 micron (µm) = 10−6 m

Force
1 newton (N) = 1 kg ms−2 [= 10−5 dyn = 10−5 g cm s−2]

Pressure
1 pascal (Pa) = 1 N m−2 = 10−5 bar [= 10 dyn cm−2];
1.01325 × 105 Pa [= 1 atm = 1.01325 × 106 dyn cm−2 = 760 torr]

Energy
1 joule (J) = 1 kg m2 s−2 = 102 erg [= 0.239006 cal]

a The familiar designations (units) enclosed to brackets are not part of
the International System of Units (SI)
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Problems

A. The rare gas ion Ar+ reacts with H2 to form ArH+. The reaction is exoergic.
Provide one physical model to illustrate why the nascent product will be vibra-
tionally excited. To continue with this reaction go to Problem B and then to C.
The F + H2 reaction also leads to nascent HF molecules that are vibrationally
excited. What chemical argument can be used to make this observation further
support the model?

B. Spectator stripping: a quantitative version of Section 1.2.2. It is easy to
control and to measure the velocity of an ion. Say we study the final (relative)
kinetic energy of ArH+ + H as a function of the initial (relative) kinetic energy of
Ar+ and H2. Argue that spectator behavior, Eq. (1.1), implies that roughly half of
the initial kinetic energy appears as products’ translation. In the general A + BC
case you should get that with the A atom as the spectator the final (primed) kinetic
energy is related to the initial one as

E ′
T = [mAmC/(mA + mB)(mB + mC)]ET

C. As in Problems A and B but now let us give the incident Ar+ ion even
higher initial kinetic energies and detect the products. Beyond a certain energy,
not too high, there is a steep drop in the formation of ArH+ [K. M. Ervin and
P. B. Armentrout, J. Chem. Phys. 83, 166 (1985)]. Why? What is happening to
the production? The bond energy of H2 is about 435 kJ mol−1. That of ArH+ is
about 370 kJ mol−1. (a) What is the exo- (or endo-) ergicity of the reaction of
Ar+ and H2? (b) Estimate the energy at which formation of bound ArH+ drops off.

D. Chemical kinetics of four-center reactions. In the family of “four-center”
reactions H2 + X2 → 2HX, X = halogen, there are significant variations in
the bond strengths of X2. The X = I case has the simplest rate law and the
others proceed by a chain mechanism (Steinfeld et al., 1999; Houston, 2001). For
H2 + I2 the proposed mechanism [J. H. Sullivan, J. Chem. Phys. 46, 73 (1967);
G. Hammes and B. Widom, J. Chem. Phys. 96, 7621 (1974)] is a rapid dissociation
equilibrium I2 � 2I followed by I forming a weakly bound complex with H2,
I + H2 � IH2, which then reacts with another I atom, I + IH2 → 2HI. Show that
this mechanism accounts for the overall kinetics being of the second order, first
order in H2 and first order in I2. Propose experimental tests for this mechanism.

E. A dynamical study of X2 + Y2 four-center reactions, X, Y halogens. As in
Problem D, here too there are variations among the different possible reactants,
differences that reflect differences in bond energies. For F2 + I2, molecular beam
scattering [C. C. Kahler and Y. T. Lee, J. Chem. Phys. 73, 5122 (1980)] has
shown that for collisions at energies above 17 kJ mol−1 the primary process is
F2 + I2 →FI2 + F. At a collision energy above about 30 kJ mol−1 the FI2 product
dissociates to I + IF. In the bulk it is considered that the relatively weak F2 bond
allows for there being thermally generated F atoms that lead to IF formation via

F + I2 → I + IF ∗(B)
hν−→ IF(X)
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where X denotes the ground state and B is an electronically excited state of IF.
The B state that is at an energy of about 225 kJ mol−1 above the X state decays
by emission of light. This explains the chemiluminescence observed in the bulk
gas-phase reaction of F2 + I2. (a) In what spectral range do we expect to detect the
chemiluminescence due to the B to X transition? (b) The dissociation energies of
F2 and I2 are 1.59 and 1.54 eV, respectively (it will be necessary to convert units).
What is the maximal possible internal energy of FI2 formed at the threshold
for the reaction F2 + I2 → FI2 + F? (c) Provide an estimate for the energy of
dissociation of FI2 to FI + I?

∗F. This problem is starred not because it is difficult but because you will
need to be careful about transformation from the laboratory coordinates to the
coordinates suitable to describe the relative motion. You may prefer to return to
it after Section 2.2.7. As in Section 1.2.5 we initiate a reaction with a barrier by
creating fast-moving atoms by photolysis of a precursor. For the D + CH4 →
DH + CH3 reaction the threshold energy has been determined to be 0.65 eV,
while ND3 has a bond dissociation energy to ND2 + D of 110 kcal mol−1.
(a) Assuming that ND3 is used as the photolytic hot atom source and that the
thermal energy distribution of both ND3 and CH4 can be neglected, show that the
longest photolysis wavelength that can produce the HD product is 220 nm. Along
the way show that the D atom takes most of the energy available when ND3 is pho-
tolyzed. (b) Experimentally, detection of HD requires using a shorter wavelength,
say about 200 nm. What does this imply about the dynamics of photodissociation
of ND3?

∗G. The unaffected bond is a spectator. In the A + BCD →AB + CD reaction
it is often the case that the vibrational energy of CD is hardly changed during
the reaction. Why? Make a structural model as follows: (a) Introduce coordinates
that allow you to write the kinetic energy as a sum of uncoupled terms. For the
reactants these can be the C–D distance, the distance of B to the center of mass of
CD, and the distance of A to the center of mass of ABC. Express the kinetic energy
in these coordinates. See D. W. Jepsen and J. O. Hirschfelder, Proc. Natl. Acad.
Sci. USA 45, 249 (1959). (b) For the products the coordinates can be the C D and
A–B distances and the distance from the center of mass of AB to the center of
mass of CD. Express the kinetic energy in these coordinates. (c) Next, examine
the kinetic energy of C D motion and show that it is uncoupled to the other
motions and is unaffected by the rearrangement. Where is the approximation? It
is that kinetic energy is not necessarily conserved if there are forces acting. In
Chapter 10 we will call the above “a kinematic model,” see Problem B therein.

∗H. A localized vibrational wave-packet as a linear combination of delocalized
vibrational states. Figure 1.7 discussed the preparation of a localized vibrational
state, a state that vibrates in the potential well in a manner similar to a classical par-
ticle. If the well is harmonic the wave function will remain localized indefinitely.
Realistic molecular potentials are anharmonic so that after a few oscillations the
state will delocalize. Even in the harmonic case, external perturbations such as
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collisions with other molecules will lead to delocalization. (a) By plotting the
non-stationary wave function at different times, or analytically, show that in the
harmonic case the initially localized state remains localized. To do so it is easiest
if the amplitude of the vth stationary state is Av = αv/

√
v! where α is a complex

number. (b) Show that the width in frequency is ν|α| where ν is the harmonic fre-
quency of the potential well and that |α| determines the most probable vibrational
state in the wave-packet. (c) In the graphical approach show that other choices
for the amplitudes do not necessarily lead to a localized state. (d) In the analyt-
ical approach compute the mean position 〈ψ(R,t)|R|ψ(R,t)〉 of the wave-packet
and show that it behaves like a classical harmonic oscillation. (e) In the graph-
ical approach use anharmonic vibrational energy levels, with an anharmonicity
parameter xe, Ee/hcν = (ν + 1/2) − xe (ν + 1/2)2, to show that after some time the
linear combination will start to dephase, meaning that it becomes less localized.
Explore that behavior as a function of xe recalling that xe 	 1 since 1/xe is the
(finite but large) number of bound vibrational states of the anharmonic potential.

Notes
1 For more on the development of the Arrhenius equation see Logan (1982), Laidler (1984),

Further discussion of the temperature dependence of the reaction rate constant is in

Section 3.1.

2 D. L. King, D. A. Dixon, and D. R. Herschbach, J. Am. Chem. Soc. 96, 3328 (1974). This

diatom–diatom elementary exchange reaction belongs to a family known as four-center

reactions. Woodward and Hoffmann (1970) have explained why considerations of orbital

symmetry suggest that such reactions will have high energy barriers. We will return to this

point in Chapters 5 and 8. The early understanding of four-center reactions is reviewed by

Bauer (1978, 1979). One can observe facile four-center reactions if the reactants are ionic,

D. L. King and D. R. Herschbach, Faraday Disc. Chem. Soc. 55, 331 (1973), or if the

reaction is catalysed. For H2 + D2 → 2HD on transition metals see M. F. Bertino and J. P.

Toennies, J. Chem. Phys. 110, 9186 (1999), Table I in particular.

3 Chemical kinetics studies the rate of reactions in systems that are in thermal but not in

chemical equilibrium. One can thereby examine the dependence of the reaction rate on the

concentration of the reactants. Dynamics allows for extending such studies to systems that

are neither in thermal nor in chemical equilibrium. One can thereby examine the reaction

rate constant for reactants in particular internal energy states.

4 See Zewail and Bernstein (1988), Zare (1998).

5 In this reaction the strong laser field controls not only the breaking but also the forming

of bonds because the toluene product cannot be formed without a rearrangement. The

experiment is by Levis et al. (2001). Hurley and Castleman (2001) provide a commentary.

A review of the experimental capabilities is Brixner and Gerber (2003).

6 See Bergman (1984), Bromberg et al. (1997). C H or C C bond activation by

electron-rich species is an example of an insertion reaction; see Section 1.2.7.1 and R. Z.

Hinrichs, J. J. Schroden, and H. Floyd Davis, JACS 125, 860 (2003). It is also an example of

a reaction in which electrons are transferred, i.e., an oxidation–reduction reaction. We will

encounter many examples of such reactions.
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7 It can be argued that there are processes, particularly reactions in solution, or on a surface

of a catalyst or, from the biological side, reactions at the active site of an enzyme, that

proceed very much like a well-orchestrated dance. Different players must each do their

part at the right place in the sequence. Taking as an example reactions in solution, a topic

that we discuss in more detail in Chapter 11, it is necessary for the reactants to come

together, become caged at the foothills of the barrier to the chemical reaction, accept a

fluctuation of the solvent to scale the barrier, and slide into a cage on the other side, etc.

Even then we will try to distinguish stages in this teamwork. It should also be noted that

our view is biased because we only look at the successful events, those where reaction did

take place. There are many more failures – the reactants failed to get caged, or they did get

caged and repeatedly failed to scale the barrier – but we only pay attention to the rare and

fruitful events. The environment (enzyme, solvent, catalyst) needs to be quite fluxional

during the overall process, but often this synchronous action is a series of local steps. See,

e.g., Armstrong et al. (2003). There are collective processes, see Section 12.3 in

particular, but we will seek to uncover the underlying molecular mechanism.

8 General references include Schatz and Ratner (1993), Head-Gordon (1996), Szabo and

Ostlund (1996), Schleyer (1998), Levine (2000), Simons (2001), Cramer (2002). Special

references to organic chemistry: Bernardi et al. (1996), Robb Garavelli et al. (2000).

Surface chemistry has also received much attention: Garrison and Srivastava (1995),

Musaev and Morokuma (1996), Radeke and Carter (1997), Greeley et al. (2002). For

density functional theory see Kohn et al. (1996), Tse (2002).

9 For an introduction see Pulay (1995), Pulay and Baker (2001).

10 It is essential to note that the liberated energy cannot be found in the motion of I and HCl

individually but only in their relative motion. The reason is that, in the world view that we

discuss, the triatomic system is isolated. Therefore the only forces that act are the forces

that the three atoms exercise on one another. The absolute position of the atoms does not

matter, only their relative distances come into consideration. Technically this means that

no force acts on the center of mass (c.m.) of the triatomic system and therefore the kinetic

energy of the center of mass is conserved. The energy of the center of mass is the same for

the reactants and products and it will be convenient to set it equal to zero, so that the c.m.

is at rest.

11 One practical implication of this observation is that such reactions can be used as the

pumping mechanism for chemical lasers. Skipping many important points, a laser is an

amplifier. It provides a big output signal from a small input but the energy required for

doing so must be supplied. For most lasers, the energy needs to be brought in rather

quickly. It is not a trivial matter to transmit electrical energy in large doses. The faster the

current flows, the greater are the losses by heating. To achieve a high energy flux,

chemical energy, which can be made to flow in tubes, is a very attractive option. Chemical

lasers, that is, lasers pumped by chemical energy, are therefore interesting. The other

observation about lasers is that lasing requires population inversion: there need to be more

molecules populating the emitting quantum state than there are molecules in the final

quantum state of the radiative transition. Reactions leading to a specific energy disposal

can provide such (extreme) non-equilibrium conditions since there can be more molecules

in the upper, emitting state.

12 Molecular beam scattering (Bernstein, 1982; Scoles, 1986; Herschbach, 1987) is the

method that is often used for this purpose. As shown in Figure 1.4, it can not only

determine the overall product angular distribution but also resolve it for the separate
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contributions from each internal state of the products (Lee, 1987; Casavecchia et al., 1999;

Casavecchia, 2000; Liu, 2001). High-resolution laser spectroscopic methods, as applied in

Chapter 7, determine the absorption of a particular product’s state and so can, by invoking

the Doppler shift, determine also the direction of the final velocity (Houston, 1989, 1995).

13 Loosely phrased, this principle states that if a transition from A to B is possible, then so is

the reverse transition from B to A. By implication, if A does not go to B, B does not go to

A. The reason behind this statement is that in both classical and quantum mechanics time

flows equally well in either direction so that any process can always be stopped and

reversed. The microscopic dynamics is fully reversible so that any process and its time

inverse satisfy the basic equation of motion. This result is clearly not applicable in the

macro world and so the principle seems counterintuitive. In a strictly mechanical world

view, reversibility is the rule and it is our everyday experience that time has a direction

that is in need of an explanation.

14 Several overviews seek to place this work in context: Zare (1998), Crim (1999), Schatz

(2000), Strazisar et al. (2000), Valentini (2001). Schatz discusses in particular the

experimental work of Strazisar et al. (2000), as shown in Figure 1.4, and the quantum

mechanical computations of Zhang et al. (2000) and of Pogrebnya et al. (2000). Castillo

(2002) is a review of theoretical work and comparison with earlier experiments. Brouard

et al. (2002) compare the effect of H atom translation vs. H2O stretch excitation. The exit

channel is reviewed by Loomis and Lester (1997). The experiments we discuss are those

of A. Sinha, M. C. Hsiao, and F. F. Crim, J. Chem. Phys. 94, 4928 (1991) and M. J.

Bronikowski, W. R. Simpson, and R. N. Zare, J. Phys. Chem. 97, 2204 (1993).

15 More recent such determinations include K. D. Rinnen, D. A. V. Kliner, and R. N. Zare,

J. Chem. Phys. 91, 7514 (1989) and B. D. Bean, F. Fernandez-Alonso, and R. N. Zare,

J. Phys. Chem. A 105, 2228 (2001). L. Schnieder et al., J. Chem. Phys. 107, 6175 (1997)

measured the H atom recoil energy by a technique called Rydberg tagging, as discussed in

Chapter 7. Such spectroscopic techniques are able nowadays to determine not only the

internal state but also the direction of motion of HD, see for example Althorpe et al.

(2002) and Chapters 7 and 10. For resonances in this reaction see also Manolopoulos

(2002).

16 This is called Rydberg tagging and is further discussed in Chapter 7. See Schnieder et al.

(1991, 1995). The VUV light is generated in the cell by a nonlinear process in Kr vapor

where two laser beams interact.

17 The actual experiment for ClHI− and other XHI− systems is by S. E. Bradforth

et al., J. Chem. Phys. 92, 7205 (1990). It verifies that in the transition state region the light

H atom hops several times between the two heavy atoms. For a general overview of this

approach see Neumark (1993, 2001). For an application to the H + H2O reaction that we

discussed in Section 1.2.4, using the H3O− anion, see Zhang et al. (2002). For organic

anions see Wenthold and Lineberger (1999).

18 The experiment selects the angle γ between the initial relative velocity v of the reactants

and the direction of the CH3I bond. Then it detects only those reactive collisions where

the direction of v was preferentially along the approach coordinate of Rb and CH3I. How

do we manage such a detection? By looking only at those RbI molecules that were

backscattered. These rebounding molecules must come from a collision where the Rb

atom ran head-on towards CH3I.

19 This is possible because the plane of the electric field of the laser light can be defined by a

polarizer. The interaction between a molecule and the light depends on the angle between
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the molecular transition dipole µ and the electric field E of the light as µ·E where the dot

denotes the scalar product of the two vectors (Greene and Zare, 1982; Orr-Ewing and

Zare, 1994; Alexander and Zare, 1998).

20 Some of the energy-rich water molecules go back to the reactants but most of them

dissociate to OH + H. Figure 1.4 that shows the angular distribution of the products also

shows the energy levels. The dissociation to OH + H is more exoergic and a chemist will

say “it is reasonable that the bond that breaks is the weakest.” This is a good rule of

thumb, and we will discuss why it is usually so but at the same time we will point out that

there can be exceptions, when entropy and not only energy matters. For more on the

O(1D) + H2 reaction see Simons (1997) and Alexander et al. (1998).

21 The angle of scattering is defined as the angle between the initial relative velocity v and

the final relative velocity v′. These two vectors define the plane of the collision and in

that plane, a long-living, energy-rich ABC molecule dissociates with the products

scattered equally in all directions. Under usual conditions the collision has a cylindrical

symmetry about v. When we rotate the vector v′ about v as an axis, nearly forward and

backward scatterings have the tips of the v′ vectors concentrated in a narrow cone. For

sideways scattering the vectors span out a wide ring. Consequently, the angular

distributions fan out at the equator and bunch together near the poles, as shown in

Figure 1.4. See Chapter 4.

22 The response time of available electronic devices is longer than the timescales shown in

Table 1.1. So how can we measure such short times? The point is that, as in Section 1.2.5,

we perform a pump–probe experiment. The first “pump” pulse prepares the system and

the second pulse, delayed with respect to the pump pulse, probes the system. We monitor

the response to the probe pulse as a function of the delay. It is the time delay between the

two pulses that needs to be shorter than the timescale that we want to study. Each pulse on

its own needs therefore to be even shorter. The commercially available ultrashort-pulse

Ti–sapphire laser has played a key role in enabling the technology to be widely applied.

23 Like short-pulse experiments, scattering theory too can be implemented in the time

domain. As a first step we can think of a classical trajectory, as discussed in Chapter 5.

The trajectory specifies the position of each atom, as a function of time, as the system

evolves from reactants to products. Is such a trajectory not the analog of a full-time

resolved experiment? Not quite. Just as for the experiment, the implications of the

time–energy uncertainty principle need to be faced. At each time instance along the

trajectory we specify both the position of the atom and its velocity. In classical mechanics

we must know the velocity in order to compute where the atom will be at the next instance

of time. But the precise specification of position and momentum is, in principle,

unacceptable in quantum mechanics. As discussed in Chapter 5, we can mimic this

quantum uncertainty by running not one trajectory but a swarm of trajectories with a

distribution of initial conditions. Alternatively, we can do the real thing, that is,

time-propagate a wave function whose energy is imprecisely specified. Such a

wave-packet is a linear combination of stationary states where each component has a

definite energy. But the wave-packet has only a mean energy with a distribution of energy

about the mean that is determined by the range of energies of the stationary states that

contribute to it, as in Figure 1.7. See also Problem H.

24 For more on electron transfer, see Schatz and Ratner (1993), Barbara et al. (1996), Billing

and Mikkelsen (1996), Marcus (1997), Caldin (2001).
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25 A bound classical trajectory moving back and forth in an anharmonic potential has a

period that is a shade longer the higher is its energy. A localized swarm of classical

trajectories of somewhat different energies will therefore slowly deform and delocalize as

the trajectories with shorter periods surge ahead. A wave-packet being the analog of such

a swarm undergoes a similar delocalization known as dephasing. This dephasing which is

due to anharmonicity of the potential is often as important as dephasing due to external

perturbations.

26 For further reading on surface chemistry see Somorjai (1981, 1994), Greeley et al. (2002),

Kolasinski (2002), Darling et al. (2001), Tully (2000), Gellman (2000), Thomas and

Thomas (1997), Weinberg (1996), Rettner et al. (1996), Ertl (1982).

27 For oscillations and pattern formation in bulk systems, see Scott (1994), Hunt et al.

(1990), Gray and Scott (1994), Noyes (1989), Epstein and Pojman (1998), Scott (2001).

28 We will have much to say on control using lasers. For an introductory account that

emphasizes the quantal aspects see Brumer and Shapiro (1995). A detailed coverage is

provided by Rice and Zhao (2000) and Shapiro and Brumer (2003).



Chapter 2
Molecular collisions

The collision of particles without internal structure is the simplest model for
interacting molecules. For the bulk, the model can account for the deviations from
ideal gas behavior all the way to the formation of clusters. For systems in thermal
disequilibrium the model describes the relaxation back to equilibrium. What is
missing from the model is chemistry, that is the internal atomic configuration of
the molecules. We will not forget this key point but we need to develop a language
for thinking about how reactions take place. In order to undergo a reaction, the
two reactants need to get close to one another and it is this approach motion,
unhindered by any environment, that is discussed in this chapter. The angular
distribution of the particles as they exit from the collision serves as a probe for
the forces that acted between them when they were close by. Knowledge of these
interactions is also needed for the prediction of the properties of liquids and solids
and for understanding the conformation of large molecules.

In this chapter we use a two-body, A + B, point of view. But we have to
leave the familiar vibration and rotation of a bound diatomic AB and go to the
unbound or continuum motion. It is the vibrational displacement that is unbound.
The rotation of the bound diatomic remains a rotation of the A–B axis but we
will have to recognize that during the collision the A–B center-to-center distance
varies over a wide range. So we cannot use the rigid rotor approximation that for
strongly bound diatomics simplifies the description by allowing a separation of
the vibrational and rotational motions. Here the two motions are more closely
entwined.

This chapter is a prerequisite for the discussion of collisions that result in a
chemical reaction, that comes immediately in Chapter 3. Where essential, we sup-
plement the use of classical mechanics with quantum mechanical considerations.
Modern computers can easily keep track of motions of planets or of satellites and
equally can handle the motion of particles during a collision, whether classical
or quantum mechanical. However, this chapter is not about the numerical simu-
lation of a collision. It is about understanding the relevant factors and developing
a language for thinking about chemical reactions in the gas phase. Building on
this background we will, in later chapters, discuss reactions in solution and on
surfaces.

30
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2.1 Molecules have a finite size

We now discuss how to characterize the finite size of a molecule. The probe for
the size of a molecule will be another molecule. The probing is by the action of
the mutual force between the two molecules. It is only through this force that
molecules “see” one another. In the absence of a force each molecule moves
in a straight line (Newton’s first law). Such a force-free model is sufficient to
derive the properties of an ideal gas at equilibrium. It cannot however account
for the properties of real gases nor offer a mechanism for the establishment of
equilibrium. The interaction between two molecules leads to a collision – the
two molecules deviate from their straight-line trajectories. As a molecule moves
through the gas, every so often it undergoes a collision with some other molecule.
The mean free path measures how far, on average, a molecule moves before it
undergoes another collision.

Our immediate purpose is to measure the mean free path by detecting the
deviation of a molecule from a straight-line trajectory. Next we shall argue that
the mean free path must surely depend on the density of the other molecules.
If there are few molecules available to collide with, the mean free path will
necessarily be long and vice versa. The collision cross-section results when we
factor out the role of the density of target molecules in determining the mean
free path. What remains is the cross-section, a molecular measure of size, with
units of area. The final point of this section is that this size does depend on the
energy with which the two molecules collide and that this dependence reflects
the influence of the intermolecular potential on the distance that the molecules
can approach one another.

2.1.1 Direct determination of the mean free path by a
scattering experiment

The essential ingredients of an experiment for measuring the mean free path are
shown schematically in Figure 2.1. Molecules (of type A) exit from the source and
collimator with a well-defined velocity and so move as a beam.1 This molecular
beam passes through a scattering chamber that contains a gas (of type B) known
as the target molecules. For simplicity we ignore the thermal motion of the target
molecules so the target molecules are static. The intensity of the beam is reduced
as some of the A molecules are deflected out of the beam owing to collisions with
the B molecules.

Newton’s first law is directly invoked in the analysis of the scattering experi-
ment: an A molecule is said to have collided with a target molecule if it changed its
direction of velocity and thereby leaves the well-collimated beam. In other words,
the experiment demonstrates that a force acted between A and B molecules and
it measures the resulting attenuation of the beam of A molecules. Here is where
we define when a collision occurs: it is when a force acted between the two
molecules.
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Figure 2.1 Measurement of the mean free path (schematic). A collimated beam1 of
molecules of type A passes through a collision chamber of length l, containing a
scattering gas of type B molecules. The flux of transmitted beam molecules is
measured (at the detector) as a function of the density nB of the B molecules. From
the attenuation of the A beam we can calculate the mean free path via Eq. (2.4) and
the collision cross-section via Eq. (2.7).

2.1.2 Quantitative analysis of the scattering experiment

The direction of the beam of A molecules is taken as the x axis. The flux is
defined as the number of beam molecules crossing a unit area (perpendicular to
the direction of the beam) per unit time. The flux, I(x), at distance x along the
beam can be expressed in terms of the velocity v of the beam molecules as

I (x) = vnA(x) (2.1)

where nA(x) is the number density of A molecules (number of molecules per unit
volume) in the beam, at position x. Equation (2.1) is the key to all discussions of
transport phenomena in gases. The velocity v is the distance covered by a beam
molecule in a unit time interval. Therefore the molecules that will cross a unit
area in the next time interval are those that, at the beginning of the time interval,
are up to a distance v from that unit area. Those molecules are confined to a box
with a base, oriented perpendicular to the x axis, that has a unit area and a side
of numerical value v. There are nA beam molecules per unit volume and hence
vnA molecules in the box:

v

Owing to collisions with molecules of the target gas, A molecules are deflected
from the beam and so the beam flux decreases down the length of the scattering
cell. The fractional loss in beam intensity when an A molecule traverses a short
distance �x is determined by the likelihood of a collision with a B molecule in the
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short distance �x and so must be proportional to �x. We write the (dimensionless)
probability of a collision occurring between x and x + �x as �x/λ and note
that, by its definition, λ must have the dimension of a distance so that �x/λ is a
dimensionless quantity. The fractional decrease in the beam flux, for sufficiently
small interval �x, can therefore be written as

I (x) − I (x + �x)

I (x)
= −�I

I
= �x

λ
(2.2)

The minus sign is needed because the flux, I(x), is decreasing as the distance x
increases. We shall shortly show that λ is the mean free path, namely the average
distance that a beam molecule travels along the x axis before it collides with
another molecule.

Dividing both sides of Eq. (2.2) by �x and taking the limit �x → 0 yields

−dI/dx

I
= −d ln I

dx
= 1

λ
(2.3)

Integration of Eq. (2.3) gives the expected result

I (x) = I (0) exp(−x/λ) (2.4)

where I(0) is the flux of the beam as it enters the cell at x = 0. The beam flux
is thus an exponentially decreasing function of the length of the scattering path,
a result similar to that for a beam of light attenuated by absorption (there it is
known as the Beer–Lambert law).

We now argue that, for a well-designed experiment, the length l of the scattering
cell must be comparable to the mean free path, which implies that a beam molecule
undergoes on average about one collision as it transverses the scattering cell: at the
detector the flux of A molecules is I (l) = I (0) exp(−l/λ). To determine the mean
free path, this flux is compared to the flux measured without B molecules in the
cell, which is the same as the entering flux I(0). The ratio, I (l)/I (0) = exp(−l/λ),
determines the mean free path. But, like any other measuring device, the detector
has a finite dynamic range. If it needs to measure both I (l)and I (0) in a reliable
manner they cannot differ by more than one or two orders of magnitude. It follows
that the length l of the cell must be comparable to the mean free path λ (if the
length is much longer almost no exiting flux can be detected). As we discuss in
Section 2.1.4, this condition places an operational limitation on the density of B
molecules in the cell. Section 2.1.3 provides an explicit proof that the mean free
path λ equals the average distance that an A molecule travels before it collides
with a B molecule.

*2.1.3 The mean free path and the probability of a collision

We compute the mean free path and show that it equals λ.
From Eq. (2.2), the probability that a molecule collides between x and x +

�x is �x/λ. The probability of no collision between x and x + �x is then
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1 − �x/λ. We denote the probability of no collision in the entire interval 0 to x
by p(x). Therefore we can write the probability of no collision in the interval 0
to x + �x as

p(x + �x) = p(x) (1 − �x/λ) (2.5a)

On the other hand, when �x is small enough

p(x + �x) = p(x) + (dp/dx) �x (2.5b)

This gives that dp/dx = −p(x)/λ or, as is consistent with Eq. (2.4), p(x) =
exp(−x/λ).

The probability q(x)dx that the first collision of an A molecule is in the interval
x to x + dx is the probability, p(x), that no previous collision occurred up to x, times
the probability that a collision does take place between x and x + dx, namely dx/λ.
Note that this probability, q(x) = p(x)/λ, is properly normalized,

∫ ∞
0 q(x)dx = 1,

that is, summing over all intervals dx yields unity as the probability that an A
molecule will collide somewhere along its entire flight path. The mean distance
that an A molecule covers before its first collision is then the sum, over all
intervals, of the distance x weighted by the probability q(x) that an A molecule
collides for the first time in the interval x to x + �x:

〈free path〉 =
∞∫

0

xq(x)dx =
∞∫

0

xp(x)(dx/λ)

=
∞∫

0

x exp(−x/λ)(dx/λ) = λ (2.6)

2.1.4 The collision cross-section

In this section we go from the mean free path to the collision cross-section. We
take this route because we expect the probability �x/λ of a collision in the short
interval �x to be proportional to the number density nB of the scattering gas in
the cell. We want to factor out this dependence. First, the experimental evidence.
Figure 2.2 shows experimental results obtained for a beam of CsCl molecules
scattered by two target gases, (a) Ar and (b) CH2F2, in a cell of length l. Plotted
is I(l)/I(0) on a logarithmic scale vs. the scattering gas pressure, showing that the
mean free path is an inverse function of the target gas pressure, λ ∝ P−1

B (nB =
PB/kT ). This behavior is just what we should expect if the beam flux is attenuated
by scattering collisions with target gas molecules.

To factor out the dependence of the mean free path on the density of the
other molecules we define the collision cross-section σ (with dimensions of
area) by

λ = (σnB)−1 (2.7)
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Figure 2.2 Attenuation data, I (l )/I (0), on a logarithmic scale, vs. pressure, for the
scattering of a thermal (T ≈ 1100 K) beam of CsCl by Ar atoms and by the polar
CH2F2 molecules in a 44 mm cell. The log of the transmission is observed to
decrease linearly with the pressure of the target gas [adapted from H. Schumacher,
R. B. Bernstein, and E. W. Rothe, J. Chem. Phys. 33, 584 (1960)].

This definition can be used to rewrite Eq. (2.4) as I(x) = I(0) exp(−xσnB). Shortly
we estimate a cross-section and thereby show that at ordinary densities in the gas
phase the mean free path is significantly longer than the range of the force between
molecules. This is what we intuitively expect for the motion of molecules in a
gas.

The collision cross-section is a measure of the “size” of the two colliding
molecules. On the macro scale this means that the larger the cross-section, the
smaller the mean free path so the more likely it is for a molecule in the beam of
molecules to experience a collision. In Eq. (2.8) below, we rephrase this relation
to show that when the cross-section is larger, the molecular collisions are more
frequent.

In this chapter we are equally concerned with the micro-scale interpreta-
tion of the cross-section as a measure of the size of molecules. For example,
Figure 2.2 shows that the mean free path of a CsCl molecule is significantly
shorter for the CH2F2 target gas than for Ar, so the cross-section for the collision
of CsCl with CH2F2 is appreciably greater than that for collisions with Ar. This
is intuitively to be expected: the operational definition of a collision is that one
molecule collides with another when a force acts between them. We need to make
it quantitative, but, loosely speaking, the longer the range of the force, the more
likely is a collision. The very polar molecule CsCl has a longer range of attraction
to another polar molecule than to a spherical atom.
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The implication that the cross-section depends on the range and strength of
the intermolecular force carries with it an obvious corollary: the magnitude of
the collision cross-section is a property of the two molecules that are colliding.
Strictly speaking, a molecule does not have a “size” whose value is independent
of how we probe it. We do not have a standard against which the sizes of all
molecules are measured. Of course, an Ar atom will generally be smaller than
a polar molecule but that is because Ar is a rare gas atom with closed shells of
electrons and as such is compact and, typically, weakly interacting.

To estimate the mean free path under standard conditions, let us set d as
the range of the intermolecular force so that πd2 is a reasonable guess for the
magnitude of the collision cross-section. Using Eq. (2.7), the mean free path,
in units of d, is given by λ/d = 1/nπd3 where n is the number of B molecules
per unit volume. At s.t.p., there are Avogadro’s number of molecules per 22.4 l,
1 l = 103 cm3. So 1/n ≈ 22.4 (l mol−1)·103 (cm3 l−1)·(108 (Å cm−1))3/6·1023

(molecules mol−1) ∼= 3.7·104 (Å3 molecule−1) = 37 (nm3 molecule−1). Taking
d ≈ 5 Å = 0.5 nm leads to σ ∼= 400 Å2 = 4 nm2 and to λ ∼= 470 Å ≈ 100d at a
pressure of one atmosphere. This mean free path is significantly longer than the
range, d, of the force between molecules, as is consistent with our physical picture
of a dilute real gas: most of the time a molecule is unperturbed by other molecules.
But the mean free path at atmospheric pressure is rather short by comparison to any
realistic macroscopic width l of the scattering cell. The pressure of the scattering
gas in the scattering cell shown in Figure 2.2 needs to be quite low compared to
ordinary conditions so that the mean free path is correspondingly longer.

2.1.5 The rate of molecular collisions

In the macro world, the physical interpretation of the cross-section σ is that of
an effective area whose size determines the number of collisions that a partic-
ular molecule undergoes per unit time as it moves in a gas. The image is as
follows. In our mind we place a circular area σ drawn around the center of
the molecule A (we pick a circle because all possible geometrical positions of
the molecule are possible). The area is in a plane perpendicular to the direc-
tion of motion. As the molecule moves through the gas, the area σ sweeps, per
unit time, a cylinder whose volume is vσ. There are nBvσ B molecules in this
cylinder.

The number, ω, of collisions per unit time of a particular A molecule in a gas
of number density nB is used to operationally define the cross-section:

ω = vnBσ (2.8)
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ω is known as the collision frequency. From Eq. (2.7) ω = v/λ, which is a result
that is consistent for a molecule of speed v that travels an average distance λ

between collisions. Note that in Eq. (2.8) v is the relative velocity of the molecules
A and B, because we assumed that the thermal motion of the B molecules is
negligible. If this is not so we need to perform an average over all possible values
of the relative velocity as in Eq. (2.11).

Another quantity of interest is Z, the number of all bimolecular collisions
per unit volume and unit time. If there are nA A molecules per unit volume, the
number of collisions per unit volume and unit time is Z = nAω = nAnBvσ . We
can factor out the density dependence of Z by defining

k = vσ (2.9)

k has the same dimensions as the rate constant of a reaction of second order,
except that here we are counting all collisions and not only the reactive ones.
Problem E proves that the flux along the beam decreases as

− dI

dx
= knAnB (2.10)

and that this relation recovers the result k = vσ.
The collision rate constant k = k(v) is not quite a conventional bimolecular

rate constant. It refers to collisions for which the relative velocity (here the beam
velocity) is well defined both in magnitude and direction. The usual “thermal”
rate coefficient is useful when we have a gas at thermal equilibrium so that there
is a distribution of the velocities of the molecules. We show in Chapter 3 that this
requires averaging of k(v) over the relative velocity distribution for the gases at
thermal equilibrium:

k(T ) = 〈k(v)〉 = 〈vσ 〉 (2.11)

Here the brackets denote an average over the velocity distribution in a gas at
the temperature T. It is tempting to replace the average in Eq. (2.11) by 〈v〉σ.
Textbooks of physical chemistry sometimes do not resist the urge to do so. This
estimate is fine when we need to make rough calculations or if we invoke the
hard-sphere approximation, as is discussed next. Otherwise, there are reasons to
expect the cross-section to be dependent on the relative velocity of the colliding
molecules. Experiments definitely concur. The result2 k(T) = 〈v〉σ must therefore
be regarded either as an approximation or as a definition of an effective cross-
section as k(T)/〈v〉, see Problem E.

2.1.6 Molecules as hard spheres

The approximation of molecules as hard spheres can be quite realistic on the
one hand and very misleading on the other, particularly so in the thermal energy
range. What is always true is that it is a useful approximation because the model is
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Figure 2.3 Left panel: collision of hard spheres. Upper: hard spheres of equal radius
d/2 centered at A and B. The excluded volume (dashed), drawn centered at B, is of
radius d. Lower: hard spheres of unequal diameters, d1 and d2. The “equivalent”
exclusion sphere is of radius d = (d1 +d2)/2. The hard-sphere potential as a function
of the center-to-center separation is shown in the right panel.

such a simple, appealing one. Two molecules interact as hard spheres if no force
acts until the separation of the two centers decreases to some definite value, say
d. At that point the molecules cannot approach any closer. They are impenetrable
or, technically, they repel one another with an infinite force. The distance d can
be interpreted as the sum of the radii of the two hard (or rigid) spheres. In other
words, collision occurs whenever the center of one molecule approaches to within
an “excluded volume” sphere of radius d about the second molecule. Figure 2.3
emphasizes that the radius of the excluded volume sphere is the sum of the radii
of the two molecules.

Armed with the hard-sphere model we can make the definition of a cross-
section more transparent. Imagine that an exclusion sphere is centered around
each beam molecule. Corresponding to this sphere is a circle of radius d in the
plane perpendicular to the beam velocity. Thus the beam molecule sweeps out
a cylinder of volume πd2�x as it moves a distance �x through the target gas.
If the center of a target molecule lies within that volume a collision will occur
and the beam molecule will be deflected off the x axis and therefore lost to the
detector. From the volume of the cylinder swept we see that for the hard-sphere
model

σ = πd2 (2.12)
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so the collision cross-section is literally the area of a beam molecule as seen by
a target molecule (and vice versa).

The hard-sphere interaction has a clearly defined and energy-independent
range, namely d, and so the collision cross-section has the exact value πd2. Even
when the interaction is not that of hard spheres, it is the case that the cross-
section can be interpreted in such a form, where now d is an effective range of
the interaction. To do so we need to know more about realistic forces between
molecules.

2.1.7 Realistic short-range repulsion

Bulk matter is compressible. So one expects that molecules are not strictly hard
spheres. But in the condensed phase, where adjacent molecules are quite near to
one another, matter is not very compressible. The repulsion between molecules
is perhaps not infinitely steep as for hard spheres, but the quite limited compress-
ibility suggests that it is quite steep. So the model of hard spheres seems to need
some fine-tuning in that the range d of the repulsion can decrease with increasing
energy of the approaching molecules. The direct experimental evidence3 is that
the collision cross-section for beam scattering at a well-defined relative velocity
decreases slowly with increasing energy, as is shown in Figure 2.4.

It follows that the short-range repulsive force F(R) between real molecules
is not “infinitely hard,” i.e., the potential V(R) is not a vertical “wall” at some
critical value of the center-to-center separation R of the colliding particles (e.g.,
R = d). Rather, there is a steeply increasing repulsion that is often approximated
by an exponential form with a range parameter4 ρ and strength A:

Vrepulsive(R) = A exp(−R/ρ) short-range repulsion (2.13)

Given the potential we can compute the force as the negative gradient of the
potential,∗ F(R) = −dV(R)/dR:

F(R) = A

ρ
exp(−R/ρ) short-range repulsion (2.14)

This verifies that the short-range potential is repulsive because the force acts so
as to increase the separation R.

2.1.8 Toward realistic interatomic potentials

The steeply rising repulsion at short range cannot be the full story. As the
temperature is lowered, bulk gaseous matter shows increasing evidence for

∗ This result is very central in all that follows. Given the potential what we want to understand is

the motion: how does the distance change with time? For this we need the force. In one dimen-

sion this is straightforward, F(R) = −dV(R)/dR. By Chapter 5 we will have more than one coordi-

nate. There, the force is a vector, the gradient of the potential, and the gradient is in the direction

of the greatest change.
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Figure 2.4 Left: typical decrease of the scattering cross-section with increasing
collision velocity. The time spent sampling any distance interval depends inversely
on the speed, so that at the higher collision energies the measurements are
sensitive mainly to the repulsive part of the potential (because the collision
partners spend more time in the region where the potential energy is comparable
to the total energy). This log–log plot of σ (v) vs. v refers to the elastic scattering
of H by the different rare gases showing the increase in size of the atom as one
goes down a column of the periodic table. The right panel is a plot of the potential
vs. the separation. Note that the potential is plotted such that the repulsive part,
V(R) > 0, shown as a dotted line, is on a logarithmic scale. There is also an attractive
part of the potential, shown as a solid line, and it is plotted on a linear scale. The plot
of the potential uses scaled variables that allow the same R-dependence to be used
for all H–rare gas cases by a suitable choice of the range and strength of the
interaction [adapted from R. W. Bickes et al., Faraday Disc. Chem. Soc. 55, 167
(1973)].

attraction between molecules. Scattering experiments at low (thermal-range)
energies characterize the attractive part of the potential. The energy dependence
of the cross-section demonstrates that a realistic intermolecular potential,
Figure 2.5, has an attractive, possibly weak but long-range contribution typically
of the form

Vattractive(R) ∼ −C/R6 long-range attraction (2.15)

A potential well is present even in the absence of chemical binding forces. It
results from the competition between the physical long-range attractive forces and
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Figure 2.5 Schematic drawing of a realistic intermolecular potential (heavy curve).
The minimum of the attractive well is located at Rm. We set the energy scale such
that the interatomic potential vanishes when the two particles are very far apart.
Therefore the potential is negative in the region of the well and its depth is ε,
V(Rm) = −ε. The functional form plotted is that due to Lennard-Jones, V (R ) = 4ε

[(σ/R)12 − (σ/R)6]. Closer in than Rm the force is repulsive. For R < σ , where
V(R = σ ) = 0, the potential is nearly impenetrable and is almost hard-sphere like,
that is, it requires a large increase in energy to access shorter interparticle
distances.

the short-range repulsion. We call the long-range attraction “physical” because
it operates in the region where the electronic wave functions of the individual
atoms do not yet appreciably overlap. Therefore the physical attraction lacks
chemical specificity but it always contributes.5 If there are chemical forces, they
are stronger but they only come into play when the atoms are closer in. A typical
chemical well is deeper by an order of magnitude or more than a well due to
physical forces. For example, the fit to the scattering data shown in Figure 2.4
leads to well depths, ε, ranging from about 0.2 meV for H He to 6.8 meV
for H Xe. The chemical well of H H is about 4.7 eV deep and it occurs at a
significantly shorter atom–atom distance.

This section was called realistic “interatomic” potentials for good reason.
We did improve upon the hard-sphere model by adding a qualitative correction,
namely, the long-range attraction, and by having a more reasonable, somewhat
softer repulsion. But the potentials that we have so far discussed still have a
major limitation: they were taken to depend only on the distance R between
the centers of the two interacting molecules. We were still discussing particles
without internal chemical structure. The anisotropic shape of molecules means
that a molecule does not look the same from all possible directions of approach.
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Realistic intermolecular potentials depend not only on the separation of the two
colliding molecules but also on their relative orientation. We will have much to
say on the steric aspects of the interaction because molecular recognition and
biological selectivity depend on it.

2.1.9 Simplistic approach to long-range interatomic
and intermolecular forces

Even rather simple theory can be of help to us in providing useful information on
at least the long-range part of the potential. Chemical binding forces (“exchange
forces”) begin to contribute significantly only at intermediate separations where
the charge clouds of the approaching molecules begin to overlap.6 The short-
range repulsion is primarily a reflection of the fact that the energy increases if
we bring too many electrons into a small volume. Next we turn to a simpli-
fied discussion of the long-range physical forces. We discuss two contributions.
There can be classical electrostatic interactions and these depend on the charge
distribution of the two molecules. Furthermore, there is always the additional
attractive “London” or “van der Waals” force that is due to quantal electronic
correlation between any two polarizable systems. For molecules without charge
or permanent dipole moments these long-range quantal or dispersion forces
dominate.

We begin with the classical electrostatic interactions. These are strong when
one of the molecules (i) has a charge (is an ion) or (ii) has a permanent dipole
moment. The polarizability of the second molecule can then interact with the
electric field owing to the permanent charge (or the dipole) of the first molecule,
giving rise to the induction energy. At a distance R, the field due to an ion of
charge q is E = q/R2 so the induction energy for an ion interacting with a molecule
of polarizability α is

Vinduction(R) = −1

2
αE2 = −αq2

2R4
long-range attraction to an ion of charge q (2.16)

This attraction both has a longer range and is stronger so that the dispersion term,
which is, in principle, always contributing, is neglected by comparison. This
strong long-range attractive potential has a dominant effect on the dynamics of
reactions of charged species and can significantly reduce the barrier to a chemical
rearrangement when one reactant is an ion.

The electric field due to a permanent dipole µ at a large distance R away from
it is E = µ/R3. The induction energy of this dipole with a spherical molecule of
polarizability α is

Vinduction(R) = −αµ2

2R6
≡ −Cind

R6
long-range attraction to a permanent dipole (2.17)
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Other expressions for these so-called asymptotic intermolecular potentials are
available for dipole–dipole cases, etc., including explicit orientation-dependent
terms.7 A simple example is the interaction of an ion with a molecule that has
a permanent dipole moment µ. In this case, the induction energy (2.17) has
an extra term, µ·E, where E is the field of the ion, which is in the direction
of the relative position vector R and the dot represents the scalar product of
two vectors. Using the angle γ between the permanent dipole and the relative
separation:

V (R) = −µ · E − 1

2
αE2 = −µq cos γ

R2
− αq2

2R4

µµµµ

R

+

(2.18)

Furthermore, since the ion is also polarizable, there is the need to add a third
induction term like Eq. (2.17) that, however, is weaker.

When the atoms or molecules have no permanent charge or dipole moment,
there can still be a quantum mechanical long-range attractive dispersion force.
A simple picture is formulated when we recognize that even when there is no
permanent dipole moment, there can be a fluctuating dipole that averages out to
zero. We can associate such a fluctuation with the transition dipole moment of
an allowed electronic transition of the atom or molecule. Consider two atoms,
where, for simplicity, each atom has only one excited state with transition dipole
moment8 µ from the ground state. The field due to this dipole at a large distance
R away from the first atom is E1 = µ1/R3. When we place the second atom, with
polarizability α2, at a distance R from the first atom we gain in energy −α2 E2

1/2.
A similar gain is achieved due to the polarizability of atom one being in the field
of atom two. The total gain in energy is thus

Vdispersion(R) = −1

2

(
α2 E2

1 + α1 E2
2

)
= −α2µ

2
1 + α1µ

2
2

2R6

≡ −Cdisp

R6
long-range attraction (2.19)

The energy gain due to the interaction of the polarizability of one system and the
field of the transition dipoles of the other is the so-called dispersion energy.
For atom–atom or atom–diatom interactions typical values of the dispersion
constant Cdisp are in the range9 10−57−10−59 erg cm6. It is a correlation effect
because the electronic polarizability of one molecule is responding to the instan-
taneously fluctuating transition dipole on another molecule. It does not aver-
age out because it is the square of the transition dipole that enters Eq. (2.19).
Despite the weakness of the dispersion interaction it is chemically relevant.
This is particularly so when there are many atoms in proximity, as when two
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biological molecules approach one another. The exquisite specificity of enzymes
for particular substrates is guided by such forces, as is the tertiary structure of
biopolymers.

Note that two factors enter into the simple estimate (Eq. (2.19)) for the
strength of the dispersion force. One is the polarizability. As a rough guide,
the polarizability is a measure of the volume of the system. Larger systems (and
this includes electronically excited states of smaller systems) are more polarizable
and hence have stronger long-range attraction. The other factor is the transition
dipole µ. It is larger when there is an allowed (= strong) electronic transition
from the ground state. For example, molecules that are deeply colored have large
transition dipole moments in the visible region of the spectrum.

The knowledge of the long-range part of the potential often suffices to account
for most of the dynamical behavior of suitable systems provided that the main
observable effect comes from glancing collisions that sample only large inter-
molecular separations. We shall provide several such applications.

2.1.10 Sources of interaction potentials

Accurate potential functions for chemically stable diatomic molecules are well
known thanks to extensive studies in the field of spectroscopy. The potential
in the vicinity of the equilibrium position of the (usually deep) well has been
determined for both ground and excited molecular states. Such studies have also
yielded information on repulsive parts of potential curves, especially when light
absorption or emission leads to dissociation, as in Chapter 7. Other important
sources have been the measured temperature dependence of the deviation from
ideal gas behavior and of transport coefficients, and from lattice energies and
compressibility of solids.

The situation is not as satisfactory for intermolecular potentials, that is poten-
tials that depend on orientation and on internal degrees of freedom and for the
potential of interaction between weakly interacting pairs (the “van der Waals
potential”). The scattering method is providing accurate van der Waals poten-
tials and also yields direct information on repulsive interactions over extended
ranges of interparticle separations. Simultaneously, ab initio quantum theory
computations of interaction energies are feasible. In what follows we look at
both deviations from ideal gas behavior that were an early source on the realistic
shape of the potentials for chemically unbound pairs and on the newer results
from scattering studies.

*2.1.10.1 Deviations from ideal gas behavior and
intermolecular forces
A useful measure of the interaction between molecules in the bulk gas is the
second virial coefficient B(T ) (units of volume per mole). It is defined by
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Figure 2.6 Second virial coefficient, B(T ), in units of σ 3, for the three rare gases as
identified in the insert. By using reduced variables as in Eq. (2.22), the experimental
results for different gases, points, can be plotted on a common scale. For hard
spheres the second virial coefficient, B(T ), is the excluded volume, but for
realistic systems note the change of sign: B becomes negative at lower
temperatures and this is a signature of the attractive part of the potential.11 The
curve is a theoretical computation for a Lennard-Jones potential, Eq. (2.24) [adapted
from Ben-Amotz et al. (2003)]. For a thorough overview of the route from the
potential to deviations from ideal gas behavior, see Hirschfelder et al. (1954) and
Maitland et al. (1987).

the virial expansion, which is a series expansion, in powers of 1/volume, of
the deviations from ideal gas behavior. For one mole we write

PV

RT
= 1 + B(T )

V
+ C(T )

V 2
+ · · · (2.20)

To interpret the first correction10 term we start, in the spirit of the hard-sphere
model, by subtracting from the volume V of the container an excluded volume,
Ve, that is not available for the molecules so that P(V − Ve) = RT. Then, by
expanding 1/(1 − x) as 1 + x + · · · we derive PV/RT = 1 + (Ve/V) + · · ·
This is a virial expansion where Ve, the excluded volume per mole, is the second
virial coefficient. For hard spheres, consideration of the geometrically determined,
excluded volume or the use of Eq. (2.12) yields B(T ) = (2/3)NAπd3> 0, where
NA is Avogadro’s number. Experimentally B(T ) does indeed tend to a positive,
T-independent, asymptote at higher temperatures and this reflects the short-range
repulsion. But at low temperatures B(T ) is often negative, Figure 2.6. We interpret
the negative value of B(T ) and statistical mechanics provides the quantitative
validation, Eq. (2.21), as indicating the presence of a net, overall weak attraction
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between molecules. As a result of this attraction, molecules prefer to be in the
vicinity of one another. It is only thermal agitation that prevents them from
condensing.

Other “macro” properties, such as transport processes, are also sensitive to
the intermolecular forces and have been used to help establish the potentials.
The problem is the “leverage” that the macro measurements provide. It is not as
good as we would like because equilibrium values are measured as a function
of temperature. It is by changing the temperature that different regions of the
potential are given different weights and so their importance can be gauged.
The second virial coefficient is a good example. It can be computed from the
potential as

B(T ) = −2πNA

∞∫
0

[exp(−V (R)/kT ) − 1]R2 dR (2.21)

But it is not realistic to invert this equation to express the potential as a function of
B(T) because we can only measure over a rather limited range of temperatures.12

Instead, the procedure is to assume a flexible functional form for the potential,
compute B(T), and then vary the shape of the potential until a satisfactory repro-
duction of the data is achieved. Such a fit is shown in Figure 2.6.

*2.1.10.2 Potential curves from beam scattering
Measurements of the velocity dependence of the collision cross-section at higher
energies determine the purely repulsive part of the potential. The results obtained,
e.g. for rare gases and relatively inert molecules, are that the potentials were
essentially of the exponential form, Eq. (2.14), and the “slopes” were in accord
with expectations based upon crystal energy and compressibility data, etc., as well
as the best available ab initio computations. At lower energies, the results are used
to determine the long-range “tail” and the attractive “well” of the potential. The
best probe of the potential is, however, the angular distribution as discussed below.

Figure 2.7 shows the resulting potentials for the homonuclear rare-gas pairs.
Note the increasing well depth and range of the potential with increasing
polarizability of the atoms (the polarizability is a measure of the deformability
as well as the “volume” of the electron cloud of the atom), recall the discussion
in Section 2.1.9.

It has been found that within a family of similar diatoms (e.g., rare-gas pairs,
alkali systems, etc.) the resulting potentials can be scaled (approximately) to
a common “reduced” functional form. We can define a reduced separation by
z ≡ R/Rm where Rm is the position of the minimum in V(R), and a reduced
potential energy by V∗ ≡ V/ε where ε is the well depth. Then it is found that
V∗(z), related to V(R) by

V (R) = εV ∗(R/Rm) (2.22)
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Figure 2.7 Potential wells for the homonuclear rare-gas pairs derived from angular
distribution results [adapted from J. M. Farrar, T. P. Schafer, and Y. T. Lee, In
Transport Phenomena, J. Kestin (ed.), AIP Conference Proceedings 11 (1973)]. In the
region of the well these potentials can be scaled to a common functional form V*
(R/Rm) as in Eq. (2.22).

has a nearly universal shape, at least for the family of related atoms or mole-
cules.

This explains the success of the well-known “rule of corresponding states” in
the macro world: deviations from ideal gas behavior depend on two parameters
that characterize the particular system, but otherwise have a universal shape. For
example, Eq. (2.21) for the second virial coefficient can be expressed in reduced
units as

B(T ) = −2π R3
m NA

∞∫
0

[exp(−V ∗(z)/T ∗) − 1] z2 dz (2.23)

This shows that for an interatomic potential function that satisfies Eq. (2.22) the
virial coefficient, in units of (2π/3)R3

m, is a universal function of the reduced
temperature T∗ = kT/ε as shown for the rare gases in Figure 2.6 where the
theoretical curve is for a Lennard-Jones potential,13 which is the function plotted
in Figures 2.4 and 2.5:

V (R) = 4ε

(( σ

R

)12
−

( σ

R

)6
)

= ε

((
Rm

R

)12

− 2

(
Rm

R

)6
)

(2.24)

Parameters of the Lennard-Jones 6–12 potential for rare gases are shown in
Table 2.1. These values give the fit shown in Figure 2.6. As discussed above,
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Table 2.1 Lennard-Jones 6–12 potential
parametersa

σ (nm) ε/kB (K)

Ne Ne 0.28 34.8
Ar Ar 0.34 117
Xe Xe 0.39 225.6

a Obtained by the fit shown in Figure 2.6.

note how both the depth of the well and the range of the interaction increase with
increasing size of the atoms.

To further discuss the role of the “size” of the atom in determining the inter-
atomic potential we can think of electronically excited atoms or molecules.14

Excited states have more weakly bound electrons and so are more diffuse and
therefore have longer-range forces compared to other molecules.

2.1.11 On to collision dynamics

Before we turn to discussion of intermolecular potentials that depend also on the
orientation of the colliding molecules and their internal deformations, we need to
examine the dynamics of the collision of structureless particles. For this simple
case the only outcome of the collision is that the particles deflect one another
from their original trajectories. The collision is said to be elastic.

At low energies, collisions between rare-gas atoms are elastic, but for
molecules (which possess internal structure) the collisions may also induce
changes in internal energy or even bring about chemical rearrangement. For
the present we confine our attention to simple elastic scattering, the key features
of which are essential to our understanding of the more complicated classes of
collision phenomena.

2.2 The approach motion of molecules

We discuss the motion of two molecules as they approach one another. Our
ultimate goal is to understand chemical reactions. Toward this goal we need
to know how close the two molecules will approach and how much energy is
available to their relative motion. A chemical reaction requires the reactants to
approach one another and the ideas of this section are applied to reactivity in
Chapter 3. The same tools will allow us to examine the entire course of the
collision of structureless particles, the theme of Chapter 4. By Chapter 5 we will
fully recognize the internal structure of the colliding molecules.

This section has two parts. We first discuss the approach motion using the
conservation of energy as our tool. Our purpose is to argue that in every collision
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Figure 2.8 The relative position vector R and the velocity v a long time before the
collision. The impact parameter b is indicated. In this figure the cross represents the
origin. In the absence of a force between the two particles, v remains in the same
direction, shown as a light line so the tip of the vector R lies on that line. We take
t = 0 at the point of closest approach where the relative separation R equals the
impact parameter b.

there is a centrifugal force that acts to prevent the molecules from getting too close
in. This force is controlled by two variables, the miss-distance of the colliding
particles, to which we give the technical name of the impact parameter, and the
kinetic energy of the molecules before the collision when they are far apart. By
the end of Section 2.2.5 we have set up all that is required for building models of
chemical reactivity in Chapter 3. We next define the center-of-mass system and
discuss the kinematics of elastic collisions.

In this section we center attention on the relative distance R of the collid-
ing A + B molecules. The motion of the coordinate R looks like that of the
motion of a single particle with mass µ = mAmB/(mA + mB), usually called the
reduced mass. This is discussed in textbooks of classical mechanics and in
Section *2.2.7 below.

2.2.1 The classical trajectory and the impact parameter

We want to describe the relative motion of two particles, A and B. Connecting
the two is a vector, R, pointing from A to B. For our purpose, what is interesting
is how the length of this vector, the relative distance R, varies with time. The
form of R(t) is what we mean by a classical trajectory. Before the collision R is
quite large, and the relative velocity v is unperturbed because there is no force.
Figure 2.8 shows the two vectors, R and v, at a time long before the collision.
They are drawn such that both vectors are in the plane of the paper. There is
always a plane defined by two vectors, so it is not a restriction. What we prove
below is that, for structureless particles, the two vectors R and v remain confined
to this particular plane throughout the collision.

The striking distance or impact parameter∗ b is also defined in Figure 2.8.
Conceptually b is a miss-distance, that is b is defined so that it is how near to one

∗ To connect the impact parameter with more familiar notions, start with the angular momentum

vector L defined as L = R × µv. Here × denotes the vector product. We show below that for a

potential that depends only on the distance R, L is conserved. L is a vector and so both its direction

and its magnitude are constant. The direction of L is perpendicular to both R and v. The constancy

of the direction of L confines the motion to a plane. The magnitude L of the angular momentum is
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another the particles A and B approach, when there is no force acting between
them. Technically, b is the component of the vector R that is perpendicular to
v before the collision. If b = 0 the two particles run into one another head-on.
Otherwise, the larger is b the less is the initial velocity directed along R and
the more will the two particles miss one another because the approach motion is
more off-center.

We begin by turning off the force between the two molecules. Newton’s first
law tells us that in the absence of a force the velocity v will continue to be along
the same direction. At any time t we can therefore use the Pythagorean theorem
to write the distance R as a function of time:

R2 = v2t2 + b2 a classical trajectory in the absence of a force (2.25)

or, in a vector form, R = vt + b (where v and b are at right angles to each
other and b is the component of R that initially is perpendicular to v). Here we
chose the origin of the time axis so that the collision lasts from −∞ to ∞ and
the two particles are closest at t = 0. When no force is acting, the distance of
closest approach is b, which is therefore given the technical name of the impact
parameter. If there is no force between the two particles, the vector b remains
perpendicular to v for all times. If there is a force, we can still say that b is to
be specified before the collision as the component of R that is perpendicular
to v.

Note that during the approach and receding motion of the two particles their
relative separation vector changes its direction as the collision proceeds. We can
see this from Figure 2.8. The tip of the vector R moves along the thin line. We
can imagine this by letting two fists be the two particles. As the particles fly by
one another, R undergoes a complete reversal of its direction. In Section 4.2 we
show this from equations of motion.

Once we allow the two particles to interact, the trajectory will no longer be a
straight line and the impact parameter will not be exactly equal to the distance
of closest approach. But the impact parameter will remain well defined as the
striking distance: it specifies, before the collision, how large is the component of
R that is perpendicular to the initial velocity v.

computed by taking the component of R perpendicular to v, which equals b, times the magnitude

of v, times µ, L = µvb. In classical mechanics L = µvb assumes a continuous range of values.

In quantum mechanics L = h̄l [strictly L = h̄
√

l(l + 1)], where l is the dimensionless discrete

angular momentum quantum number. This is the same quantum number l that is used to label the

electronic orbitals of the hydrogen atom. (The internal dynamics of the non-relativistic hydrogen

atom corresponds to the relative motion of two structureless particles.) We pursue this close analogy

further in Section 4.3, where we introduce orbitals for the collision, and these allow for a quantal

description of the approach motion. Here we just recall that s (l = 0) state electrons can get closer

to the nucleus while states with higher (p,d, f . . . ⇔ l = 1,2,3 . . .) angular momentum are kept

further away, increasingly so as l increases.
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The colliding particles are, by assumption, structureless. So the magnitude of
the velocity is the same before and after the collision. But due to the force the
direction of the velocity need not be conserved. The final direction of the velocity
provides such an important diagnostic for what has happened during the collision
that we will devote the entire Section 4.2 to a quantitative analysis.

2.2.2 The centrifugal barrier and the effective potential

To examine the classical trajectory we use the conservation of energy. Before the
collision, for structureless particles, the total energy E equals the kinetic energy
ET = µv2/2. Here µ is the reduced mass of the collision pair. For the moment we
remain with the assumption that the force has been turned off. The kinetic energy
is the rate of change of the vector R with time, K = µ(dR/dt )2/2. But, during
the collision, as the particles approach, it is not only the magnitude, R(t), that
is changing. The direction of the vector R is also changing. The kinetic energy
is the sum of these two contributions, even though we are only interested in the
change of the magnitude R(t ) of the vector R. There are two contributions to
the kinetic energy, whether there is a force acting or not. We can identify the
two terms from Eq. (2.25). It gives that dR2/dt = 2R(dR/dt) = 2v2t. Using
vt = (R2 − b2)1/2 the kinetic energy of the motion along the line of centers
is found to be (µ/2) (dR/dt)2 = ET (1 − b2/R2). Without a force, the kinetic
energy before the collision has to equal the kinetic energy during the collision.
This conservation of energy condition implies that

ET = (µ/2)v2 = (µ/2)

(
dR

dt

)2

+ ETb2

R2
without a force (2.26)

Equation (2.26) equates the kinetic energy before the collision, where R → −∞,
to the kinetic energy at a finite value of R. Before the collision all the kinetic
energy is due to the two molecules approaching one another. But as the two
molecules get closer there is another contribution, the kinetic energy arising
from the rotation of the interparticle distance R. Equation (2.26) identifies this
centrifugal energy term as ETb2/R2. When the particles are far apart, meaning
that R � b, the entire kinetic energy originates from the first term in Eq. (2.26),
representing the particles approaching one another. However, as they get closer in,
more and more of the energy is being spent on the rotation of the relative distance.
By R = b all the kinetic energy is in the rotation and (dR/dt) = 0, so that the
particles cannot get any closer. We rederive these results later; see also Problem
H. For now we just point out that Eq. (2.26) provides a quantitative statement
of the result that is seen graphically in Figure 2.8: in the absence of force, the
classical trajectory is restricted to R ≥ b; the impact parameter is the distance
of closest approach. One sees that from Eq. (2.26) because the kinetic energy of
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the approach motion (µ/2)(dR/dt ) = ET (1 − b2/R2) cannot be negative and so
we recover the implication of Figure 2.8, R2 ≥ b2. In quantum mechanics,15 see
Section 4.3, the motion is not restricted to a region where the kinetic energy of
relative motion needs to be positive.

When there is a force acting between the particles, the conservation of energy
reads:

Energy = K + V (R) = 1

2
µ

(
dR

dt

)2

+ ETb2/R2 + V (R)

= ET (2.27)

The first line is the total energy being equal to the sum of the kinetic and potential
energies. The result is true throughout the collision. By our convention we take
the zero of the potential energy V(R) when the two particles are far apart. The
second line is the value of the total energy before a collision of structureless
particles. Conservation of energy requires that the two lines are equal to one
another.

To focus attention on the trajectory R(t ) it is convenient to consider the cen-
trifugal energy and the potential energy summed together, and call the sum an
effective potential:

Veff(R) = V (R) + ETb2/R2 (2.28)

The energy is then the sum of the kinetic energy along the lines of centers and
the effective potential

ET = 1
2 µṘ2 + Veff(R) (2.29)

and we have thereby the energy as a function only of the scalar quantity R(t).
Of course, this makes the effective potential a function of the energy ET and not
only of the position. But the kinetic energy along the lines of centers is anyway a
function of ET and ET is a constant of the motion so it really makes no essential
difference.

Equation (2.29) shows the role of the potential between the molecules in
determining the kinetic energy along the lines of centers R:

1
2 µṘ2 = ET − Veff(R) = ET(1 − b2/R2) − V (R) (2.30)

In the range of R where the potential V(R) is attractive, V(R) < 0, more kinetic
energy is available than for a free motion. This is particularly significant for
collisions of ions with molecules. The additional kinetic energy provided by the
unusually strong electrostatic potential is sometimes sufficient to surmount the
barrier to a chemical reaction so that a collision of even translationally quite
cold reactants can lead to a reaction. In the range of R where the potential V(R)
is repulsive less kinetic energy is available than for a free motion. The region
where ET(1 − b2/R2) − V (R) < 0 is forbidden in classical (but not in quantal)
mechanics.
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Figure 2.9 A plot of the
effective potential for
several (increasing)
values of the impact
parameter. At high b
values the well in the
potential V(R) is filled in
and the effective potential
is purely repulsive. The
dashed line is the
centrifugal barrier alone
for the last case.

The centrifugal energy acts as a repulsive contribution to Veff, often known as
the centrifugal barrier, as shown in Figure 2.9. It is a repulsive barrier because
it acts against the approach of the colliding particles. The origin of this barrier
is as follows. As the two particles approach each other, their centrifugal energy
(due to the rotation of the relative separation), ETb2/R2, increases. Because the
total energy is conserved, this increase is at the expense of the potential energy
and the radial kinetic energy. Eventually we reach the smallest separation, R0,
see Figure 2.10, where the kinetic energy along the lines of centers of the two
particles vanishes.

2.2.2.1 The distance of closest approach
The turning point or distance of closest approach, R0, is that function of the
impact parameter given as the solution of the implicit equation

ET = V (R0) + ETb2
/

R2
0 (2.31)

In the absence of a potential R0 = b, as mentioned earlier. For the hard-sphere
model, Eq. (2.31) yields the expected result

R0 =
{

b, b > d
d, b ≤ d

hard spheres (2.32)

shown also in Figure 2.10(b).
For more realistic interatomic potentials R0 depends upon both b and ET, but

for large enough values of the impact parameter it can be seen from Eq. (2.31)
or Figure 2.10 that R0 → b, independent of the total energy. This result is often
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Figure 2.10 A graphical construction for determining the distance of closest
approach, R0, and the region allowed for the motion in classical mechanics. (a) For a
realistic potential V(R). The effective potential Veff(R) is shown vs. R, in reduced units
for a head-on collision, b = 0, and for an intermediate and a high value of the impact
parameter b. Rm is the equilibrium distance and ε is the well depth. For b = 0 the
effective potential equals the potential V(R). The motion in classical mechanics is
confined to those values of R for which ET ≥Veff(R), see Eq. (2.30). Equality is at the
distance of closest approach R = R0 and for higher values of b this value of R is
identified by an arrow. A collision starts at the far right of the figure with R(t)
decreasing until R0 when it starts to increase and move towards the left. Note that
for the intermediate and high b cases the motion fails to reach the well region,
R0 > Rm, and samples only the long-range part of the potential. For the intermediate
value of b it is seen that there is also an option for a bound classical motion inside
the well, to the left of R0. More on this in Section 4.3.5. (b) Same construction but for
a hard-sphere potential where, for R > d, the effective potential is just the centrifugal
barrier ETb2/R2. For this case no force due to the hard-sphere potential is
applied if b > d and R0 = b, so the spheres do not “collide” but move as free
particles. For any b < d, the motion reaches the impenetrable hard core of the
potential and R0 = d.

a useful approximation when dealing with large impact parameter collisions.∗ A
graphical construction for solving (2.30) is shown in Figure 2.10. At very low
bs the motion can cross the region of the well and get all the way to the inner
repulsive part of the potential. At somewhat higher bs, and particularly so for
lower energies, the motion can meet a turning point that is further out and it will
not reach the region of the potential well. This is due to the repulsion from the
centrifugal barrier. If there is a chemical attraction between the particles then
Chapter 3 points out that such a motion fails to reach the region of the chemical

∗ At large bs R0 → b because at larger Rs the centrifugal barrier, that decreases as R−2, overwhelms

any long-range attraction that falls as R−n, n > 2.
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forces. At higher bs there can be multiple roots when we solve (2.31). Classically,
the approach motion of the reactants begins at a large separation that progressively
gets smaller, and it is the largest root of (2.31) that is the turning point for the
approach motion and the start of the receding motion. The other two roots are
further discussed in Section 4.3.5 where, due to quantum mechanical tunneling,
they are shown to allow for collisions of longer duration.16

We have completed our first task. The relative motion during the collision is
fully specified in terms of one (scalar) function of time, R(t). From here on we
turn to examining the motion, keeping in mind that we need to specify the initial
conditions not only by the velocity (or kinetic energy) but also by the impact
parameter.

2.2.3 On the centrifugal force

The full implications of the concept of a centrifugal barrier will only be evident
when we discuss reactive collisions. The point for the elastic case is that the
long-range potential between molecules is attractive. If there is no impediment,
the molecules will get as close as possible, namely up to their short-range, steep,
repulsive interaction. The model of hard-sphere collisions will then be quite
realistic. It is the centrifugal barrier that prevents the close approach for col-
lisions with non-zero impact parameters (and we shall see that these are the
overwhelming majority). This role is familiar as, for example, it prevents the
Moon (or any satellite) from falling to Earth despite the very strong gravitational
attraction.

What we called “the distance of closest approach” is what was already known
to the ancients as the perihellion of the orbit of a planet around the Sun. Modern
chemists know this concept in terms of how close the electrons get to the nucleus
of the atom. For collisions under a realistic potential, if the impact parameter
is quite low the molecules will get all the way in to the range of the repulsive
forces. For high-impact parameters the molecules will only sample the long-range
attraction and not penetrate much beyond R = b. But for any impact parameter
the colliding particles will feel a mutual force. The only exceptions are poten-
tials whose influence extends over only a finite range, such as a hard-sphere
potential.

Rather than speak of the centrifugal barrier it is common to speak of the force,
minus the gradient of the potential,

µ
d2 R

dt2
= −dVeff

dR
= −dV (R)

dR
+ 2

ETb2

R3
(2.33)

The centrifugal force, 2ETb2/R3, is repulsive (that is, always positive in sign) and
acts to force the two particles apart. Its role is more important as the initial energy
or the impact parameter17 increases.
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b

bd

f

Figure 2.11 Left: the construction of the ring through which all collisions with an
impact parameter in the range b to b +db must cross. Under ordinary conditions all
initial values of the azimuthal angle φ are equally probable. Right: the dartboard in
the plane perpendicular to the initial velocity. The rings are drawn for collisions with
all impact parameters in the range 0 to 1, 1 to 2, 2 to 3, etc. Note how in this
dartboard image the areas of the ring increase as b increases.

2.2.4 The micro view of the cross-section

We are about to provide a microscopic definition of the collision cross-section.
Two ingredients come in. One is the definition of a “collision.” On the basis
of Newton’s laws of motion we took it that a collision occurs whenever two
molecules exercise a force on one another. The outcome of the collision can be
that a chemical reaction took place, or only that the two molecules deflected
from their unperturbed straight-line motion, or anything in between. Whatever
the outcome, when a force due to the potential acted, a collision is said to have
taken place. Nor need this force be repulsive, and indeed the long-range part of
the force is in general weakly attractive, Section 2.1.8. The other point is that the
cross-section is that area, drawn in a plane perpendicular to the initial velocity,
that the relative motion of the molecules needs to cross if a collision is to take
place.

The impact parameter is defined in a plane that is perpendicular to the initial
velocity v. In that plane we can imagine a circular target area, Figure 2.11. The
center of the target is at b = 0. A collision with an impact parameter that is in the
range b to b + db has to cross the target through a ring of radius b and width db.18

The area of such a ring is 2πb db. This bullseye or dartboard picture is shown on
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the right of Figure 2.11. We have defined the cross-section as an area, in a plane
perpendicular to the relative velocity v, such that the relative separation vector
R had to cross that area for a collision to take place. Hence, when the impact
parameter is in the range b to b + db, the collision cross-section is the area of the
ring on the target plane:

dσ = 2πb db differential collision cross-section (2.34)

When we specify only the (magnitude of the) initial velocity of the colliding
particles, collisions can occur with all possible values of b, hence

σ =
∫

2πb db total collision cross-section (2.35)

The integral is over the entire range of values of b that lead to a collision. For
example, for the hard-sphere model, a deflection of the trajectory caused by a
force can only take place for b ≤ d (Problem I). Hence, for rigid spheres we
recover our earlier result

σ =
d∫

0

2πb db = πd2 (2.36)

But what about more realistic potentials whose long-range attraction has an
unbounded range? Then, whatever is the initial value of b, the trajectory will
undergo some deflection. Therefore, a collision can be said to have taken place.
The range of b values leading to a collision is then zero to infinity and the integral
in (2.35) diverges! The collision cross-section is infinite. The answer is that here
is a case where classical mechanics fails in a qualitative way.19 It is possible to
argue that a failure is to be expected; that we have specified that a collision took
place even when the Heisenberg uncertainty principle does not allow us to make
this observation. Where and why did we run into conflict with the uncertainty
principle? It will be easier to answer that after we know a shade more about the
deflection of the trajectory during the collision.

*2.2.4.1 On controlling the impact parameter
The impact parameter is a key player in determining the outcome of the collision.
Yet our ability to control it is far more limited than we would like. In Section 2.2.5
and in detail in Section 4.2 we will do the next best thing and ask, a posteriori,
what was the impact parameter of the collision. But can we control its value
beforehand?

To control the impact parameter the collision must be started with a restricted
range of angles between the relative velocity and the relative position. This kind
of atomic resolution control of geometry is achievable, for example, by a variant
of the experiment we discussed in Section 1.2.5. There we prepared a reactive
atom by photolysis of a precursor in the bulk, and so the precursor was randomly
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hn

RHBr

H

Br I2

Figure 2.12 Controlling the impact parameter in the Br+I2 reaction. Here the
anisotropy of the van der Waals potential is such that the preferred configuration is
H Br·I I. Upon photodissociation of HBr the H atom moves away rapidly while the
Br atom approaches I2 slowly (why slowly?). The BrI2 species vibrates for a while,
see Figure 8.5, before it dissociates to BrI and I. The bound and repulsive potentials
involved in the initial photodissociation of the H X bond are also shown [adapted
from Wittig et al. (1988)].

oriented with respect to the reactant. Now we intend to restrict the geometry of
approach. To do so recall that even in the absence of chemical binding there is
a well in the potential between molecules. As we shall discuss, mixed bound
dimers such as XH·OCO can be prepared where X is a halogen atom and the dot
indicates that the dimer is a bound state of a weak long-range potential.∗∗ The
XHO configuration is nearly but not exactly linear because the bending potential
is shallow.

In the experiment,20 a pulse of a UV laser breaks the HX bond. This bond
scission sets the H atom moving in the opposite direction to X, that is toward
the OCO molecule. The reaction H + OCO → HO + CO can then take place.
The H atom is moving toward the OCO in the direction of the old HX bond
and this defines the direction of the relative velocity. It is not necessarily exactly
in the direction of the O C bond, but it is quite a bit constrained.21 The results
can then be compared to photodissociating HX in the gas phase in the presence
of CO2. In that case the orientation of the H X axis is random with respect to the
O C O.

Dissociation of XH·OCO has the same purpose as the photodetachment of a
stable anion as described in Section 1.2.6. Both experiments probe spatial aspects

∗ This potential is anisotropic and it also determines the preferential angle for the X H O configu-

ration. Even if the equilibrium is for a collinear arrangement, the bending potential is quite shallow

so that the zero-point motion of the bending spans a broad range of bent configurations.
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of the dynamics by starting from constrained geometries. See Figure 2.12 for
an illustration. What is being controlled in such experiments is the magnitude
of the impact parameter. Photodissociation experiments on cold molecules, as
discussed in Chapter 7, provide another way to experimentally limit the range of
the angular momentum. Chapter 10 addresses the control of the direction of an
angular momentum vector.

2.2.5 Qualitative examination of the deflection function

Owing to the force acting between them, two colliding molecules will deflect
from their otherwise straight-line motion. This section provides a simple discus-
sion of how this deflection depends on the impact parameter of the collision.
Since we typically do not select the value of the impact parameter, this discus-
sion allows us to do the next best thing, namely to infer what was the impact
parameter from the observed deflection after the collision. A key concept in
the discussion will be how the centrifugal barrier acts so as to keep the two
molecules from getting too close. Hence this section is a good overview of the
material of Section 2.2. Sections 4.1 and 4.2 will provide many quantitative
details. In particular we show therein how the deflection characterizes the inter-
molecular force and provide a quantum view of the scattering. For now we do a
poor person’s view. We ask “what is of the essence” in both classical and quantal
scattering.

For structureless particles, the magnitude of the relative velocity must be the
same before and after the collision. This is because the total energy before or
after is the kinetic energy of the relative motion and so the kinetic energy is
conserved. But since a force did act during the collision, the direction of the
relative velocity will change. The deflection is the angle between the initial and
final relative velocity.

That the deflection must vary with the impact parameter follows from quite
simple considerations: for a very low impact parameter the velocity is directed
practically along the position vector so the molecules collide nearly head-on.
The centrifugal barrier is rather low so they can reach the inner steep repul-
sion and so rebound from one another. Their velocity reverses its direction. As
b → 0, the deflection → π . Low-impact-parameter, head-on, collisions result
in backward scattering. At the other extreme, for a very high impact parame-
ter the molecules can barely approach one another. They are kept far apart by
the centrifugal force and can only sample the weakly attractive tail-end of their
interaction. If b is indeed large, the molecules hardly deviate from a straight
line, the resulting deflection is quite small, and the scattering is in the forward
direction.

The correlation low b ↔ backward scattering, high b ↔ forward scattering
is the essence. To be complete one more point must augment it: other things
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being equal, there will be more collisions with higher impact parameters.∗ It is
straightforward to make this quantitative. The cross-section for collisions with
an impact parameter in the range b to b + db increases linearly with b, dσ =
2πb db. Therefore, many more collisions result in forward as opposed to backward
scattering.

Can we interpolate between very high and very low bs? We do so in detail in
Section 4.1, but the essence is clear. If we allow b to be large but not very large
the molecules will sample more of their long-range attraction. The deflection will
be bigger. To a zeroth-order approximation the distance of closest approach is
b and so when b is comparable to Rm, the equilibrium distance of the potential,
the molecules sample their maximal attraction and the deflection will be large.
The scattering will be quite intense. As discussed below and in more detail in
Section 3.2.5, this is known as rainbow scattering and it provides a signature of
the well in the potential. When the impact parameter is even smaller than Rm, the
molecules begin to feel the short-range repulsion, culminating in fully backward
scattering as b → 0.

The qualitative considerations are summarized in the plot shown in Figure 2.13.
The result of such considerations is the angle of deflection χ (b) as a function of
impact parameter. Chapter 4 shows that for not small impact parameters such a
plot reflects the shape of the potential in the sense that χ (b) ∝ V(b)/E.

2.2.6 Rainbow scattering and the quantum mechanical
interference of different trajectories

We need much of Chapter 4 to do full justice to the topic of the rainbow and other
aspects of classical and semiclassical scattering. What follows is the essence.

The terminology rainbow scattering arises because the quantum mechani-
cal wavelike nature of matter is necessary for the complete understanding of the
effect. But we first deal with the purely classical aspects. When the impact param-
eter is in the narrow range b, b + δb the final velocity is deflected by an angle in
the range χ (b), χ (b) + (dχ (b)/db)δb. At the rainbow, where dχ (b)/db = 0, there
is a small but finite range of impact parameters that give rise to scattering into
the same deflection. This can also be seen from Figure 2.12 or, quantitatively,
from the definition dχ (b)/db = 0 at b = br. The approximation χ (b) ∝ V(b)/E
identifies the rainbow impact parameter as the equilibrium distance of the poten-
tial and also explains why the optical rainbow is observed at different scattering

∗ Surprising? Not to a chemist. The impact parameter is a measure of the angular momentum. The

structure of the periodic table of the elements and much else depends on there being 2l + 1 distinct

quantum states when the angular momentum has the value l�. The origin of this quantum degeneracy

is physically the same. There are different possible directions in space for the angular momentum

vector and these are distinguished by the value, m, of the projection of the vector, −l ≤ m ≤ l, m

an integer. In classical mechanics m is a continuous variable so one has a ring, as shown in Figure

2.11, where the tip of the vector lies on the ring. In terms of the azimuthal angle φ, m = cos φ.
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Figure 2.13 Trajectories for collisions at different impact parameters showing the
deflection χ at different values of b∗ = b/Rm. For large initial b the trajectory is a
shade pulled in by the long-range force. The deflection is maximal at the rainbow,
which is at br ≈ Rm. For closer-in approach the trajectory begins to sample the
repulsive potential. At what is called the glory the net deflection is zero because the
initial attraction is fully counterbalanced by the repulsion closer in. Below the glory,
b < bg, repulsion dominates and the scattering is backwards. R0 is the distance of
closest approach.

angles for light of different colors.∗ In classical mechanics the scattering intensity
is infinite at the rainbow. Quantum mechanically the intensity is finitely large and
oscillatory. Why is there a qualitative difference between the two results?

The presence of the well in the potential means that impact parameters some-
what below and somewhat above the rainbow impact parameter lead to the same
angle of deflection. Approximating the potential about its minimum as a har-
monic well, the approximation χ (b) ∝ V(b)/E suggests that near the rainbow
χ(b) = χ r + c(b − br)2 where c depends on the collision energy. There are then
two different trajectories, with impact parameters just above and just below br,
that scatter into the same angle.

In quantum mechanics, when two classically distinct histories give rise to the
same observable outcome, they are said to interfere. The textbook example of
interference is the two-slit experiment22 where an electron hits a wall after going
through one or another slit in a screen. The interference pattern observed in this
experiment was instrumental in validating the wave nature of light. Here we do

∗ The color is determined by the wavelength, which is inverse to the frequency. The energy scales as

the frequency.
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not need the slits. The dynamics of the collision selects two different impact
parameters, i.e., two rings in the circular target of Figure 2.11, that lead to the
same deflection.

Interference means that we must treat the trajectories as light rays. That is, the
scattering intensity is the square of a scattering amplitude, I (θ ) = | f (θ )|2. If there
are two rays we must add up the amplitudes of two waves and take the absolute
value squared of the sum: | f1(θ ) + f2(θ )|2. This is not the same as the classical
result that requires adding the two intensities: | f1(θ )|2 + | f2(θ )|2. The difference
is the interference term that comes about because the quantal amplitudes f are
complex numbers, numbers that have both an absolute value and a phase: fn =
| fn|exp(iδn). Therefore

I (θ ) = | f1(θ ) + f2(θ )|2
= | f1(θ )|2 + | f2(θ )|2 + f1(θ ) f ∗

2 (θ ) + f2(θ ) f ∗
1 (θ)

= | f1(θ )|2 + | f2(θ )|2 + 2 | f1(θ ) f2(θ )| cos δ1,2 (2.37)

The interference term depends on the difference in the phases of the two ampli-
tudes. It can be constructive or destructive, depending on the sign of the cosine
term.

For particles as heavy as atoms the phase, δ, of an amplitude is typically
large compared to 2π and it varies rapidly with energy. The interference term is
therefore a very oscillatory function of initial conditions and any imperfection in
the energy resolution leads to its averaging out.

The rapid interference pattern means that under normal circumstances it is
often justifiable to neglect interference effects. Near the rainbow the circum-
stances are not normal because the two interfering trajectories, both of which
lead to the same deflection, are quite similar in their initial conditions and so the
difference in their phase is small and leads to observable effects.

Another example where interference leads to observable effects is the finite
value of the total cross-section. As discussed in Section 2.2.2, for a realistic
potential with its long-range tail, the purely classical total cross-section is infi-
nite. This is because, no matter how large the impact parameter, there is always a
classical deflection so that one can discern that a collision took place. Quantum
mechanics prevents us from distinguishing a trajectory that is barely deflected
from one that has not sampled the potential at all. Such interference occurs when
the paths of the two trajectories differ by a wavelength λ. For the trajectory with
an impact parameter b, that did deflect by a small angle δθ , the extra path length
is b δθ . The largest deflection that can be resolved is therefore when b δθ ≈ λ.
Since the deflection δθ is a function of b, this provides a cutoff on the maxi-
mal impact parameter for which one can say that a collision did take place. See
Section 4.3.4 for the quantitative details. There the value of the total cross-section
is derived using the Heisenberg uncertainty principle. We therefore emphasize
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that interference and quantum mechanical uncertainty are two ways of stating
the same idea: classical alternatives cannot always be told apart. They can inter-
fere and when they do there is a resulting uncertainty that is quantified by the
uncertainty principle.

At this point you are faced with a wide choice. We know enough already to
start discussing reactive collisions. To do so, go to Chapter 3. To know more about
the approach motion, carry on to the end of this section. To proceed directly to a
discussion of the scattering, go to Chapter 4.

*2.2.7 The center-of-mass system

A complete description of the paths of two point particles undergoing a collision
in three-dimensional space requires a specification of 2 (particles) × 3 (position
coordinates of a particle) = 6 scalar coordinates as a function of time. If, as is
often the case, there are no external forces operating on the system, the force
between the point particles depends only upon the relative separation R between
them. For the purpose of our understanding it is therefore sufficient to describe
the collision in terms of this single scalar coordinate R(t). To be able to do so we23

work in the so-called center-of-mass (c.m.) system, i.e., a coordinate system in
which the c.m. of the colliding particles is at rest. This choice of reference frame
already means that we need only to keep track of a single vector, namely, R,
the relative coordinate of the two particles. The vector R has three components
so we still need to keep track of three scalar functions of time. In Chapter 3
we show systematically how to reduce the problem to keeping track of only one
scalar function, namely the magnitude R of the distance between the particles.
For many purposes, the tools we already have are sufficient: first we argued that
there is a privileged plane, defined by R and the initial velocity, to which the
collision is confined and then we used the conservation of energy to obtain an
equation of motion, Eq. (2.30), that specifies the scalar velocity with which the
particles approach (or recede) in terms of R(t ), the collision energy, and the impact
parameter.

*2.2.7.1 Kinematics in the center-of-mass system
Kinematics means the description of the motion. Here we consider the motion
of two point particles, 1 and 2, in the laboratory and in the c.m. system. In the
laboratory the origin of the coordinate system is fixed and the location of the
two particles is described by two vectors R1 and R2. The (vector) velocity is, as
usual, the rate of change of the position vector, for example, v1 = dR1/dt and
similarly for v2. The relative position vector of the two molecules is R = R1 −
R2. Therefore, the relative velocity v ≡ dR/dt is the difference

v = v1 − v2 (2.38)
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Figure 2.14 Position coordinates of the two colliding particles as well as the
position of the center of mass Rc.m. and the relative distance R.

The position of the center of mass is defined to be at Rc.m., MRc.m. ≡ m1R1 +
m2R2, M = (m1 + m2) where m1 and m2 are the masses of the two particles. If
we want to, the definition of Rc.m. allows us to refer the position of each atom to
the center of mass. For example, R1 = Rc.m. − (m2/M)R and similarly for R2,
as shown in Figure 2.14. Note that the center of mass is nearer to the heavier
of the two particles. This result, while trivial, serves to explain many interesting
features in the dynamics of collisions.

The c.m. system is defined by the condition that the center of mass is at rest,
dRc.m./dt = 0. From the expression for the position vectors of the atoms we
determine the velocities, ui, in the c.m. system in terms of the velocities in the
laboratory, vi = dRi/dt and the relative velocity v = dR/dt :

v1 = d(Rc.m. − (m2/M)R)/dt = (dRc.m./dt) − (m2/M)v ≡ vc.m. + u1

v2 = (dRc.m./dt) + (m1/M) v ≡ vc.m. + u2

vc.m. ≡ (dRc.m./dt) = (m1/M) v1 + (m2/M) v2 (2.39)

Equation (2.39) specifies the velocity ui of particle i with respect to the cen-
ter of mass. The definition of the c.m. system, or the condition of conservation
of linear momentum, tells us that m1u1 + m2u2 = 0. In other words, irrespec-
tive of the laboratory conditions, in the c.m. system the lighter particle is faster
moving. Similarly note that, as one would expect, the relative velocity v of the
two particles has the same value in the laboratory and in the center-of-mass
system:

v ≡ dR/dt = v1 − v2 = u1 − u2 (2.40)

The kinetic energy of two particles in the laboratory system is

K laboratory = (1/2)m1v2
1 + (1/2)m2v2

2 (2.41)

The kinetic energy in the c.m. system has the same form:

K = (1/2)m1u2
1 + (1/2)m2u2

2 c.m. system (2.42)
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Finally, note that we can write the kinetic energy in the c.m. system as the kinetic
energy of the relative motion

K = (1/2)µv2 c.m. system (2.43)

by introducing µ, the reduced mass, as the mass associated with the relative
velocity v:

µ ≡ m1m2/(m1 + m2) (2.44)

We leave it as an exercise to show that the kinetic energy in the laboratory,
Klaboratory, can be written as the kinetic energy for the motion of the center of
mass plus the kinetic energy of the relative motion, Eq. (2.42) or (2.43).

*2.2.7.2 Kinematics in velocity space: the Newton diagram
The transformation of the velocities from the laboratory fixed system of coordi-
nates to the center-of-mass system is often represented graphically in a manner
that has come to be called a Newton diagram. This is an often used repre-
sentation because it allows us to show not only the velocities before but also
after the collision. Thereby one can read from the diagram the final velocities
of the two particles in the laboratory fixed system of coordinates. An experi-
ment measures velocities in the laboratory while we discuss the collision in the
center-of-mass system. Therefore a Newton diagram, Figure 2.15, is a useful
transcription.

The first stage of the construction of the diagram, Figure 2.15(a), specifies
the center-of-mass system. It shows the velocity vc.m. of the center of mass, the
relative velocity v, and also the velocities of the two particles, u1 = (m2/M)v, u2 =
(m1/M)v. After the collision the relative velocity v′ is in a different direction,
specified by the deflection angle θ as shown. In the c.m. system the final velocities
of the two particles are u′

1 = −(m2/M)v′, u′
2 = + (m1/M)v′, and these are also

drawn. Finally, the diagram shows the construction of the laboratory scattering
angle �, assuming that it is particle number 1 that is detected. What is required
is the velocity v′

1 of particle 1, after the collision, in the laboratory fixed system.
Since the velocity of the center of mass is unchanged, what we need is the post-
collision form of Eq. (2.39):

v′
1 = dRc.m./dt − (m2/M) v′ ≡ vc.m. + u′

1

v′
2 = dRc.m./dt + (m1/M) v′ ≡ vc.m. + u′

2

(2.39′)

The Newton diagram shown in Figure 2.15(b) is for the simplest scattering prob-
lem, where the particles are structureless. Therefore the scattering is elastic –
the final velocity v′ can be in a different direction from the initial velocity but
its magnitude is unchanged. There is a circle about the c.m., such that the final
velocities u′

i are confined to lie on it. Our construction is valid for structureless par-
ticles. When the colliding particles have internal structure they can gain (or lose)
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Figure 2.15 Two particles moving initially at right angles to one another. This
corresponds to the most common experimental arrangement when two beams of
molecules are arranged to intersect in a crossed beam experiment. One can make a
similar diagram for other angles. (a) The initial construction, defining the
center-of-mass system; v is the relative velocity vector, v = v1 − v2, see Eq. (2.38).
The position of the center of mass is at the dot. This dot partitions the relative
velocity into two contributions, v = u1 − u2, the two velocities in the c.m. system. (b)
The Newton diagram. This diagram shows also the final velocities in a collision that
resulted in scattering in the c.m. system, at the angle θ . This angle defines the
direction of the final relative velocity with respect to the initial direction. Say that the
detector is set for particle number 1. Then, given the final velocity u′

1 of particle 1 in
the c.m. system we construct the final velocity of particle 1 in the laboratory system
as v′

1 = vc.m. + u′
1. The detector is located in the laboratory and reports a scattering

angle � as the laboratory angle of scattering (� is the angle between the initial and
final laboratory velocity of particle 1). It is necessary to construct the θ ⇔ �

correspondence in order to convert scattering as measured in the laboratory to
intensity in the center-of-mass system. See also the text below.

translational energy at the expense of their internal excitation. Equation (2.39′)
is still valid but the final velocity v′ can change in both magnitude and direction.
There would then be different circles where the radius of the circle is determined,
through conservation of energy, by the final internal state and the location on a
given circle determines the scattering angle for that state. A second generalization
is required when a chemical reaction is possible. Then we need to put primes also
on the two masses mi in Eq. (2.39′) because the masses of the emerging particles
are not the same.

Imaging methods (Heck and Chandler, 1995; Houston, 1996; Suits and
Continetti, 2001; Whitaker, 2003) are making it possible to literally view the
Newton diagram, see Section 7.1.3.1. In this connection it should be noted that
Eq. (2.39′) is a statement of conservation of momentum after the event. So the
final products need not come from a full collision. They can also result from a
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“half collision”, that is, from the photodissociation of a parent molecule into two
fragments, where now vc.m. is the initial velocity of the parent molecule in the
laboratory.

Problems

A. The density and the mean free path. (a) Show, from the ideal gas laws, that the
pressure P of a dilute gas in thermal equilibrium is related to the number density
n by P = nm〈v2〉/3 where m is the mass of the molecules and 〈v2〉 is the average
squared velocity. (b) Under standard conditions (0◦C, 1 atm) the density of a
pure gas is 1.429·10−3 g cm−3. Suggest the possible chemical identity of the gas
and compute the root mean squared velocity at room temperature. (c) Assuming
a collision cross-section of 40 Å2 (an interaction radius of 1.8 Å), compute the
mean free path. (d) Discuss whether the computed mean free path is large or
small by providing a suitable distance for comparison. With this result check
if our assumption that the gas is dilute enough to be nearly ideal is reasonable.
(e) Plot the mean free path against pressure. At what low pressure will a molecule
be likely to survive one second before colliding with another molecule? (We gave
you a mixed bag of units. That is how real life is.)

B. More on density. The vapor pressure of solid Ba at equilibrium at a tem-
perature of 585 K is 10−8 torr and that of solid K at 300 K is 2·10−8 torr.
(a) Compute the number densities of the two vapors. (b) The measured den-
sity of Ba agrees with the computed result but it is about twice the computed
value for K. What is a possible explanation?

C. Derive Eq. (2.1) and hence compute the flux of O2 molecules incident on
the wall of a room under ordinary conditions. Is the flux of N2 molecules the
same and if not, how different is it? In Chapter 12 we will conclude that this
flux is rather high. Can you suggest what is the number against which we will
compare the flux to decide when it is high?

D. Measuring the mean free path. Using the details provided with Figure 2.2
compute the number density of the scattering gas in the range of pressures shown
and hence compute the collision cross-section for both Ar and CH2F2. Both are
large but the cross-section for collisions with CH2F2 is about five times larger
than that for Ar. Why? If we would instead use CHF CHF as a target gas, do
we expect a difference in the cross-section for the cis and trans isomers? They
are, after all, similar in size. The experimental answer is a cross-section of about
1400 Å2 for trans CHF CHF, a shade smaller than that for CH2F2, and 2800 Å2

for cis. Conclude that electrostatic forces are long range and that the collision
cross-section is a joint property of both partners. Non-polar collision partners
have significantly smaller cross-sections.

E. The rate constant for bimolecular collisions. In the text we defined the
number, Z, of collisions per unit volume and unit time as Z = nAω = nAnBvσ ,
where nA and nB are the number densities of the two gases. By analogy to chemical
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kinetics, where the corresponding number of reactive collisions is written as
knAnB and k is called the reaction rate constant, we can call k = vσ the collision
rate constant. (a) If we define k as the loss of flux in the experiment of Figure 2.1,
Eq. (2.10), show that this recovers the result k = vσ . (b) The collision cross-
section is energy dependent. The collision rate constant for thermal partners is
therefore given by k = 〈vσ 〉 where the averaging is over a thermal distribution of
the relative velocity v. ∗ It is however customary to define an effective collision
cross-section by k = 〈vσ 〉 ≡ 〈v〉σ eff · 〈v〉 = (8kBT/πµ)1/2 · kB where kB = R/NA

is Boltzmann’s constant, namely the gas constant per molecule and not per mole.
Show that in practical units

k (cm3 mol−1 s−1) ∼= 8.76·1011 (T/µ (amu))1/2 σeff(Å
2
)

ω (s−1) ∼= P (atm) (298/T ) 4.11·10−8k (cm3 mol−1 s−1)

(c) Go to a source of chemical kinetics rate data and conclude that our k above is
significantly larger than a typical bimolecular reaction rate constant. Why? Some
bimolecular reactions are known to be fast. Can their rate constants be larger than
the collision rate constant? (No, but why not?)

F. The Lennard-Jones (12,6) functional form, Eq. (2.24), is often used to
approximate interatomic potentials. (a) What is the equilibrium distance for the
potential in units of σ? (b) Show that near its minimum the potential can be
expanded in a harmonic form V(R) ∼= −ε + 1

2 k(R − Rm)2. (c) Express the force
constant k in terms of the parameters of the potential and show that in reduced
units it has the value 72. (d) Compute the vibrational frequency of the harmonic
motion at the bottom of the well as a function of the mass and express it in reduced
units.

G. The Morse functional form, V (R) = ε [1 − exp(−(R − Rm)/2ρ)]2 − ε, is
also often used. This has the short-range exponential form as in Eq. (2.13). (a)
Show that the Morse potential satisfies the scaling law (2.22). (b) The Morse
potential is more flexible because the range parameter ρ can be fitted indepen-
dently of the position, Rm, of the minimum. In particular verify that this allows
fitting the harmonic frequency, the anharmonicity, and the rigid-rotor rotational
constant as three independent parameters. In this fashion, data from spectroscopy
can be used directly to infer the potential (Herzberg, 1950).

H. The partitioning of the kinetic energy during a collision, Eq. (2.26). Plot
as a function of time throughout the approach and receding motion, the kinetic
energy along the line of centers of the two partners and the centrifugal kinetic
energy. Assume that no forces are acting and make your plot simpler by choosing

∗ Prove that if A and B both have a thermal distribution of velocities at the same temperature T then

their relative velocity also has a thermal distribution at the same temperature T. If necessary, go first

to Section 2.2.7. Next prove that if A and B both have a thermal distribution of velocities but at two

different temperatures, then their relative velocity also has a thermal distribution and determine the

temperature T for the distribution of the relative velocity.
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the origin of the time axis to be zero at R = b. It is possible to express time in a
reduced (dimensionless) form. Suggest the physical meaning of the variable with
dimension “time” that you need to use as a scale. For further discussion of this
problem see Section 4.1.2.

I. Use the conservation of energy condition, Eq. (2.27), to show that for a
collision of hard spheres the particles do not feel any force if the impact parameter
is larger than the hard-sphere diameter, b > d. Hence derive Eq. (2.36).

J. The Heisenberg uncertainty principle for position and momentum in the
same direction is δx·δp > h (recall that these uncertainties are inherent. We cannot
reduce them by a better designed experiment). We cannot accept an uncertainty
in position larger than b itself. Hence derive a bound for the uncertainty in the de
Broglie wavelength of the relative motion.

K. Orbiting. At low collision energies there will be more than one solution for
the distance R0 of closest approach as determined from Eq. (2.31). The easy way
to see it is to solve Eq. (2.31) by graphical means, i.e., to plot Veff(R) = V(R) +
ETb2/R2 vs. R and see where Veff(R) = ET. The largest root is the turning point of
the collision. The other two roots are the inner and outer turning points for a state
that is bound in the inner hollow of the effective potential. Such a bound A–B
molecule can dissociate by tunneling. As the collision energy is increased the
turning point eventually coincides with the very top of the barrier in the effective
potential. Above this energy there is only one turning point. For a Lennard-Jones
(6–12) potential, determine this energy. The collision at this energy will just
manage to crawl over the top of the barrier. It will do so very, very slowly and
the collision partners will have lots of time to rotate about one another. Hence
“orbiting.”

L. Collision cross-section for hard spheres. The hard-sphere potential has no
attractive part. We can retain much of the simplicity of the model but modify the
potential, as shown in Problem D of Chapter 5, by adding to the repulsive part a
square well of finite range. Evaluate the collision cross-section for this potential.
As a first step, plot the effective potential.

Notes
1 Collimation of a molecular beam is a technical subject in its own right, discussed in detail

in Scoles (1988) and Pauly (2000). Well-collimated beams with a flux of over 1015

particles s−1 cm−2 are available.

2 Textbooks sometimes write this result as ω = k(T )nB = 〈v〉nBσ = 〈v〉/λ and then conclude

that λ = 1/nBσ = kT/
√

2Pσ . The factor of
√

2 is not needed for scattering of beam

molecules because the velocity v of the beam is typically larger than the mean thermal

velocity. The relative velocity in an A–B collision is therefore also about v. If we are

interested in collisions in the bulk gas phase and if both A and B have a thermal velocity

distribution, recall the Maxwell–Boltzmann equation, at the same temperature and A and

B have the same mass, then the mean thermal relative velocity is
√

2 higher than the mean

thermal velocity of A or B alone.
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3 With the molecular beam technique it is possible to determine the velocity dependence of

the collision cross-section. The distribution of the velocities of the beam molecules can be

measured first without and then with a scattering gas, i.e., in the absence and presence of

attenuation by scattering. One way to accomplish the velocity measurement is by the time

of flight method. Here the beam is pulsed by a mechanical shutter near the scattering cell

(the switching on of the beam also triggers the time-base for detection). The beam intensity

at the detector at a time t later is due to molecules of speed v = L/t, where L is the path

length from the beam shutter to detector. Comparing the transmitted intensity (for a given

speed v) in the absence and presence of the target gas in the cell, one can determine the

dependence of the attenuation and hence of the collision cross-section upon velocity.

4 Typically 0.1 ≤ ρ ≤ 0.4 Å. The smaller is ρ the steeper is the repulsion. For R small but of

the order of ρ, the repulsion is due mainly to the increased kinetic energy of the electrons

when they are forced to be confined to a small volume. (A quantum mechanical

phenomenon originating from the Pauli exclusion principle.) As R is decreased further the

coulomb repulsion between the nuclei (otherwise “screened” by the electrons) begins to

contribute significantly. The repulsion cannot be strictly exponential because an

exponential has a finite value (i.e., A) at R = 0. But an exponential increase, see dotted

curve Figure 2.4, realistically reflects the actual R-dependence for R > ρ.

5 Intermolecular forces determine directly the dynamics and, indirectly, the properties of bulk

matter. Books, such as Maitland et al. (1987), are devoted to this important subject. The

articles in Hirschfelder (1967) are still a valuable source. The more recent input from

spectroscopy of weakly bound dimers is reviewed by Hutson (1990) and Nesbitt (1994).

6 All intermolecular forces are ultimately electrostatic in nature and are due to the coulombic

interactions between the charges on the electrons and on the nuclei. To compute the

potential energy V(R) we need to clamp the partners at a distance R apart and average over

the motion of the electrons. What we mean by a long-range physical force is the result of

this averaging when R is so large that electrons belong to one species or the other. To

compute the chemical force we need to be at a shorter distance, where the wave functions

of the two species begin to significantly overlap. It is then necessary to properly

antisymmetrize the electronic wave function of the whole system so as to allow exchange of

electrons. This is why the chemical contribution is known as the exchange force.

7 A neutral molecule will, in general, have a charge distribution that is not spherical. In

addition to a dipole moment it can have higher multipole moments, quadrupole, etc. Each

such higher moment will generate its own electric field. These will decrease faster with

distance and are therefore neglected in the first approximation.

8 The transition dipole moment characterizes the strength of the electronic transition (its

square is, up to constants, the rate constant for the transition known as the Einstein B

coefficient). In the semiclassical limit we can think of the transition dipole moment as a

dipole oscillating at the frequency of the transition, rather like the antenna of a radio

transmitter. The dispersion force is due to the fluctuating field around the atom (or

molecule). While the dipole averages out to zero, its interaction energy with another

molecule does not.

9 To estimate the dispersion constant, books relate the transition dipole to the polarizability,

where, in atomic units, α = µ2/�E and �E is the energy of the transition. So Cdisp ≈
α1α2�E. To estimate the transition energy books often use the ionization potential of the

molecule with �E ≈ I1I2/(I1 + I2). The polarizability is, as an order of magnitude, the
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volume of the molecule, say 10 Å3. As a typical transition energy we take 3 eV ≈
5·10−12 erg, leading to Cdisp = 5·10−58 erg cm6. Strictly speaking one needs to sum over

all transitions of either atom, Cdisp = ∑
i, j |µ1,i |2|µ2, j |2/�Ei j , where �Eij is the sum of

the i and j transition energies.

10 The rigorous interpretation is in terms of the difference between the actual density of

molecules (around some reference molecule) and the density corresponding to a uniform

distribution.

11 That the potential must have an attractive part, where V(R) < 0, follows from Eq. (2.21)

because only if (exp(−V(R)/kT) − 1) > 0 can the second virial coefficient be negative.

12 At a too low T the gas will condense, and measuring above a few hundred degrees is

problematic because of properties of materials.

13 This particular functional form is known as the 6–12 potential because other powers are

also possible. We wrote the 6–12 potential using two common alternatives for the distance

scale factor. One is the equilibrium distance Rm and the other is the point, σ , where there

is the onset of repulsion, namely where the function V(R) changes sign: Rm = 21/6σ . As

seen in Figure 2.4, an R−n, n > 8, term can mimic the exponential rise of the short-range

repulsion.

14 There are fewer such studies because excited electronic states can interact according to

more than one potential energy curve. In other words, several different electronic states of

the diatom dissociate to the same electronic state of the separated atoms. This problem

occurs also for open-shell, ground-state atoms and makes the analysis somewhat more

difficult.

15 The lighter the mass, the more is quantum dynamics willing to allow sampling of regions

with negative kinetic energies. This is known as tunneling. Electrons tunnel. The far

heavier nuclei do tunnel but only over rather short distances. So it is only under special

circumstances that tunneling can make a qualitative difference to the dynamics. The first

instance is in Section 4.3.5.

16 This so-called orbiting happens when there can be more than one solution for the turning

point of the trajectory and is taken up in Chapter 4. This is of importance at low collision

energies, typically lower than the well depth. In classical mechanics the signature of

orbiting is the deflection due to the top of the barrier in the effective potential, the point

where the centrifugal repulsion is just balanced by the attraction due to the potential

V(R).

17 This is familiar to a driver entering a turn in the road. You know that the instinctive

reaction is to brake before taking the turn. If you are a racing driver you also know that

you will try to cut the corner so that your velocity is as great as possible along R (i.e.,

reduce the impact parameter b). Traffic engineers take a different approach. They bank the

road so that the resultant of the force of gravity and the centrifugal force acts in the

direction perpendicular to the road (Figure 2.16).

18 Unless we exercise a very special control, all initial orientations of b are equally probable.

So there can be many equivalent trajectories that differ only in the orientation of the plane

of the collision. Different collision planes correspond to different azimuthal angles in the

plane of the target.

Centrifugal
force

Gravity 

Figure 2.16

19 If the long-range attraction between the molecules decreases more slowly than R−2 (and a

coulomb potential between two oppositely charged ions is the more common example of

this rare situation), then the divergence of the cross-section is real. The same divergence is
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also known in statistical thermodynamics, where the partition function for a purely

coulombic attraction, e.g., a hydrogen atom, is divergent.

20 See Wittig et al. (1988), Shin et al. (1991).

21 A situation where molecules are possibly even more tightly aligned is when they are

adsorbed on a surface. When the precursor and the coadsorbed reactant have a definite

location with respect to one another, both the orientation and the impact parameter are

restricted. The precursor is photodissociated to initiate the reaction. See Figure 12.9.

22 A particularly good discussion of interference is in Chapters 1 and 2 of Volume III of the

Feynman Lectures on Physics (Feynman et al., 1966).

23 Computers easily keep track of the position of many atoms where each coordinate evolves

in time. Therefore, for numerical purposes one often works in a laboratory fixed Cartesian

system of coordinates where the description of a collision requires three more space

coordinates, those of the center-of-mass. In particular, this simplifies the expressions for

the forces acting on the internal motions. The conservation of, for example, the

center-of-mass energy can then be used as a check on the numerical stability of the

computation.



Chapter 3
Introduction to reactive molecular
collisions

We examine in this chapter how the motion of the reactants as they approach
each other governs chemical reactivity. This allows us to use a two-body point
of view where the internal structure of the colliding species is not explicitly
recognized. All that we can do therefore is lead the reactants up to a reaction. But
we will not be able to describe the chemical rearrangement itself nor to address
such questions as that of energy disposal in the products. Chapter 5 takes up these
themes. On the other hand, without the approach of the reactants there cannot be a
bimolecular reaction. The tools already at our disposal are sufficient to discuss this
approach motion. As expected, the striking distance that we have called the impact
parameter will be a key player. We do all of this in Section 3.2. What we will obtain
is information about the dependence of the reaction cross-section on the collision
energy.

In chemical kinetics one characterizes the role of energy in chemical reactivity
by the temperature dependence of the reaction rate constant. In Section 3.1 we
review the input from chemical kinetics – the Arrhenius representation of the rate
constant – then go from the rate constant to the reaction cross-section. Next we go
in the opposite direction, from the microscopic reaction cross-section to the
macroscopic rate constant. What we obtain thereby is the Tolman interpreta-
tion of the activation energy as the (mean) excess energy of those collisions that
lead to reaction.

3.1 The rate and cross-section of chemical reactions

This section is a review of the macroscopic notions we are familiar with from
chemical kinetics.1 Our final purpose is to build rate constants from the bottom
up and therefore to describe the rate of chemical reactions in systems that are
not in thermal equilibrium. Thermally equilibrated reactants are more typical of
the laboratory than of the real world and, even in the laboratory, it takes care and
attention to insure that the reactants are indeed thermally equilibrated. Outside
of the laboratory, whether in the internal combustion engine (which fires many
thousands of times per minute), in the atmosphere, or in outer regions of space,
this is not the case.

73



74 Introduction to reactive molecular collisions

The second theme that we begin to explore is the role of energy in promot-
ing chemical reactions. Macroscopically this is characterized by the temperature
dependence of the reaction rate as summarized by the activation energy. We
can already guess that the underlying root is the collision energy dependence of
the reaction cross-section. The new feature is that certain reactions have cross-
sections that decrease with increasing energy. In fact, this is rather typical for
reactions with large cross-sections.2

3.1.1 The thermal reaction rate constant

The rate of an elementary gas-phase bimolecular reaction, say

Cl + CH4 → HCl + CH3

O + CS → S + CO

F + HCl → Cl + HF

is characterized by the thermal reaction rate constant k(T ), which is a function
of the temperature only. This rate constant is “constant”, meaning that it is not a
function of time, and it is a measure of the rate of depletion of the reactants (that
are kept in a thermal bath) or the rate of appearance of the products. Because the
reaction is bimolecular, it is a second-order rate constant, e.g.

− d[F]

dt
= d[Cl]

dt
= k(T )[F][HCl] (3.1)

For our purpose it is essential to emphasize that the thermal reaction rate is defined
only when the experiment does maintain a thermal equilibrium for the reactants.
If necessary, the reaction needs to be slowed down, say by the addition of a
buffer gas, so that non-reactive collisions rapidly restore the reactants to thermal
equilibrium. If this is not possible, Appendix 3.A introduces the reaction rate
constant under more general conditions. Under non-equilibrium conditions the
rate constant defined through Eq. (3.1) may however depend on other variables
such as the pressure and even on time.

The experimental temperature dependence of the thermal reaction rate con-
stant is often represented in an Arrhenius form

k(T ) = A exp(−Ea/kBT ) (3.2)

We write the Boltzmann constant k with a subscript B to avoid confusion with the
reaction rate constant. If the activation energy is specified per mole, the exponent
needs to be written as Ea/RT where R = NAkB is the gas constant and NA is
Avogadro’s number.

If measurements are carried out over a wide range in 1/T there is no reason
to expect that either the Arrhenius “A factor” or the activation energy Ea is
independent of temperature. Therefore a strict definition of the activation energy
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is as the local (meaning possibly T-dependent) slope of the Arrhenius plot of 1n
k(T ) vs. 1/T

Ea ≡ −kB
d ln k(T )

d
1

T

= kBT 2 d ln k(T )

dT
(3.3)

This is the definition that we shall use.
The chemical change as observed in a macroscopic experiment is the result of

many molecular collisions. In Section 3.1.2 we define the reaction cross-section
from the macroscopic observable rate of reactive collisions. This is sufficient
to discuss the dependence of the cross-section on the collision energy. Then
we discuss the temperature dependence of the reaction rate as arising from this
energy dependence. To understand the origin of the energy needs of chemical
reactions, we provide, in Section 3.2, a microscopic interpretation of the reaction
cross-section. Finally, a caveat. In this chapter we are not taking account of the
internal structure of the reactants. This key topic has to wait until Chapter 5. The
only concession is that an appendix provides an extension of chemical kinetics
to the important special case where we do resolve internal states.

3.1.2 The reaction cross-section – a macroscopic view

We define the reaction cross-section, σ R, in a way suggested by the definition of
the total collision cross-section (Section 2.1.5). For molecules colliding with a
well-defined relative velocity v, the reaction cross-section is defined such that the
chemical reaction rate constant k(v) is given by

k(v) = vσR (3.4)

Here, k(v) is the reaction rate constant for a specific, well-defined, relative velo-
city. It is not the same quantity as the thermal rate constant. We can imagine mea-
suring it by passing a beam of reactant A molecules through a scattering cell as in
Figure 2.1. Then, the loss of flux due to reactive collisions is given by∗

− (dI/dx)R = k(v)nAnB = InBσR (3.5)

Here, as in Eqs. (2.1)–(2.4), I (x) is the flux of beam molecules A at position x and
nB is the number density of the target B molecules. However, not all collisions need
to lead to reaction. While we can conclude that σ R ≤ σ , it is not enough to mea-
sure the attenuation of the parent beam, because an appreciable loss of intensity
can result from non-reactive scattering. We must specifically determine the loss
of flux due to reactive collisions. Experimentally, this is easy to do for reactions
producing ions: the ions are simply collected by the application of an electric
field. One interesting class of reactions of this sort is that of the endothermic

∗ Later on we shall generalize Eq. (3.5), for example looking at those reactive collisions where the

products scatter in a particular direction.
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collisional ionization type; here two neutral molecules collide to form ions,
e.g.

K + Br2 → K+ + Br−2

without atom exchange, or

N2 + CO → NO+ + CN−

Another type of reaction involving both reactant and product ions is the so-called
ion–molecule class, e.g.

H+
2 + He → HeH+ + H

Of course it is not enough just to collect the ionic or neutral products; it is
also necessary to identify their chemical nature. This is often achieved by mass
spectrometric methods. Such identification is essential when several different
reaction paths are possible, e.g.

K + Br2 →




KBr + Br
K+ + Br−2
K+ + Br− + Br

and one needs to determine the branching ratio or the relative contribution of
each process to the total reaction cross-section.

3.1.2.1 The energy threshold of reaction
We embark on our study of the role of energy in chemical dynamics by exam-
ining the dependence of the reaction cross-section on the translational energy∗

of the colliding partners. Our first consideration is the operational concept of
the threshold energy, E0, as the minimum energy needed for the reaction to
take place. The reaction cross-section vanishes for energies below this thresh-
old value. For endothermic reactions, the conservation of energy implies that
there is a minimal energy for reaction to take place. For example, for the ion–
molecule reaction H+

2 + He → HeH+ + H, the minimal energy expected on
thermochemical grounds is the difference between the binding energies of the
reactants and products: E0 = D0(H+

2 ) − D0(HeH+) = 2.65 − 1.84 = 0.81 eV.
The experimental results, shown in Figure 3.1, are that this minimal energy is
indeed the threshold. It is further seen that the reaction cross-section increases
rapidly as the translational energy increases above E0. This behavior is typical
for reactions with an energy threshold.

Reactions can have a finite energy threshold that is higher than the thermo-
chemical threshold, meaning that σ R is effectively zero below some threshold
energy even though the reaction is thermodynamically “allowed.” One then
speaks of an activation barrier that needs to be surmounted for reaction to

∗ As before, only the relative translational energy is of importance. For a binary collision, the motion

of the center of mass cannot affect the outcome of the collision.
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Figure 3.1 Translational energy dependence of the reaction cross-section, σR(ET)
for the H+

2 (v = 0) + He → HeH+ + H reaction [adapted from T. Turner, O. Dutuit, and
Y. T. Lee, J. Chem Phys. 81, 3475 (1984)]. For this ion–molecule reaction the observed
threshold energy is equal to the minimal possible value, the endoergicity of the
reaction. Exoergic ion–molecule reactions often have no threshold.3 By exciting the
vibrations of the H+

2 reactant the cross-section for the reaction above can be
considerably enhanced.

take place. Clear examples are thermoneutral exchange reactions with an energy
threshold. The (actually, a shade endoergic, Problem A) reaction

H + D2(v = 0) → D + HD

has a threshold energy of about 30 kJ mol−1 (≈ 0.3 eV). Thus, while all endoergic
reactions necessarily have an energy threshold, many exoergic reactions also have
an effective energy threshold. The reaction energy threshold E0 can be no lower
than the minimum energy �E0 thermochemically required for the reaction, but
may be higher or even significantly higher.

An important class of reactions, of particular interest in atmospheric chemistry
(aeronomy) and, in general, for interstellar chemistry, is that of the exoergic ion–
molecule reactions, e.g.

N+ + O2 →
{

NO+ + O
N + O+

2

Such reactions often show no threshold energy3 and the reaction cross-sections
are found to be a decreasing function of the translational energy, roughly as

σR(ET) = AE−1/2
T (3.6)
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Figure 3.2 Log–log plot of the translational energy dependence of the reaction
cross-section when there is no apparent threshold energy. The solid curve is an
experimental result for the system Ar+ + D2 → ArD+ + D; the dashed curve has a
slope of −1/2, cf. Eq. (3.28), and the potential shown in Figure 3.7 [adapted from
K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 83, 166 (1985)]. For the drop in the
reaction cross-section at higher energies see Problem J.

as shown in Figure 3.2. It is the preference for low collision energies that makes
ion–molecule reactions so important for the synthesis of molecules in the inter-
stellar medium.

3.1.2.2 Translational energy requirements of chemical reactions
On the basis of the translational energy requirements of chemical reactions we
can thus make the following rough correlation.

(1) Reactions that have an energy threshold (this necessarily includes all endoergic reac-

tions) have a reaction cross-section that is an increasing function of the translational

energy in the post-threshold region. This is the case chemists are more familiar with.

It gives rise to a positive Arrhenius activation energy, as discussed next.

(2) Reactions that proceed without any apparent energy threshold (and this includes some,

but not all, exoergic reactions) often have a reaction cross-section that is a decreasing

function of the translational energy. However, as the translational energy is increased,

other, previously endoergic, reaction paths become allowed. These have a threshold

and their cross-section will increase with energy, at the expense of the previously

allowed reaction.

To rationalize these correlations we turn in Section 3.2 to the microscopic
interpretation of the reaction cross-section and the concept of the reaction proba-
bility. Before that we reiterate that the energy requirements of chemical reactions
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appear, in the macro world, as the temperature dependence of the reaction rate
constant.

3.1.2.3 The temperature dependence of the reaction rate constant
The translational energy dependence of the reaction cross-section translates into
the temperature dependence of the reaction rate constant. The procedure is clear:
take k(v) = vσR , Eq. (3.4), and average it over a thermal distribution of velocities,
k(T ) = 〈vσ R(v )〉. We wrote σ R(v) as a reminder that the reaction cross-section
can depend on the collision velocity.

Sometimes the thermal averaging 〈vσ R(v)〉 required to compute k(T ) is easy
to implement. For example, for ion–molecule reactions for which, cf. Eq. (3.6),
vσ R ∝ constant, k(T ) is independent of temperature.∗ At other times, the
averaging needs to be carried out. Explicitly, it means evaluating an integral
over a Maxwell–Boltzmann velocity distribution f (v) of the (collision-energy-
dependent) reaction cross-section

k(T ) =
∫

vσR f (v) dv = (µ/2πkBT )3/2

∫
vσR exp(−µv2/2kBT )4πv2dv (3.7)

It is often convenient to change the variable of integration to the collision energy
ET = µv2/2. Then

k(T ) = (8kBT/πµ)1/2

∫
(ET/kBT )σR exp(−ET/kBT ) d(ET/kBT ) (3.8)

where the factor in front of the integral is the thermal (relative) velocity and the
integral itself has the dimension of a cross-section.∗∗

3.1.2.4 The Tolman interpretation of the activation energy: the
reactive reactants
The temperature dependence of the reaction rate is determined by the integrals
(3.7) or (3.8). The integrand is a product of a rapidly decreasing function, the
Boltzmann factor, exp(−ET/kBT), and the energy-dependent cross-section. For
reactions with an energy threshold, in the post-threshold regime the cross-section
will be a rapidly increasing function of the energy, Figure 3.3.

It is then very clear that increasing the temperature will allow the integrand,
and hence the reaction rate, to have a higher value. Problem D uses a saddle
point (approximate) integration to show that for an integrand that is a product
of an increasing and a decreasing function, the integral can be approximated by
an Arrhenius form, Eq. (3.2). Here we proceed to show, following Tolman, that
there is always an exact interpretation of the activation energy, Eq. (3.3), as the
excess energy of the collisions that do lead to reaction:

Ea ≡ 〈ET〉reactive reactants − 〈ET〉all reactants (3.9)

∗ How thoughtful nature was to make ion–molecule reactions so that there can be chemistry in the

cold regions of space where many molecules are ionized by cosmic and UV radiation.
∗∗ Note however that the integral is not a thermally averaged cross-section. Problem C shows that the

integral in (3.8) is an average of the cross-section over the thermal flux density of molecules.
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Figure 3.3 The origin of the Arrhenius temperature dependence as reflecting the
rise of the reaction cross-section past the energy threshold (Menzinger and
Wolfgang, 1969). The two factors in the integrand in Eq. (3.8) are plotted against
energy. The Boltzmann factor, exp(−ET/kBT), is shown for an intermediate, high,
and quite high temperature (kBT = E0/4, E0/2, and E0, respectively). The energy
dependence of the reaction cross-section above the threshold energy, shown as a
dashed line, is σR ∝ (1 − E0/ET), a result derived in Section 3.2.7 below. As a
function of the collision energy, the exponential decline of the Boltzmann factor
readily overwhelms the increase of the reaction cross-section. Note how at a higher
temperature the integrand is exponentially larger because of the shift in the
Boltzmann curve. The figure also illustrates why thermal measurements can provide
only a limited leverage for determining the energy dependence of the reaction
cross-section. It is only the tail-end of the Boltzmann distribution and the threshold
behavior of the cross-section that contribute to the thermal reaction rate.

Here reactive reactants means those reactants that do react and the average is over
a thermal distribution. The proof is directly from the definition of the activation
energy. The proof begins by examining Eq. (3.7) and concluding that the entire
T-dependence of k(T ) is due to the Boltzmann factor. After some mathematical
manipulations∗ the result is

〈ET〉reactive reactants ≡ 〈ET〉thermal reactants weighted by reaction rate

=
∫

ET
(ETσR) exp(−ET/kBT ) dET∫
(ETσR) exp(−ET/kBT ) dET

(3.10)

≡
∫

ET Prr(ET) dET

∗ To differentiate k(T ) with respect to T, what is needed is to differentiate the thermal Boltzmann

factor. Care is needed at one place. (The Boltzmann factor carries with it a normalization (the

fore-factor in the last term in (3.7)) and this normalization is T-dependent. So it too needs to be

differentiated and this is the origin of the second factor in Eq. (3.9).
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Here Prr(ET), defined by Eq. (3.10), is the (normalized) distribution of the reactive
reactants. This is the distribution of energy for those pairs of reactants that will
react. The average energy of all colliding pairs is not Eq. (3.10) but Eq. (3.11)

〈ET〉all reactants ≡ 〈ET〉thermal reactants

=
∫

ET
E1/2

T exp(−ET/kBT ) dET∫
E1/2

T exp(−ET/kBT ) dET

(3.11)

When we recognize that, strictly speaking, the activation energy is really a ther-
mal average many puzzles go away. The activation energy is not, for example,
the minimal energy for reaction. It is closely related to it because the reactive
reactants need to have at least the minimal energy, but they can have more than
the minimal amount and indeed the reaction cross-section typically rises steeply
in the post-threshold regime, Figure 3.1. Nor does the activation energy have to
be independent of temperature.∗ Atypically the activation energy can even be
negative if low-energy collisions preferentially lead to reaction.4

3.A Appendix: Reaction rate under non-equilibrium
conditions

On a microscopic, molecular level, we can write for a state-selected and state-
resolved reaction

F + HCl(i) → Cl + HF( j)

where i and j label the different internal states. We assume here that the kinetic
energy has a thermal distribution. The observed bulk reaction rate at complete
thermal equilibrium is then a sum over the rates of reaction of the HCl molecules,
in all possible states, with F atoms:

− d[F]

dt
=

∑
i

ki (T )[F][HCl(i)] (A.3.1)

Here ki(T) is the reaction rate constant for a selected state of the reactants. Whether
the system is in thermal equilibrium over the internal states of HCl or not, we can
rewrite Eq. (A.3.1) as

− d[F]

dt
=

∑
i

ki (T ) [F]
[HCl(i)]

[HCl]
[HCl] = k(T )[F][HCl] (A.3.2)

where [HCl] is the total concentration of HCl. By comparison with Eq. (3.1) this
defines a reaction rate constant, k(T), as

k(T ) =
∑

i

ki (T )
[HCl(i)]

[HCl]
≡

∑
i

pi ki (T ) (A.3.3)

∗ Show, Problem E, that this dependence tells us about the entropic requirements of the reaction. We

provide a microscopic view of such requirements in Chapter 5.
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Here pi, as defined by Eq. (A.3.3), is the relative population (= mol fraction) of
HCl molecules in the state i

pi = [HCl(i)]

[HCl]
(A.3.4)

In general pi can depend on time and so Eq. (A.3.3) does not necessarily define a
rate constant. If however the system is in thermal equilibrium at the temperature
T then pi is the Boltzmann factor for the state i and the averaging in Eq. (A.3.3)
defines the familiar thermal reaction rate constant. The point is that Eq. (A.3.3)
is valid whether the internal states of the HCl molecules are or are not in thermal
equilbrium.

Already in Section 1.2.4 we have seen that the reaction rate does depend on the
internal excitation of the reactants. See also Figure A3.1. Yet the measurement of
k(T ) for reactions in thermal equilibrium can give no indication of such an effect
(for a gas in thermal equilibrium, we are unable to vary the pis independently).
In other words, at thermal equilibrium we are unable to state-select the reactants.
It is only by imposing non-equilibrium reactant distributions that we can charac-
terize the role of reactant excitation. Otherwise, when we vary T we vary both
the occupations pi of the different internal states of HCl and the kinetic energy
of the collision (which is why the state-selected rates ki(T ) are T-dependent).
The measurement of k(T ) only cannot tell the two apart, without making
assumptions.

So far we have shown that the observed reaction rate constant is an average
over the rate constants for the selected state reactants. If we do state-resolve the
products then

d[HF( j)]

dt
= −

∑
i

ki j (T )[F][HCl(i)] (A.3.5)

and proceeding as before

k(T ) =
∑
i, j

pi (T )ki j (T ) =
∑

i

pi (T )

(∑
j

ki j (T )

)
=

∑
i

pi (T )ki (T ) (A.3.6)

In summary: the rule is asymmetric. To define the overall rate constant we are
to sum over the states of the products but to average over the internal states of
the reactants.

The experimental evidence, as reiterated in Figure A3.1, is that the detailed
reaction rate constants kij(T) do in general depend upon both the initial and final
states (i and j). These state-to-state reaction rate constants also depend on the
collision energy and hence on the translational temperature T. Our purpose is to
reduce this extensive averaging. Among the features that we would want to explore
would be: (a) the “energy requirements” of chemical reaction. In particular, the
threshold energy or the minimum energy required for the reaction to occur5

and the variation of the reactivity with the reactants’ translational (and internal)
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Figure A3.1 Influence of the vibrational state of the reactant molecule upon
the distribution of vibrational states of the product molecule, for the reaction
F + HCl(v) → Cl + HF(v ′). Plotted is kvv ′ vs.v ′ for v = 0 and v = 1. Note the strong
effect of reagent vibration upon the overall reaction rate also [the reaction is about
five times more efficient from the v = 1 state; adapted from J. L. Kirsch and J. C.
Polanyi, J. Chem. Phys. 57, 4498 (1972)].

energy. (b) The steric effect or the variation of the reactivity with the relative
orientation of the reactants. (c) The energy disposal into the products. (d) The
angular distribution of the products after they have separated from the region of
interaction. We have made a start on (c) and (d) already in Chapter 1, but before
we continue on this road we need to know how to characterize quantitatively the
reaction rate under non-equilibrium conditions.

The unraveling of the averaging that goes into the definition of a thermal
reaction rate constant shows that its temperature dependence is not quite a simple
matter. The state-to-state reaction rate constants vary with temperature because
the state-to-state cross-section depends on the collision energy. In addition, for
a system in thermal equilibrium, the populations of the different initial states
are themselves temperature-dependent. Problem F shows that if an increment in
the collision energy is as effective in promoting reaction as an increment in the
internal energy of the reactants, then the two sources of T-dependence will be
equivalent. As we have noted, such equivalence is not necessarily the case.

3.2 Two-body microscopic dynamics of reactive collisions

This section is a simple microscopic approach to reactive collisions. What we
want is to determine the rate of those collisions that result in a chemical reaction.
The reaction cross-section σR is a measure of the effective size of the molecules
as determined by their propensity to react, at a given collision energy. We will
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not explicitly indicate that the reaction cross-section is velocity-dependent, but
please bear this in mind. In order to keep the view simple in this section we
overlook the role of the internal energy states of molecules. That is, we use the
discussion of the approach motion of structureless particles, as in Section 2.2,
augmented by the notion of the reaction probability. We will be able to make
quite a bit of headway, but much will be left for Chapter 5 where the polyatomic
nature of the collision is explicitly recognized.

3.2.1 The opacity function

As the reactants collide (at a given energy) we characterize their initial approach
in terms of the impact parameter. We define the reaction probability or opacity
function, P(b), as the fraction of collisions with impact parameter b that lead to
reaction. Two properties of the opacity function are obvious. Since at most all
collisions can lead to reaction, 0 ≤ P(b) ≤ 1. Moreover, for a chemical reaction
to take place, it is necessary for the reactant molecules to get close to each other
so that “chemical (exchange) forces” will operate and the atomic rearrangements
that constitute the chemical change can take place. For high-impact-parameter
collisions the centrifugal barrier (Section 2.2.2) acts to keep the molecules apart
(recall that the distance of closest approach R0 → b for large b). We therefore
expect that reaction will take place only when b is “small,” i.e., of the order of the
range of the chemical force, and that the reaction will fail to occur, i.e., P(b) = 0,
for higher values of b.

3.2.2 The microscopic view of the reaction cross-section

For collisions with an impact parameter in the range b to b + db, the reaction
cross-section is given in terms of the opacity function by

dσR = 2πbP(b) db (3.12)

2πb db is the area presented to the colliding reactants when their impact parameter
is in the range b to b + db. P(b) is the fraction of all such collisions that lead
to reaction. Due to the possibility of reaction, the total collision cross-section,
2πb db, is partitioned between the cross-section for reactive, Eq. (3.12), and non-
reactive collisions given by6

dσNR = 2πb [1 − P(b)] db (3.13)

Here 1 − P(b) is the fraction of collisions that are non-reactive at the impact
parameter b. One can say that reaction “quenches” the non-reactive scattering.

It is important to note that while the partitioning between reactive and non-
reactive collisions depends in an intimate fashion on the collision dynamics, the
sum of the two cross-sections is 2πb db, irrespective of the details. If several dif-
ferent reaction paths are energetically possible, their cross-sections can increase
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Figure 3.4 The simplest model for a reaction probability: a unit step function. It
shows a reaction that occurs with 100% probability whenever the reactants can get
near enough to one another and then has an abrupt cutoff at bmax. The impact
parameter is shown in units of bmax. From Chapter 1 you expect that such a model
fails to allow for steric effects, but it is realistic for the harpoon-type reactions that
we discuss next. Also shown in the figure is the integrand bP(b) of Eq. (3.14) that
defines the reaction cross-section, so the contribution of different bs to the reaction
cross-section is directly the height of this curve. This shows graphically how the
highest bs for which reaction is possible, contribute most.

only at the expense of each other, or of the non-reactive cross-section. There is
never more (nor less) than 2πb db to partition among all possible final outcomes
of collisions when the impact parameter is in the range b to b + db. Recall that
the discussion of the measurement of the total cross-section of the experiment
in Section 2.1 did not specify what happens as a result of the collision beyond
that incoming molecules disappeared as far as the detector of the beam flux is
concerned. If a force is applied, leading to a deflection, the molecule in the beam
fails to reach the detector. That experiment measures the total cross-section irre-
spective of how the outcome of the collision is partitioned between the different
kinds of processes that are possible.

The total reaction cross-section is the sum (= integral) over all collisions
irrespective of their impact parameter

σR = 2π

∞∫
0

bP(b) db (3.14)

True to the principle of “he that hath, receiveth,” σ R weights P(b) such that the
contributions at higher b values tend to contribute more heavily because of the
2πb term in the area element. Hence, if a reaction has an opacity function that
extends to higher b values, it will have a particularly large reaction cross-section,
see Figure 3.4.
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3.2.3 A simple opacity function

A determination of the reaction cross-section does not uniquely specify∗ P(b), but
only its b-weighted average, Eq. (3.14). Because of the b-dependent weighting,
the reaction cross-section is more sensitive to the value of P(b) at higher bs.
Hence, rather than trying to determine P(b) in detail, let us assume a simple
functional form with very few parameters and determine these parameters from
the observed σ R or from dynamical models. Since P(b) is non-negative, cannot
exceed the value 1, and vanishes at high bs, the simplest approximation is a unit
step function as shown in Figure 3.4:

P(b) =
{

1, b ≤ bmax

0, b > bmax
(3.15)

bmax is the cutoff impact parameter, the highest b for which a reaction occurs.
The reaction cross-section is then simply

σR = 2π

bmax∫
0

b db = πb2
max (3.16)

bmax (and its possible energy dependence) can be determined from the measure-
ments of σ R or from models for the dynamics, as we shall show below.

3.2.4 The harpoon mechanism

An illustration for our simple considerations where the reaction cross-section is
well estimated by Eq. (3.16) is the long-range electron transfer process known as
the harpoon mechanism. This mechanism only applies for reactions of atoms (or
molecules) with rather low ionization potential with molecules of rather high elec-
tron affinity. It was proposed by Michael Polanyi (1932) to explain the very large
(over 100 Å2) reaction cross-sections of alkali atoms with halogen molecules,
see table in Problem H. Since Polanyi’s time the idea of a charge transfer during
the approach motion of the reactants has become much more widely applicable.
What distinguishes the harpoon mechanism is that the charge transfer occurs at
quite a large separation of the reactants, well before what one would customarily
think of as the range of onset of chemical forces.

Consider a collision between K and Br2. The first stage of the reaction is
envisaged as the transfer of the valence electron of the alkali metal atom to the
halogen molecule. Such a transfer is shown by Eq. (3.18) below to be possible
even when reactants are quite a few Ångstrom apart. Once the transfer takes place
and a temporary ion-pair (e.g., K+Br−2 ) is formed, the strongly attractive coulomb
force accelerates the two ions toward each other. This is followed by formation of

∗ We shall see later (Section 4.4.4) that angular distribution studies can provide information on the

b-dependence of the opacity function.
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Figure 3.5 Schematic drawing of intersecting potential curves to model the
harpoon reaction of K + Br2. The nearly flat curve represents the long-range K–Br2

interaction where both species are neutral. The value of this energy at large
separations sets the zero of energy. The upper curve is a coulombic attraction
approximating the ionic K+−Br−

2 potential at long range. As R is decreased to the
crossing point Rx, the lowest energy state of the KBr2 system switches from the
covalent to the ionic form and follows the lower curve until K+Br− forms, with the
ejection of a Br atom. At very large separations the potential energy curve for
K+ + Br−

2 levels out at the difference, �E0, between the ionization potential of K and
the (vertical) electron affinity of Br2. Therefore the asymptotic (= in the reactants’
region) separation in energy of the two potential curves is �E0.

the stable KBr and rejection of the Br atom. The metal atom has, in effect, used
its valence electron as a “harpoon” in order to pull in the halogen molecule.

A simple estimate of the range of the harpoon can be obtained easily by con-
sidering the energetics of the charge transfer. First we realize that the ionization
potential of the metal (which may be an alkali or alkaline earth) exceeds the elec-
tron affinity of the halogen molecule, so that, at large separations, charge transfer
is endoergic and cannot take place in a low-energy collision. However, as the
reactants approach one another the formation of the ion-pair can occur owing to
the gain in energy from the coulomb attraction in the newly formed ion-pair!

The largest separation Rx at which charge transfer can take place on ener-
getic grounds is estimated from the solution of the equation (cf. Figure 3.5) that
determines the largest distance at which the coulomb attraction between the two
oppositely charged ions is sufficient to provide the required energy �E0

− e2/Rx + �E0 = 0 (3.17)

where �E0 = IP(metal) – EA(halogen molecule), the endoergicity, is the differ-
ence between the ionization potential of the alkali and the electron affinity of the
halogen molecule. The nuclei of the Br2 molecule are at their equilibrium distance
apart and so the electron affinity that we need is the so-called vertical7 electron
affinity. In writing Eq. (3.17) we have kept only the leading terms and neglected
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the long-range dispersion interaction between the two neutral reactants, which is
negligible compared to e2/R at Rx as well as any polarization interactions in the
ion-pair. Thus Eq. (3.17) provides an approximation formula for Rx:

Rx
∼= e2

�E0
= 14.4

�E0 (eV)
(in Å) (3.18)

where the numerical factor is the subject of Problem H.
Owing to the large coulomb attraction, reaction follows “immediately” after

the electron transfer. For b > Rx the reactants will never get “close enough” for
charge transfer, i.e., to within Rx. The reason is that during their initial approach
the neutral reactants are moving under the very weakly attractive long-range
potential. So their distance of closest approach is essentially b. When b < Rx

charge transfer can occur and then the strong coulomb attraction overcomes the
centrifugal repulsion and draws the two ions together, downhill. Reaction between
the two ions follows. ∗ Thus bmax � Rx or σR

∼= πR2
x. See also Problem H.

Equation (3.18) implies that Rx will increase for a decrease in ionization
potential of the metal: thus σ R increases for the sequence Li, Na, . . . , Cs. The trend
in σ R with the electron affinity of the halogen is also qualitatively explained by
Eq. (3.18). This simple mechanism thus offers a qualitative explanation for both
the large magnitude of the alkali–halogen reaction cross-sections and the trends
with the metal and halogen involved, Problem H. The harpoon model also provides
an understanding of the mechanism of the collisional ionziation reactions, e.g.,
K + Br2 → K+ + Br−2 , and explains why the threshold energy for such reactions
equals the endoergicity, without an additional barrier.

In this section we have discussed curve crossing along the approach coordinate
and we next provide some further examples. However, the model is extensively
employed, particularly so when we generalize in Section 5.1 the notion of an
approach coordinate to a more general one that is known as the reaction coordinate
or reaction path. Then we can treat the more general case; an example of such
an oxidation reaction is shown in Figure 5.6, where the reactants begin their
chemical interaction by a charge transfer, but one that takes place when they are
closer in.

3.2.4.1 A modern variation on an old theme: excimer lasers
A new application of the harpoon mechanism is to the pumping of excimer lasers.
These lasers are the workhorses in the UV region and their typically orange-
painted housing is easily recognized in the laboratory. Excimer lasers operate by
taking advantage of the alkali atomlike character of electronically excited rare gas
atoms8 Rg∗. These metastable atoms are efficiently produced by electron impact.
Being rare gases, their first electronically excited state is high in energy, which
means that these excited states have low ionization potentials. Therefore, they

∗ In Chapter 5 we will regard this as an example of an “early downhill” or an “attractive” potential.
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will readily undergo a harpoon reaction, with a large cross-section, with halogen
molecules, X2

Rg∗ + X2 → Rg∗X + X

The chemically bound ionic molecule thus created, Rg∗X (the “excimer”), is
electronically excited. It emits UV light and goes down to its ground state RgX.
But the ground state is not chemically bound and promptly dissociates. An excess
population of the excited state is thereby maintained and the system acts as a laser.
Repeating a discharge through the Rg/X2 mixture excites fresh Rg∗ atoms and
the laser can be operated again and again. It is capable of producing rather high
powers. The usable frequency range of this laser is governed by the choice of rare
gas and halogen.

There is much more to the technology of excimer lasers. But two key points
are made possible by the special chemical nature of rare gas atoms. First is
the unusually high excited state energy that creates a state Rg∗ with a rather low
ionization potential, thereby making a harpoon reaction with X2 possible. Second
is the efficient draining of the final state after emission due to the Rg–X repulsion
for those Rg–X interatomic distances corresponding to the well of Rg∗X.

3.2.4.2 Hardness and electronegativity
The harpoon model uses the ionization potential (IP) and the electron affinity
(EA) as the measures of electron donating and accepting. In terms of the energy
of the N-electron molecule, the IP and EA are defined by

IP(N ) ≡ E(N − 1) − E(N )
EA(N ) ≡ E(N ) − E(N + 1)

(3.19)

For species that are not quite so ready to give or receive an electron it is useful to
use the hardness (H) and the electronegativity (E) defined by (Kohn et al., 1996)

H = (IP − EA)/2
E = (IP + EA)/2

(3.20)

Often it is a useful approximation to use an orbital picture where electrons are
assigned to orbitals, as in Section 5.1.5, and these orbitals are taken to be the
same for the cation, the neutral, and the anion. Then the energy of adding or
subtracting an electron is just the energy of the orbital it goes out of or into. This
so-called Koopmans theorem is an approximation that does not always hold.

*3.2.4.3 Dynamics in condensed phases: a simple application
of curve crossing
The potentials during the approach motion of the reactants can be much modified
when the reactants are not isolated but are coupled to an environment. In the gas
phase, if the ionization potential is not low, the energy �E0 needed to form an
ion-pair is high and the curve crossing of the ionic and covalent potentials does
not occur as the reactants approach (or recede). In water or another polar solvent,



90 Introduction to reactive molecular collisions

Distance from the surface Distance from the surface

chemisorption well

physisorption well

Rx

A + A

A2

e

E
ne

rg
y

Figure 3.6 The Lennard-Jones curve-crossing model for dissociative
chemisorption, left: without and right: with an energy barrier. The undissociated A2

molecule is physisorbed at the surface. The A atoms are chemisorbed. The energy
of the two new metal A bonds suffices to compensate for the A A bond energy ε

and the depth of the physisorption well. Therefore the interaction potential of the
undissociated A2 molecule with the surface is asymptotically lower, by the A A
bond energy. But near the surface this potential curve is crossed by the interaction
of two A atoms with the surface. The limitation of the two-body point of view is
evident in this plot. The A A bond distance, that is surely a key variable, is not
represented in this simple view. More on this topic in Chapter 12.

the ions are solvated and, if we continue to use a two-body point of view, the ionic
potential curve is lowered compared to the covalent curve. For example, in water,
KBr dissociates to ions and not to neutral atoms, as it would in the gas phase. For
a quantitative estimate of the solvation energies see Chapter 11. Other processes
that are highly endoergic in the gas phase, such as the autoprotolysis of water,
H2O + H2O → H3O+ + HO−, also become possible in water.

Lennard-Jones used a curve-crossing model in an early explanation of disso-
ciative adsorption of diatomic molecules (such as N2 or H2) on metal surfaces
(Fe, Pt, . . .). Far away from the surface, the energy of two atoms, say of nitro-
gen, is significantly higher than that of the diatomic N2 molecule (by about
945 kJ mol−1, the triple N2 bond is extremely strong). But on the metal surface
the bond is broken. The required energy is provided by the bonding of the atoms
to the metal. If we plot the potential energy as a function of the distance to the
surface, then the interaction of the two atoms must, at some distance, cross the
weaker interaction of the undissociated molecule and the surface, Figure 3.6. On
many metals the weakening of the molecular bond occurs through charge transfer
from the metal to the empty, antibonding, orbitals of the molecule.

The two-body point of view is highly oversimplified, particularly in that it fails
to describe the structure and the response of the environment, but it does capture
certain essential features. Current studies that probe the important role of the
dynamics of the surface (or of the solvent) are discussed in Chapters 11 and 12.
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Figure 3.7 The effective potential for an ion–molecule reaction shown only at
longer ranges where the potential (in units of ε, dashed line) can be approximated
by its long-range form V(R) = −ε (σ/R)4. The effective potential, in units of ε, is
plotted vs. R/σ for (ET/ε)(b/σ )2 = 0.5. The centrifugal barrier, ETb2/R2 is shown, in
units of ε, as a dotted line and it is seen that at longer range it easily overcomes the
ion–molecule attraction. But closer in, the attraction dominates, resulting in a barrier
in the effective potential. Problem J shows analytically that the location of the
barrier is at Rmax/σ = (2 / (ET/ε)(b/σ )2)1/2.

3.2.5 The centrifugal barrier to reaction

A simple quantitative model for the translational energy dependence of bmax and
hence σ R is obtained by adopting the following criterion for reaction: reaction
occurs with unit probability, i.e., P(b) = 1, if the colliding molecules have suffi-
cient translational energy to overcome the energy barrier for reaction and reach
the region of chemical forces. Consider first reactions without an energy thresh-
old. The only barrier to the approach motion of the reactants is the centrifugal
barrier (Section 2.2.2), and so reaction is always energetically possible at low bs.
For a given translational energy ET and impact parameter the effective potential

Veff = V (R) + ETb2/R2 (3.21)

shown in Figure 2.9 may have a local maximum,9 at some R = Rmax where Rmax

is, in general, a function of b and ET. This maximum is due to the opposing
influence of the very long-range centrifugal repulsion falling off as R−2 and the
long-range attractive part of V(R) that falls off faster, as shown in Figure 3.7.
Therefore the repulsive centrifugal barrier dominates at large R values. But the
attractive V(R) can overcome the centrifugal effect at somewhat smaller Rs.
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3.2.5.1 Computing the capture cross-section for reactions with
no energy threshold
The capture model assumes that all trajectories that can energetically cross the
barrier in the effective potential do cross and proceed to form products. The
maximum of the effective potential occurs at the distance Rmax that is determined
by the equation for the location of a stationary point of a function:10

d

dR
[Veff(R)]

∣∣∣∣
evaluated at R=Rmax

= 0 (3.22)

Only when the molecules can approach to within Rmax can they cross the barrier
in the effective potential and enter the region of chemical forces. Hence, the
criterion for reaction is that during their approach motion the molecules can
reach R = Rmax with at least some kinetic energy left, so that they are able to
enter the “reaction zone.” Making use of Eq. (3.21) we can write this criterion as
a quantitative statement about the radial kinetic energy at R = Rmax:

1
2 µ

(
dR

/
dt

)2
∣∣∣
evaluated at R=Rmax

= [ET − V (R) − ETb2/R2]R=Rmax ≥ 0 (3.23)

where Rmax has been determined by Eq. (3.22). The right-hand side of Eq. (3.23)
is decreasing when b is increasing. So we define bmax as the value of b such that
the right-hand side of Eq. (3.23) comes down to zero,

[ET − V (Rmax) − ETb2/R2
max]

∣∣
evaluated at b=bmax

= 0 (3.24)

If we approximate the intermolecular potential between the reactant molecules
by its long-range form ∗

V (R) = −C/Rs (s > 2) (3.25)

after some work ∗∗ using the implicit Eq. (3.22) we get

R2
max = (sC/2ETb2)2/(s−2) (3.26)

Solving for V(Rmax) using Eq. (3.25) we find bmax from Eq. (3.24) and thus, finally,
the reaction cross-section

σR = πb2
max = πq(s)(C/ET)2/s (3.27)

where q(s) = (s/2)[(s − 2)/2]−(s−2)/s.
For the particular case of a singly-charged ion–molecule reaction, shown in

Figure 3.8, s = 4 and C = α/2, where α is the polarizability of the molecule

σR = π(2α/ET)1/2 (3.28)

This is known as the Langevin–Gioumousis–Stevenson form of the reaction cross-
section. It implies that the reaction rate constant vσ R is (nearly) independent of the
collision energy so that the thermal reaction rate constant is nearly independent
of temperature.

∗ This is permissible only if Rmax is large enough so that it is in the long-range tail of the potential.
∗∗ d[Veff(R)]/dR = sC/Rs+1 −2ETb2/R3 so Rmax is the solution of sC/Rs−2

max = 2ETb2.
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The simple capture model does account for the moderate decrease of σR with
ET for reactions without energy threshold. In the particular case of ion–molecule
reactions it explains why their rate constant is nearly independent of tempera-
ture and it even accounts roughly for the magnitude of σR as well, as shown in
Figure 3.2.

3.2.6 Reactions with an energy threshold

For reactions with an energy threshold, we must take account of both the centrifu-
gal barrier and the threshold energy barrier (the “permanent” barrier for reaction).
We now replace Eq. (3.23) by the condition that at some separation d, the energy
available for the motion along R exceeds the threshold energy E0, or ∗

[ET − ETb2/d2 − E0] ≥ 0 (3.29)

We take bmax as the largest value of b for which (3.29) is not negative, i.e.,
bmax = d(1−E0/ET)1/2 so that

σR = πb2
max =




0, ET ≤ E0

πd2

(
1 − E0

ET

)
, ET > E0

(3.30)

The reaction cross-section vanishes below the threshold E0 and steeply rises
above it, reaching the asymptotic high-energy limit of πd2, meaning that reaction

∗ In the absence of the potential, ET(1−b2/d2) is the kinetic energy for motion along R at R = d.

Therefore the reaction criterion (3.29) is sometimes formulated as: reaction occurs if the kinetic

energy along the line of centers of two hard spheres exceeds E0. The criterion and the cross-section

(3.30) is then known as the “line of centers” model. This interpretation of (3.29) is correct but not

essential. We can think of E0 as the value of V(R) at R = d. Equation (3.29) is then the criterion

that the motion of the reactants under the potential V(R) can reach the separation R = d where

V(d) = E0 and E0 is positive.
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is possible for every collision that reaches the critical configuration R = d. The
increase of σR with ET is in qualitative accord with the results often found for
reactions with an energy threshold, but deviations are possible at higher energies,
see Problem L. Even more critical is the empirical observation that the value
of the geometrical cross-section πd2 obtained by fitting (3.30) to the observed
energy dependence of σR is typically too small to make good chemical sense. The
observed reaction cross-section is smaller than it ought to be and the deviation
is more serious when the reactants are polyatomic. We pick up on this point in
Section 3.2.7 and again in Section 6.1.4.1.

Figure 3.8 is a schematic summary of the translational energy dependence of
σR for reaction without and with an energy threshold. In Figure 3.8 the reaction
cross-section is far larger if there is no energy threshold. This is indeed the general
implication of this section. If there is no energy barrier the reaction can take place
at larger impact parameters and the cross-section, because it gives higher weight
to larger impact parameters, is far larger.

3.2.7 The steric factor

So far we have discussed the approach motion of the reactants. But there are
usually other requirements, besides the closeness of the approach, for a reaction to
take place. In particular, there may be steric requirements: some configurations of
the colliding molecules may be more conducive to reaction. A direct experimental
verification of the steric requirement can be obtained using oriented reactant
molecules. The experiment allows the determination of the reactive asymmetry
or the relative reactivity for the two configurations, say

CH3I + Rb
f−→ RbI + CH3

Rb + CH3I
u−→ CH3 + RbI.

Here f and u stand for favorable and unfavorable alignment configurations (CH3I
molecules have been oriented by the use of a specially designed configuration of
electrical fields). For nearly head-on (b ≈ 0) collisions the experimental reactive
asymmetry is shown schematically in Figure 1.4. See also Figure 10.1.

To examine the notion of steric requirements, consider the reaction H + D2 →
D + HD. At low energies it is an abstraction reaction, meaning that the potential
energy of the three-atom system is such that the low-energy path to reaction is
when the approach of H to D2 is nearly collinear. The impact parameter b is
the “miss-distance” from H to the center of mass of the D2 molecule. At each
value of b, all possible orientations of the axis of D2 with respect to the H–D2

distance are allowed. Owing to collisions with unfavorable orientations, P(b)
will fail to reach the maximal value of unity. To account for such steric (and any
other) requirements it is traditional to modify the simple, unit-step function by
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Figure 3.9 Opacity functions P(b), where P is the reaction probability for a collision
at given b (for a specified total energy E). (a) The simplest step function, Eq. (3.31)
with a constant steric factor p. (b) Computed for the H + H2 exchange reaction at
E = 11 kcal mol−1 [adaped from M. Karplus, R. N. Porter, and R. D. Sharma, J. Chem.
Phys. 43, 3259 (1965)]. This shows that the steric factor p is not necessarily
independent of the impact parameter as assumed in case (a) and in Eq. (3.31).

the introduction of a steric factor p < 1,

P(b) =
{

p, b ≤ bmax

0, b > bmax
(3.31)

This leads to the expected smaller value of the reaction cross-section

σR = 2πp

bmax∫
0

b db = πpb2
max (3.32)

We expect that the value of p is smaller the more constraining are the steric require-
ments for reaction. However, a measurement of σR alone can only determine the
value of the product pb2

max. Additional information is required to determine the
magnitude of p. We next proceed to argue that, as shown in Figure 3.9(b), there
are good reasons to assume that the steric factor is both energy- and b-dependent,
so that the simple approximation (3.31), as shown in Figure 3.9(a), is not really
adequate.

*3.2.7.1 A simple model of steric requirements: the
cone of acceptance
The derivation of Eq. (3.30) assumes that the height of the activation barrier is
independent of the orientation of the reagents. The experimental results show that
at a given energy and impact parameter (e.g., b ≈ 0 in Figure 1.4), the reaction
probability depends very much on the initial orientation angle. Equally, quantum
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Figure 3.10 Barrier height E0 vs. cos γ obtained from ab initio computations of
the potential energy of H3. Here γ is the “bend angle,” defined in the insert. The
minimum barrier corresponds to the collinear attack, indicated by the arrow at
E0 = 0.425 eV [ab initio computations by P. Siegbahn and B. Liu, J. Chem. Phys. 68,
2457 (1978); parametrized surface by D. J. Truhlar and C. J. Horowitz, J. Chem. Phys.
68, 2466 (1978), 71, 1514 (1979); adapted from R. D. Levine and R. B. Bernstein,
Chem. Phys. Lett. 105, 467 (1984)]. Note that the H + D2 collision occurs on the same
potential as that of H + H2. Only the masses are different.

mechanical computations of the barrier height (discussed in detail in Chapter 5)
show a significant dependence of the barrier on reagent orientation. The results
of such computations for the simplest exchange reaction, H + H2, are shown in
Figure 3.10.

To incorporate these results in the previous model, we modify Eq. (3.30) by
allowing the barrier height E0 to depend on the (cosine of the) orientation angle∗

γ so that E0 is replaced by E0(cos γ ). The condition for going over the effective
barrier is now written as

[ET − E0(cos γ ) − ETb2/d2] ≥ 0 (3.33)

Reaction is possible when the orientation of the reactants is such that the condition
(3.33) is satisfied and, as before, we assume that when crossing of the barrier is
possible the reaction occurs with unit probability.11

The reaction cross-section for oriented reagents, i.e., for a given value of γ , is
obtained by summing (= integrating) 2πb db over the range of impact parameters

∗ For the reactants, at each impact parameter, the entire range of values of γ , from 0 to π , is, in

principle, possible. Only such values that are consistent with Eq. (3.31) can reach R = d.
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Figure 3.11 Orientation dependence of the cross-section for the reaction H + D2(v =
j = 0) → HD + D at the two indicated values of the collision energy ET. The ordinate
is dσR/dcos γ = 2σR(cos γ ). The solid curves were calculated from the angle-
dependent line-of-centers model, Eq. (3.34), and the (open and filled) points
represent dynamical computations (these are quasi-classical trajectory results that
have statistical error bars as discussed in Chapter 5) on the ab initio potential
surface referred to in Figure 3.10 [adapted from N. C. Blais, R. B. Bernstein, and R. D.
Levine, J. Phys. Chem. 89, 20 (1985)].

consistent with Eq. (3.33). The result looks like Eq. (3.30) but it is for a given
orientation,

σR(cos γ ) = π(bmax(cos γ ))2

=



0, ET ≤ E0(cos γ )

πd2

(
1 − E0(cos γ )

ET

)
, ET > E0(cos γ )

(3.34)

Equation (3.34) breaks the range of orientations into two regions. The cone of
acceptance for reaction, defined by the angles γ that satisfy ET > E0(cos γ )
and the cone of no reaction, ET ≤ E0(cos γ ), where the collision energy is not
sufficient to overcome the barrier. The steric hindrance familiar from organic
chemistry is due to atoms (or groups) that are “in the way,” meaning those direc-
tions of attack for which E0(cos γ ) is high or even very high.

The result, Eq. (3.34), as a function of γ , is compared to actual dynamical
computations for the H + D2 reaction in Figure 3.11. The barrier height used in
Eq. (3.34) is that shown in Figure 3.10.

The orientation angle γ is defined in a plane containing the three atoms, cf.
insert in Figure 3.10. For reactions of randomly oriented reactants we need to
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integrate over the range of values of γ . To do so, note that the angular range γ

to γ + dγ defines a ring on a sphere drawn around the center of mass. The ring is
generated by allowing for all azimuthal angles φ. The area of the ring, for a unit
sphere, is 2π sin γ dγ = 2πd cos γ . Then

σR =
1∫

−1

σR(cos γ )d cos γ

/ 1∫
−1

d cos γ (3.35)

Care must be exercised, since σR(cos γ ) is non-zero only for such orientations
satisfying ET ≥ E0(γ ). In general, the integration needs to be done numerically;
however, near the threshold for reaction, one can expand E0(γ ) in a Taylor series
and retain only the linear term,12

E0(cos γ ) = E0 + E ′
0(1 − cos γ ) (3.36)

In (3.36), E ′
0 is the negative of the slope of the plot of the barrier vs. cos γ at

cos γ = 1 (the barrier in Figure 2.21 is lowest for a collinear approach). Using
(3.36) in Eq. (3.35) leads to an analytic integral, which in the post-threshold
regime, ET < E0 + 2E ′

0, is

σR = πd2(ET − E0)2
/

2E ′
0 ET (3.37)

The labor of performing the analytic integration, Problem M, turns out to be
worthwhile: in the post-threshold regime it predicts a concave-up increase of σR

with the collision energy. This is in contrast to the concave-down functionality
of the simpler Arrhenius-like form of Eq. (3.30).

Experimental results often show the concave-up dependence, but near the
threshold, where the cross-section is small, the unavoidable finite spread in ET

induces large uncertainties in the σR values. Dynamical computations do, how-
ever, suggest that the initial rise of σR vs. ET is indeed typically concave-up.

*3.2.7.2 The cone of acceptance can depend on energy and on
the impact parameter
What of the steric factor itself ? Assume that reaction occurs whenever Eq. (3.33)
is satisfied. Then we can determine the probability for reaction at a given b by
summing (i.e., integrating) over the range of γ values that allows for the energy
along the lines of centers to exceed the barrier height. This leads, in the post-
threshold regime, to

P(b) = 1
2

1∫
−1

d cos γ H

⌊
ET

(
1 − b2

d2

)
− E0(cos γ )

⌋
= 1

2 (1 − cos γmax(b)) (3.38)

where H(x) is the unit step function, H(x) = 1 for x ≥ 0 and H(x) = 0 for x < 0,
and γ max is the b- and energy-dependent opening angle of the cone of acceptance,
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defined as the solution of

ET (1 − b2/d2) = E0(cos γmax(b)) (3.39)

It follows that the steric factor, defined historically as how far the reaction prob-
ability is below unity, is here derived to equal (1 − cos γmax(b))/2 and, as such,
depends on both collision energy and impact parameter. The actual dependence
is determined via the implicit Eq. (3.39) and so requires knowing how the barrier
to reaction varies with the approach angle γ .

3.2.7.3 Steric hindrance
The simplest intuitive idea of an atom or a group being “in the way” of the reaction
corresponds to a barrier that has a constant height E0 for all approach angles γ

≤ γ 0, and is infinitely repulsive otherwise. Then γ max = γ 0 and the cone of
acceptance is b-independent. This model for E0(γ ) is simpler than Eq. (3.36) but
captures well the idea of a steric hindrance and the reactive asymmetry. It leads
to a steric factor p given by (1 − cos γ0)/2. We expect the size of molecules to
decrease with increasing collision energy and so a rigid and non-yielding steric
hindrance is an idealization. Realistically, the role of steric hindrance should
diminish at higher collision energies.

3.2.8 Two aspects of scattering

The simple concept of centrifugal energy representing the energy of the rotation
of the interparticle distance has thus taken us part way toward an understanding
of reactive molecular collisions. There is one final step that we can still take:
to consider a rather direct manifestation of this rotation, namely the angular
deflection of the particles induced by reactive collisions. We take this step in
Chapter 4. Scattering also means the change in the internal energy states. To
describe this aspect we must develop a polyatomic view of the chemical change.
To do so now, proceed from here to Chapter 5.

3.B Appendix: Dynamics in strong laser fields – a
curve-crossing picture

The curve-crossing model provides a useful view of how strong laser fields can
be used to control the system. In the field of a strong laser there are many photons.
One can therefore regard the molecule as being in a bath of photons. Continuing
with this chemical language, let us solvate the molecule by the light or, in the
customary technical terminology, dress it. To do so we label the potential not only
by the state of the system but also by the number of photons that are present.

Figure B3.1(a) is the conventional representation of the lower state potential
Vg(R) between two ground state Hg atoms. Also shown is an excited state potential
Ve(R) for the excimer Hg∗Hg that asymptotically correlates to a ground and an
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Figure B3.1 (a) The potential energy curves of Hg + Hg and Hg + Hg∗ [adapted from
P. Gross and M. Dantus, J. Chem. Phys. 106, 8013 (1997)]. The long-range attraction
and the well (depth 370 cm−1) in the ground state potential, Vg(R), are hardly
noticeable on the energy scale shown. The vertical asymptotic separation of the two
potential curves is the resonance excitation energy of a Hg atom, corresponding to
the 1S0→3P1 transition. When the two Hg atoms are closer, the electronic energy
gap (4.89 eV for an isolated atom) is lowered due to the stronger attraction in the
excited state. At the relative separation Rx the laser frequency matches the potential
gap. In other words, the Franck–Condon “window” is where the two atoms are at
the separation Rx apart. A vertical transition at Rx prepares a bound vibrational state
of the excited electronic state. This is known as laser-assisted recombination,
Problem O. (b) Panel (a) drawn in the dressed states picture.

excited atom. Note that the excimer is more tightly bound than when the two
atoms are in their ground state. Also shown in the figure is the Franck–Condon
region, see Section 7.0.1, for absorption of light by two Hg atoms during their
collision. The laser frequency is tuned slightly to the red (i.e., a shade to lower
energies) from the resonance frequency needed to excite an isolated Hg atom.
Figure B3.1(b) is the same but drawn in the dressed states picture. The lower
state is that of two ground state Hg atoms and n photons. The dressed state is the
potential of Hg + Hg and n − 1 photons, one photon having been absorbed. In the
dressed states picture, the laser field has shifted the energy of the lower state such
that there is a curve crossing at the interatomic distance Rx defined by Vg(Rx) +
hν = Ve(Rx) where ν is the laser frequency. This criterion is used extensively
in Section 7.3 where we discuss the absorption (or emission) of light during a
collision.

What was the Franck–Condon regime is, in the dressed states picture, replaced
by a crossing of two potential curves. The immediate implication of the two ways
of looking at the problem is the same: the laser-induced transition is localized
about Rx. However, the dressed states picture not only allows us to view the laser
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as an environment that alters the potential curves of the bare molecule, but also
anticipates other effects that are possible using higher-power lasers. The most
notable is that, if the density of photons is high, the ground state dressed by n
photons can cross higher excited states dressed by n − 2, n − 3, etc. photons,
leading ultimately to ionization.

Problems

A. The exoergicity of the reaction is defined as the change in energy between
the ground state of the reactants and that of the products. Why is the H + D2

(v = 0) → D + HD just a shade endoergic? Much of our understanding of isotope
effects on reactivity stems from the considerations you will make in solving this
problem.

B. Chemists are still arguing why the branching between the two possible
products in the Ar+ + HD reaction is not 1:1. Why not make your own reasons?
If you do, make your predictions for how the initial rotational state of HD affects
the branching. Recall or note from Chapter 2 that the center of mass of HD is
nearer to the D atom.

C. One sometimes loosely writes k(T ) = 〈vσR(v)〉 ≈ 〈v〉 〈σR(v)〉 where the
brackets denote an average over a thermal velocity distribution. The exact result,
Eq. (3.8), shows that this is really not so. To correctly factor out the mean (relative)
velocity from the thermal rate constant we can proceed as follows. One can
define not just the number density of molecules with velocity in a given range,
it is also possible to determine the flux density of molecules with velocity in a
given range. (a) Show that the flux density gives a somewhat higher weight to
faster molecules and then (b) verify the comment after Eq. (3.8). Historically,
the velocity distribution of molecules was measured by O. Stern in 1911, in a
setup similar in principle to Figure 2.1, with a velocity selector but without any
scattering cell. The raw experimental results did not fit the Boltzmann distribution.
Einstein then pointed out that what the experiment measures is the flux density
and not the number density. All fell into place but we still sometimes fail to
distinguish between a number and a flux density.

D. Arrhenius temperature dependence and saddle-point integration. Many
interesting phenomena are the outcome of two conflicting trends, so knowing
how to do a saddle-point integration, at least in simple cases, is handy. For
the thermal reaction rate constant, Figure 3.3 or Eq. (3.8), the opposing fac-
tors are the Boltzmann term, which is a steeply decreasing function of energy,
and the reaction cross-section that rises rapidly in the post-threshold region.∗ The

∗ Of course, if the reaction has no threshold or if we are at an energy range well past the threshold then

our assumed rapid energy increase of the reaction cross-section is not correct. For such cases the

reaction rate constant will not be well represented by an Arrhenius form with a positive activation

energy. The Tolman expression for the activation energy, Eq. (3.9), is, however, exact and does not

depend on any assumptions about the energy dependence of the reaction cross-section.
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product of these two will therefore have a sharp peak as shown in Figure 3.3.
Let us write the product as exp(F(βET)), β ≡ 1/kBT , where from Eq. (3.8)
F(βET) = −βET + 1n(βETσR(ET)). If the integrand has a sharp maximum, the
function exp(F(βET)) must have a maximum at some energy E∗ where this energy
may be T-dependent. E∗ is determined by the condition for a maximum

∂ exp(F(βET)) /∂ ET = 0 at ET = E∗

∂2 exp(F(βET)) /∂ E2
T < 0 at ET = E∗

It follows that in the vicinity of E∗, F(βET) must decrease parabolically on either
side of the maximum. Replacing the function F(βET) by its parabolic approxi-
mation ∫

dET exp(F(βET)) ≈ (−2π/F ′′(βE∗))1/2 exp(F(βE∗))

where the double prime denotes the second derivative. Verify that this is an
Arrhenius-like form but that E∗ and the pre-exponential factor can have a tem-
perature dependence. See also Problem O in Chapter 6.

E. The entropy of activation. If, as is quite often the case, the reaction requires
some restrictions on how the reactants come together, then the entropy of the
reactive reactants should be lower than that of the reactants. You could then say that
there is an entropic barrier to reaction. By examining the temperature dependence
of the activation energy, Eq. (3.9), you can come up with a rigorous expression
for the entropy of activation. Do so. Later we shall recognize that there can be
situations where entropic considerations act in the opposite direction and favor
the reaction (this is most common for unimolecular elimination or dissociation
processes). Can you suggest an example where the reactive reactants will be less
constrained than the reactants?

F. Reaction rate constant for state-selected reactants. Say the internal state
of the reactants is selected, as in Appendix 3.A. Then the rate constant is given
by Eq. (3.8) except that now the reaction cross-section is for reaction from the
particular internal state. To obtain the thermal reaction rate we need to average
over the internal states of the reactants as in Eq. (A.3.3). There are then two factors
that govern the temperature dependence of the thermal rate, the T-dependence of
the reaction rate of the state-selected reactants and the change in the populations
of different reactant internal states as the temperature is changed. For reactions
with an energy threshold both lead to an increasing contribution at higher T.
If the rate constant for reactants in internal state i, Eq. (A.3.1), increases with
temperature as ki(T) ∝ exp(Ei/kBT)κ(T), where κ(T) is an (increasing) function
only of temperature, then show that (a) the activation energy for internal state i is
lowered compared with the ground state exactly by the excess internal energy and
(b) the thermal reaction rate has no T-dependence owing to the differing occupa-
tions of internal states. In other words, under such circumstances the translational
and internal energies are equally effective in promoting reaction. What does it
take to have this kind of behavior? Examine Eq. (3.8) and conclude that this
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requires that the product∗ ETσ Ri (ET), not the reaction cross-section itself, be
only a function of the total energy, e.g., ETσ Ri (ET) ∝ Y(ET + Ei). This means that
if you plot ETσ Ri (ET) vs. ET, the curves for different initial states look identical
but shifted apart by their internal energy.

G. The Tolman expression for the activation energy. The derivation of the
Tolman result for the activation energy as the difference between the mean energy
of the reactive reactants and the mean energy of all reactants, Eq. (3.9), was for
the special case that there was only translational energy. In Appendix 3.A we
showed how to express the reaction rate constant as an average of contributions
from different internal states of the reactants. Show that in this more general case
we have

Ea ≡ 〈ET + Einternal〉reactive reactants − 〈ET + Einternal〉all reactants

H. The harpoon mechanism. The table shows the energetic data needed to
estimate the radius Rx of the harpoon and the measured values of the reaction
cross-sections (in Å2) between alkali atoms and halogen molecules [adapted from
J. Maya and P. Davidovits, J. Chem. Phys. 59 (1973)].

ET
b =6

=4
=0

8765

0

Rx R

V
(R

)

(a) Derive the factor 14.4 in Eq. (3.8). This follows readily from the hydrogen
atom where the ionization potential is 13.6 eV (note how high it is compared to
that of the alkali metals) and the radius of the 1s orbit, 0.53 Å. (b) Neglecting
the weak long-range dispersion potential between the neutral reactants, plot the
long-range part of the effective potential as shown above and hence conclude that
a harpoon can be cast whenever b < Rx. (c) Plot the theoretical estimate for the
reaction cross-sections vs. the electron affinity of the halogen molecule, take it
to be a continuous variable, for different alkali metals. Are the trends consistent
with the entries in the table? (d) Compute the reaction cross-section. Are the
absolute values consistent with the entries in the table? (e) Show how to plot
all the entries in the table on one common plot of reaction cross-sections vs. a
suitable variable. Put all experimental entries in your plot and also draw the theo-
retical curve. Is there an agreement? If you have access to a curve-fitting program,

∗ We will meet this product in a variety of other contexts, particularly so when detailed balance is

discussed. It is the yield function as discussed in Levine (1969) and also called the cumulative rate

(Miller, 1998).
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see how to get an even better fit. (f) For the harpoon reactions, the approxima-
tion k(T ) = 〈vσR(v)〉 ≈ 〈v〉 〈σR(v)〉 (see Problem C) is not unreasonable. Why?
(g) Compute the reaction rate constant.∗

∗I. The harpoon mechanism for excited states. Excited electronic states have
a lower IP and so are generally more likely to react by a harpoon mechanism. But
the lowest IPs are for excited electronic states of the alkali metals. (a) The first
excited state of Na is about 2.1 eV and of K about 1.56 eV above the ground state.
How will the reaction cross-section in the table above change if these atoms are
used as reagents? (b) Why stop at the first excited state? How will the reaction
cross-section in the table above change if higher excited state atoms are used
as reagents? Experimental answer: the reaction cross-section will not continue
to grow indefinitely (Bersohn, 1976). Why not? Hint: look at the value of the
crossing radius. For more insight see Section 9.3.2.

J. Ion–molecule reactions. The long-range potential between an ion and a
molecule is dominated by the polarization potential, Eq. (2.16). (a) Determine
the location of the barrier along the effective potential as a function of the collision
energy and impact parameter. (b) Examine closely the result in (a) and conclude
that our model will have to break down at high enough collision energies. Make
an estimate of when this will be the case. To do so requires the value of the
polarizability, α, of the molecule. Use the rule of thumb that polarizability is a
measure of the volume of a molecule, check that this at least makes sense from the
point of view that αe 2 needs to have the dimension of energy length4 (why?) and
hence make a reasoned guess for α. Try to do all of this in scaled (dimensionless)
variables. Using α = σ 3 may simplify your work but it is not essential. (c) From
(a) determine the height of the barrier along the effective potential and hence
solve for the maximal impact parameter for which reaction is possible at a given
collision energy.

K. Steric factor for ion–molecule reactions. Purpose: to compute the cone
of acceptance for reaction, Section 3.2.7.1, for the model discussed in Prob-
lem H. When the molecule is not spherical, e.g., H2, the long-range poten-
tial depends not only on the ion–molecule distance but also on the orientation
angle, γ , between the axis of the molecule and the ion–molecule distance R,
see Eq. (2.18). (a) For a non-polar molecule we can take this into account by

∗ You will find rather high reaction rates. Significantly higher than what you computed in Problem E

of Chapter 2. In the older literature this is sometimes described as the reaction cross-section being

larger than gas kinetic. The statement is correct but, taken superficially, it can give a misleading

impression. What we really should say is that the collision cross for M + X2, being larger than the

reaction cross-section, is exceptionally large. It is far larger than what we would conclude if we

take it to be a mean of the collision cross-sections for M + M and for X2 + X2 collisions. This

is what was meant in Chapter 2 by the statement that the collision cross-section (and even more

so, a reaction cross-section) is a joint property of both partners. For example, an alkali atom can

be of quite different sizes when colliding with partners of low or of high electron affinity. See the

comparison of K + I2 and K + CH3I in Chapter 4.
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allowing the polarizability of the molecule to be different along its axis and
perpendicular to it. Using the second Legendre polynomial, a convenient func-
tional representation is V (R, γ )

long range−−−−−→ − (C/R4)(1 + a P2(cos γ )), where a is
the asymmetry parameter and C = e2α/2 for a singly-charged ion. If you have
access to a suitable program, plot the potential on a polar grid where R is the
radius and γ is the angle. If not, plot the potential vs. R for γ = 0 and 90o.
(b) Determine the maximal impact parameter for which reaction is allowed as
a function of the approach angle γ . (c) If the molecule is polar, e.g., HCl, it
will have a dipole moment. Then the leading terms in the long-range potential
are V (R, γ )

long range−−−−−→ − (C/R4) − eµ cos γ /R2. For this case too, determine the
maximal impact parameter for which reaction is allowed as a function of the
approach angle γ . In the general case, one should also allow for the asymmetry
of the R−4 term and for the polarization of the ion by the dipole, which gives rise
to an R−6 term.

L. The line-of-centers model and its limitations. The result (3.30) is often
known as the line-of-centers model because it assumes that reaction will take
place if the energy along the line of centers, R, exceeds a threshold value, E0,
at R = d. (a) Sometimes one adds the assumption that the colliding partners are
hard spheres so that there is no potential for R > d. This is not necessary, but let’s
do so in (a) only. Then, compute the cross-section for non-reactive collisions.
(b) Experimentally, the line-of-centers energy dependence is found to be reason-
able for energies in the post-threshold regime, but at higher energies the reaction
cross-section goes down, as shown, rather than up:
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There are several reasons why this can happen. Suggest at least two, and argue
that the value of the energy where the deviations begin can be used to distinguish
between them. (c) There is a particular reason why the deviation shown in the
figure insert above can occur, and it has to do with the breakdown of an assumption
made in deriving the model. Which assumption? (Hint: we do not mean a steric
requirement because, in general, cones of acceptance for reaction should open
up as the energy is increased, Problem M.)

M. The line-of-centers model with a steric requirement. (a) Derive the result
(3.35) for the energy dependence of the reaction cross-section when the barrier
depends on the approach angle. The point is that you will have to be careful about
the limits of integration and this will make you think in detail about the energy
dependence of the cone of acceptance. See Smith (1980). (b) Derive the results
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in two different ways (of course, you should get the same final answer). At a
given angle of approach, first integrate over all bs. This will give you the reaction
cross-section vs. γ . Plot it. Then integrate over γ . Alternatively, at a given b,
first integrate over all γ s. This will give you the opacity function. Examine
the result to convince yourself that the steric factor is both b- and collision
energy-dependent. Plot the result and see how different it is from the simple
approximation (3.31).

N. Peripheral collisions. Reactions such as Cl + CH4 or H + HCl may be more
likely to occur at higher impact parameters. This is because reaction requires
the three atoms, Cl H C or H H Cl, to be nearly in a collinear configuration
and this is easier to achieve for an off-center collision. Make a model where the
center of mass of HCl is on the Cl atom. Place the bound H atom on a sphere
about the center. Assume that reaction occurs when H H Cl is in a collinear
configuration. Hence compute the opacity function vs. b [adapted from P. M.
Aker and J. J. Valentini, Is. J. Chem. 30, 157 (1990)].

O. Laser-assisted recombination. The problem is to compute the cross-section
for forming a bound species during the collision.∗ The key consideration is that the
colliding Hg atoms, as described in Figure B3.1, will absorb light when they are
at a distance Rx apart. This is the distance when the electronic energy separation
between the ground and excited states equals the energy of the laser photon. Say
that all collisions absorb light. (a) Show that the cross-section for formation of
the bound excited state is πR2

x(1 − Vg(Rx)/ET). (b) Plot this cross-section vs.
the collision energy and show that it is monotonically decreasing, being largest
for very slow collisions. (c) Argue that your result in (a) also provides a small
correction for the cross-section of harpoon reactions [see P. Gross and M. Dantus,
J. Chem. Phys. 106, 8013 (1997), J. Kohel and J. W. Keto, J. Chem. Phys 113,
10551 (2000), Dantus (2001) and references cited therein for examples of laser-
assisted reactions].

Notes
1 Texts of chemical kinetics that also discuss dynamics include Steinfeld et al. (1999),

Houston (2001).

2 In the past chemists sometimes avoided studying the kinetics of such reactions because

their rates were too fast to be able to maintain steady conditions. Often these are reactions

between an ion and a molecule. But for many reasons, most notably aeronomy and the

∗ Ordinarily, when two atoms collide they will not recombine to form a stable bound diatomic. Rather,

they will emerge as two unbound atoms. This is so even when their potential is attractive and has

a deep well corresponding to a stable diatomic. The reason is that the total energy needs to be

conserved. In the region where the potential energy is attractive, the kinetic energy increases so as

to keep the sum constant. To form a bound state we need some mechanism for removing the energy

from the pair of atoms. Typically this is done by a third body that takes the excess energy away.

Following Gross and Dantus (1997), Appendix 3.B suggests that we can do something else: use a

laser to form a bound, electronically excited, stable molecule.
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formation of molecules in space (Duley and Williams, 1984; Herbst, 1995; Klemperer,

1995; Smith and Rowe, 2000), reactions that have no threshold energy (cf. Section 3.2.6)

are quite important.

3 Should there not be a barrier to atom exchange? As a rule of thumb, yes, a barrier is to be

expected. The trick of ion–molecule reactions is that there is a significant gain of energy

when the reactants approach, due to the strong ion–molecule physical attraction, Section

2.1.9. This attraction is often sufficient to overcome the chemical barrier so that, in

reference to the reactants that are far apart, there is no threshold energy requirement. By

solvating the reactants in a medium of high dielectric constant, one can reduce the

electrostatic attraction of the reactants and thereby observe the role of the barrier. More on

this in Chapter 11.

4 Reasoning in the other direction needs care. A measured second-order reaction rate

constant with a negative activation energy does not necessarily mean that the mechanism is

bimolecular with a cross-section that decreases with energy. See Problem M of Chapter 5.

5 The threshold energy is not quite the same as the Arrhenius activation energy. As we have

seen, the latter is the average of the energy of those collisions that lead to reaction, minus

the average energy of all collisions.

6 Strictly speaking, dσNR also contains an additional term, the “shadow” term, quantal in

origin, which is always present, Chapter 4.

7 “Vertical” meaning that the nuclei do not change their position and the anion Br−2 is

formed at the equilibrium bond distance of the neutral Br2. The additional electron goes

into an antibonding orbital so that the anion is expected to be less strongly bound than the

neutral molecule. Hence the equilibrium bond length of Br−2 is larger. The anion is

therefore formed with some vibrational excitation. The energy difference between the

ground vibrational states of the anion and the neutral is the adiabatic electron affinity.

8 The electronically excited rare gas atom is sometimes called a “super-alkali” because its

ionization potential is so low. There are also super-halogens and not only super-alkalis

(Herschbach, 1966; Bersohn, 1976). The super-halogen has a particularly high electronic

affinity; NO2, with an electron affinity of about 2.4 eV, is an example; so is (CN)2. Excited

states of organic molecules are used as effective electron donors. Complexes of transition

metals in unusually high oxidation states are keen acceptors and vice versa for complexes

where the metal is nominally neutral.

9 The idea that reaction is possible when the system can cross the barrier in the effective

potential is sometimes known as a capture model. The image is that the molecules are

“captured” by the strong chemical forces that operate at closer range than Rmax. Recent

developments of the model extend it to reactants with internal structure, so that the barrier

depends also on the initial vibrotational state; see Clary (1990), Troe (1992, 1997). For the

experimental situation see Sims and Smith (1995), Smith and Rowe (2000).

10 An exceptional case, for which there is no maximum, is if the long-range part of V(R) has

an R-dependence with an inverse power less than or equal to 2. This includes the case of

reactions of ions of opposite charge, where V(R) ∝ − R−1. See B. H. Mahan, Adv. Chem.

Phys. 23, 1 (1973) and Problem M.

11 A caveat is needed. Equation 3.31 is the condition at the barrier. Experimentally,

however, one cannot easily prepare reactants within a narrow range in γ relative to the

interparticle distance R. This is because the direction of R is rotating during the approach

motion, whereas we can only prepare a range of γ with respect to laboratory coordinates.
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In the laboratory, the well-defined direction is that of the initial velocity v. Therefore the

laboratory orientation angle γL is defined as the angle that the axis of the molecule makes

with respect to v. For low impact parameters the two angles are essentially the same

because R is essentially in the direction of v and the collision is nearly head on.

Otherwise, a transformation is needed. Implicit in such a transformation and in our entire

discussion is the assumption that the axis of the molecule is hardly rotating during the

collision. Dynamicists are very used to the idea that rotation of molecules is slow

compared with the duration of a collision or a vibrational motion. That is correct, and is

why experiments using selected reactants can demonstrate the reactive asymmetry

between the two ends of a molecule. On the other hand, the intermolecular forces are not

isotropic and can channel reactants preferentially into the cone of reaction or away from it.

Only the detailed computations that we discuss in Chapter 5 can fully address such issues.

12 Such an expansion is only valid for ET < E0 + 2E ′
0 because otherwise reaction is

possible at all values of γ and there is no cone of no reaction. Furthermore, it need not be

the case that the barrier is lowest for a collinear approach. For insertion reactions one

expects the transition state to be bent. Detailed electronic structure computations show

that, contrary to simple chemical intuition, some abstraction reactions can also have the

lowest barrier for a slightly bent configuration.



Chapter 4
Scattering as a probe of collision
dynamics

The most direct probe of collision dynamics is the observation of the scattering
(i.e., the deflection and energy-state alteration) of the colliding particles as a result
of their interaction. A pioneering example is the observation of large deflections
in α-particle collisions with atoms by Rutherford, early last century. The results of
this experiment led him to propose a model of the atom where the positive charge
is concentrated in a small, central nucleus. Ever since, the angular distribution
after the collision has been a primary diagnostic tool in the attempt to understand
the interactions during the collision.

We begin with an introduction to this method as applied to elastic (energy-state
unchanging) collisions. First we look at scattering using classical mechanics and
then we provide a quantum mechanical view.

4.1 Classical scattering of structureless particles

Dynamics means the description of the motion under the action of forces. For
our problem of two particles, this means solving Newton’s equation of motion
for the relative motion

µ
dv

dt
= µ

d2R

dt2
= −µ

dV (R)

dR
R̂ (4.1)

obtaining R as a function of time. We wrote the force as derived from the inter-
particle potential V(R) and directed along the center-to-center vector R (the carat
denotes a unit vector). Solving Newton’s second-order differential equation of
motion is what a computer does when it is running a molecular dynamics pro-
gram. This can be implemented very efficiently. Our task in this chapter is to
understand the scattering and the information obtainable from it.

4.1.1 Conservation of angular momentum

Our first task is to examine the time evolution of the vector R. This will uncover
a conservation condition that was already used by Newton to explain Kepler’s

109
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observations about planetary motion. The angular momentum vector L is defined
as the vector product of the position and momentum vectors

L = R × µ dR/dt (4.2)

By the definition of a vector product, L is a vector perpendicular to the plane
defined by the position and momentum vectors.

For a collision of structureless particles, the acceleration is in the direction of
the relative position vector R, cf. Eq. (4.1). The chain rule then shows that the
vector L is not changing with time:

dL/dt = dR/dt × µ dR/dt + R × µ d2R/dt2 = 0 (4.3)

Both terms in Eq. (4.3) vanish, since, in either term, the two vectors that are
vector multiplied are parallel to one another.

A vector has both a magnitude and a direction. That the vector L is conserved
means that the magnitude and also the direction of L are constant in time.

The conservation of the direction of the vector L implies that there is a par-
ticular, privileged, plane, such that the collision is confined to this special plane.
This plane is defined, before the collision, by the two vectors R and v where v is
the initial relative velocity. By its definition, Eq. (4.2), as a vector product, L is
normal to this plane. We now want to show why, as time moves on, the collision
remains confined to this plane. At some finite time t, consider the plane defined
by the two vectors R(t) and R(t + �t). Take �t to be so small that R(t + �t) =
R(t) + (dR/dt)�t and hence L is normal to the plane defined by R(t) and
R(t + �t). Since the direction of L is constant in time, for any value of t, R(t) is
confined to the same single plane defined by the initial conditions.

The conservation∗ of angular momentum puts two conditions at our disposal:
the direction of L is conserved and the magnitude of L is conserved. The two
following subsections make use of these two conditions.

∗ The interaction of real molecules is not necessarily central (= along the direction of R), so that for

application to molecular collisions L need not be conserved because the second term in Eq. (4.3)

will not necessarily vanish. Even so, the conservation of L is often not a poor approximation. The

argument is that if we consider two colliding molecules and rotate the entire system as a rigid

body, the dynamics are unchanged. This implies that the total angular momentum J is strictly

conserved. Now J = L + j where j is any internal angular momentum of the colliding molecules

(for structureless particles j = 0). If we put realistic values in the classical estimate L = µvb we

see that the value, L, of the angular momentum is many tens (or even more) of units of �, Problem

A. So, when J is only a few � units in magnitude, J ≈ L. Particularly for reactive collisions, where

the individual masses of the two particles will change, there are important extensions where one

needs to impose the conservation of J rather than just L. These are quite interesting and we will

point them out in detail in Chapter 10. But these should not make us overlook the simpler cases

when it is a realistic approximation to conserve L.
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Figure 4.1 In a short time interval dt, the vector R(t) changes to the vector R(t + dt).
The figure shows the resolution of the vector change in position, Ṙ dt = R(t + dt) −
R(t), into a radial Ṙ dt and a tangential R d ψ = R ψ̇ dt component. The dot denotes
the time derivative. The radial component, which is in the same direction as R(t),
represents the change in the magnitude of R(t). The tangential component, which is
perpendicular to R(t), represents the change in direction of R(t) at a fixed magnitude
R. The vector L is normal to the plane defined by R(t) and R(t + dt).

4.1.2 The angle of deflection

The conservation of the direction of L means that the relative motion of two
particles under the influence of a force that depends only upon their mutual
separation is confined to a plane. It is therefore sufficient to use two coordinates
to specify the relative motion. The relative position vector R can then be specified
in terms of its length R and its orientation ψ with respect to a fixed direction, say
the initial direction of the velocity, as shown in Figure 4.1.

In the course of the collision, both the relative separation R and the orientation
angle ψ will vary with time. We use a dot to designate time rate of change (the time
derivative). Thus Ṙ is the velocity with which the colliding particles approach (or
recede) from one another. It is often called the velocity along the line of centers.
ψ̇ is the (angular) velocity for the rotation of R (Figure 4.1) during the collision.
We will need to know R as a function of time since R(t) describes the approach
and the separation of the colliding particles during the collision. Why, however,
do we bother with ψ(t)?

There are two reasons for our concern with the orientation of the interparticle
separation. The first is that the rotation of R takes up energy. Using Pythagoras’
theorem for the two components of Ṙ dt we find two terms in the kinetic energy
of the relative motion

K = 1

2
µ

(
dR

dt

)2

= 1

2
µ

[(
dR

dt

)2

+ R2

(
dψ

dt

)2
]

(4.4)

Here we have resolved dR/dt into its components, Figure 4.1, and the two terms
represent the kinetic energy due to the changes in magnitude and in the direction
of R, respectively. The first term in Eq. (4.4) is the radial kinetic energy, i.e., the
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Figure 4.2 The collision
trajectory in the c.m.
system.* The solid curve
represents a trajectory
with initial velocity v,
impact parameter b, and
mass µ. The relative
separation R(t) is uniquely
defined in terms of the
distance R and the
orientation angle ψ . The
trajectory is symmetric
about the apse line, which
passes from the origin
through R0 where R0 is
the distance of closest
approach. The final
deflection angle is
χ = π − 2ψ0 where ψ0 is
the value of ψ at the
mid-point of the
trajectory.

kinetic energy due to the component of the velocity along the line of centers of
the collision partners. The second term is the centrifugal energy, i.e., the kinetic
energy due to the component of velocity perpendicular to the line of centers of
the collision partners.

The centrifugal energy, (µ/2)R2(ψ̇)2, is the subject of this subsection. It is the
kinetic energy due to rotation of the interparticle distance R. It can be written as
a rotational energy, namely (I/2)ω2, where I = µR2 is the moment of inertia and
ω = ψ̇ is the angular velocity.

The second reason for our concern with ψ(t) is so important to our theme that
Section 4.2 is devoted to it: before and after the collision, when the particles are
far apart and no forces act between them, they travel in a straight path. Hence,
before or after the collision ψ̇(t) is zero; ψ only changes when the particles are
“close.” By measuring the overall change in ψ due to the collision we can obtain
considerable insight into the interparticle forces acting during the collision. We
continue with this theme in Section 4.1.4. Here we just reiterate that even in the
absence of a force ψ will change by π as the particles pass by one another. What
we need to know is by how much less or more will ψ change when a force is
acting. Figure 4.2 is an example for a trajectory in the presence of a force. What
we want to determine is the net deflection χ , the angle that the final velocity
makes with respect to the initial direction.

Using the conservation of the magnitude of the angular momentum we can
solve for ψ̇ as follows. During the collision, the component of Ṙ perpendicular

* Section 2.2.7 showed that when two particles collide under the action of a potential that depends

only on their separation R, it is possible to transform to the center-of-mass (c.m.), system and

discuss only the relative motion because the c.m. is at rest. See also Problem C. In the c.m. system,

the relative motion is equivalent to the motion of a single particle with a reduced mass µ = mAmB/

(mA + mB) and position R.
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to R is (cf. Figure 4.1) Rψ̇ so that, from the definition of L as a vector product,
L = R × µṘ:

L = µR2ψ̇ (4.5)

On the other hand, before the collision when the impact parameter b is the com-
ponent of R that is perpendicular to v, L = µvb. These two values of L are
necessarily the same, since the value of L is constant throughout the collision.
Thus we obtain an explicit solution for the angular velocity of the relative motion

ψ̇ = bv/R2 (4.6)

We can now rewrite the kinetic energy, Eq. (4.4), using Eq. (4.6), as

K = 1

2
µ

(
dR

dt

)2

+ ETb2

R2
(4.7)

In this way, for a given value of the collision energy and impact parameter, the
kinetic energy is expressed as a function of R(t) only.

Having obtained Eq. (4.7) we have completed our reduction of the number
of coordinates necessary to specify a collision trajectory. In the c.m. system, for
given initial values of ET and b, the trajectory is uniquely specified by a single
function of time, R(t), the (magnitude of the) center-to-center distance of the
colliding particles. In Section 2.2.2 we derived Eq. (4.7) in another way and
indeed found that it provided insight for understanding the approach motion.

4.1.3 The deflection function for hard spheres and
for realistic potentials

The potential deflects the colliding molecules from their original, pre-collision
paths. The deflection caused by the collision is defined as the angle between
the final and initial relative velocity vectors. Section 4.1 showed that the initial
collision energy and the impact parameter specify a unique collision trajectory. It
follows that the deflection is a unique function of the initial collision energy and
impact parameter and can be computed, Section 4.2.3, once we have determined
the collision trajectory R(t).

Before we turn to the more quantitative considerations, recall the essen-
tial features in the dependence of the deflection upon the impact parameter,
Section 2.2.5. What we really need is “an inversion” that provides the ability to
determine the impact parameter from the observed deflection. As we shall see, for
a realistic potential that has a well, a strict inversion is not simple. For the moment
we shall be content with observing the final deflection and inferring what was the
impact parameter. The need to do so arises because even in a collision between
molecules of well-defined velocities, all values of the microscopic impact param-
eter are possible. Usually, we cannot control the value of this parameter, so the
next best thing is to know, a posteriori, what its value was.
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Figure 4.3 Construction of the deflection angle for the collision of rigid spheres with
a potential of range d. At the given impact parameter the angle χ = π − 2ψ0 =
2 arccos(b/d) for all b ≤ d; χ = 0 otherwise. The functional dependence given by
Eq. (4.8) is plotted in the right-hand panel. When the impact parameter is higher
than d, lower trajectory, there is no deflection.

The interaction between two molecules, V(R), is typically attractive at long
range and steeply repulsive at short range. If the potential was purely repulsive
we could approximate the scattering as that of hard spheres. Then the trajectory
is easy to visualize. If b > d, d range of the hard-sphere repulsion, there is no
scattering because the centrifugal barrier does not allow the molecules to approach
as close as d. For lower impact parameters, Figure 4.3 shows a trajectory for a
hard-sphere collision. It is constructed by making a reflection of the trajectory at
the point of impact. Defining the deflection function as χ , it is evident from the
figure that χ = π − 2ψ0 where (b/d) = sin ψ0. Thus for the rigid-sphere potential
the deflection is

χ = 2 arccos(b/d) (4.8)

for b ≤ d, and χ = 0 for b > d. As expected, the deflection is fully backwards
(χ = π ) when the collision is “head-on” (b = 0) and then it decreases monoton-
ically as b increases. By b = d the two hard spheres just graze one another and
there is no deflection.

We next examine the consequences of the presence of both the attractive and
repulsive parts of V(R). Figure 4.4 shows schematically collision trajectories for
different values of the impact parameter and the resulting deflection. For large
b the molecules sample only the long-range attractive force and the trajectories
deviate only slightly from the axis, leading to a small (negative) deflection angle χ .
As b decreases the trajectory samples a stronger attraction and the deflection
angle becomes increasingly negative. As b is decreased further, the influence
of the repulsive force begins to be important. Consequently, a most negative
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Figure 4.4 Collision trajectories at different impact parameters for a given collision
energy. The ordinate is the reduced impact parameter b* = b/Rm where Rm is the
equilibrium distance of the well in the potential. The resulting deflection function is
shown on the left-hand side. Note the qualitative difference between hard-sphere
scattering and scattering by a realistic potential: for hard spheres there is no
attractive part of the potential so going from the deflection χ (b) to b is single
valued; χ (b) is defined uniquely by the value of b. But in the presence of a well in
the potential there can be more than one value of b that results in scattering into a
given value of χ (b).

deflection is reached, at the so-called rainbow angle χ r and a corresponding
impact parameter br. At the rainbow, the attractive and repulsive forces on the
trajectory balance one another and so we expect that br ≈ Rm. For collisions with
impact parameters below the rainbow the molecules get sufficiently close that
the role of the repulsive force becomes increasingly important. As b decreases
further, the deflection angle increases, passes through zero when b = bg, the glory
impact parameter, and becomes progressively more positive. As b decreases to
zero, the collisions become more nearly “head-on,” and the molecules rebound,
essentially in the backward direction.

Owing to the cylindrical symmetry of the scattering about the b = 0 axis
(Figure 4.6), the sign of the deflection angle is not experimentally meaningful.
The observable deflection angle θ is thus the absolute value of the computed
deflection angle, i.e., θ = |χ |.
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Figure 4.5 Typical deflection function χ (b) at low energy for a realistic potential
(cf. Figure 4.4). b is expressed in units of Rm. At large b the angle of deflection is
negative (but very small), arising from the long-range intermolecular attraction. As b
is decreased χ becomes more negative, and eventually at b = br the greatest
negative deflection is obtained. This is the rainbow, already mentioned in
Section 2.2.5. As b is further reduced the influence of the repulsive forces becomes
increasingly evident and at b = bg, the long-range attraction has been compensated
for by the short-range repulsion, so the net (overall) deflection is zero. See also
Figure 2.13. This is known as the glory. At still smaller values of b repulsion
dominates, and backward scattering results with χ → π as b → 0. At low collision
energies one can also have orbiting collisions where the molecules persistently
rotate about one another, as discussed further in Section 4.3.6. Operationally only
the absolute value and not the sign of the deflection is meaningful. Where the
deflection itself is negative the absolute value is shown as a dashed line. The dashed
horizontal line identifies three values of the impact parameter, labeled 1, 2, and 3,
that lead to scattering into an angle just below the rainbow at χ r. Trajectories 2 and
3 sample the well region while trajectory 1 gets into the repulsive region because its
impact parameter must be below the glory value bg.

The quantitative relation between χ and b for a realistic intermolecular poten-
tial is summarized in Figure 4.5. For |χ | > |χ r| a one-to-one correspondence
exists between b and χ ; for |χ | < |χ r| three different values of b correspond
to the same deflection angle θ = |χ |. This multi-valued relation between b and
θ is not found for a purely repulsive potential, where χ (b) is a monotonically
decreasing function of b, for example, Eq. (4.8).
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Figure 4.6 A construction showing the equivalence between the trajectories with
initial impact parameters in the range b to b + db and those with final deflections in
the range θ to θ + dθ , θ = |χ (b)|. For a central potential there is no dependence on the
azimuthal angle φ. When, as is usually the case, all initial values of φ are equally
probable, the scattering has cylindrical symmetry. Trajectories with the final
deflection angle θ will thus form a cone of equi-intensity.

If we could sample the b-dependence of the deflection function we would have
a very sensitive probe of the intermolecular potential. In fact we shall see below
that, at least for higher bs, the functional dependence of χ (b) on b is that of V(b),
the potential evaluated at R = b. In particular, the existence of a minimum in χ (b)
is an indication of a well in the potential. Therefore the rainbow impact parameter
should serve as a good indicator of Rm, the equilibrium distance of the potential.
This expectation is used in drawing Figure 4.5.

4.1.4 Angular distribution in the c.m. system: the
differential cross-section

Our aim is to measure the angular distribution after the collision, that is, the flux of
molecules undergoing a deflection into the range θ to θ + dθ . Consider therefore
a bunch of collision trajectories with impact parameters in the range b to b + db.
As shown in Figure 4.6, the final deflection angle will be in the range θ to θ +
dθ , where θ = |χ (b)|. For a spherically symmetric or “central”∗ potential, V(R),
there will be no dependence on the azimuthal angle φ. Thus all the trajectories
that entered through a ring of radius b and width db will exit via an annular cone
into a solid angle dω with φ in the range 0 to 2π and θ in the range θ to θ +

∗ Called central because it depends only on the center-to-center distance R.
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dθ . The final solid angle through which the trajectories exit is given by ∗ dω =
2π sin θ dθ .

We can measure ∗∗ the number of molecules dṅ(θ ) deflected, per unit time, into
the solid angle dω = 2π sin θ dθ . In the same way that the collision cross-section
is a measure of the rate of all collisions, Eq. (2.8), we introduce the differential
collision cross-section dσ/dω as a measure of the rate of collisions leading to
deflections in a narrow angular range about θ . Let the incident flux be I. The
initial velocity is perpendicular to the plane in which the ring of area 2πb db is
drawn. By construction, all the trajectories that lead to deflections in the range θ to
θ + dθ have impact parameters in the range b to b + db and vice versa. So the
number of collisions per unit time with trajectories coming through the ring is
dṅ(θ ) = I2πb db. We define the differential cross-section, dσ/dω, with units
of area per steradian, by the condition of conservation of matter, i.e., dṅ(θ ) =
I(dσ/dω)dω or (dσ/db)db = (dσ/dω)dω. Introducing the scattering intensity
I(θ ) by dσ = I(θ )dω = 2πb db we can express the differential cross-section as †

dσ

dω
≡ I (θ ) = 2πb

db

dω
= 2πb

/
dω

db

= b

sin θ (dθ/db)
= b

sin θ |dχ/db|

b ↔ θ ≡ |χ (b)| (4.9)

(where the absolute sign is needed because dχ/db can be negative and we here
assume a one-to-one relation between b and θ ). The total cross-section is the
integral of the differential cross-section:

σ =
∫

dσ (= 2π

∫
b db) =

∫
I (θ )dω = 2π

π∫
0

I (θ ) sin θ dθ (4.10)

Given the deflection function χ (b) at the energy E of the experiment we can
calculate (Figures 4.7 and 4.8) I(θ ), the angular distribution of the scattering in
the c.m. system, except‡ where Eq. (4.9) is divergent. At these problematic points

∗ This is a standard result of solid geometry: consider a sphere of a (large) radius R about the origin.

The trajectories cross the sphere through a ring (shown in Figure 4.6) of width R dθ and radius

R sin θ . The area of the ring is thus 2πR2 sin θ dθ . The solid angle subtended by the ring is this

area for a unit sphere, dω = 2π sin θ dθ . The unit of the solid angle is a steradian and the solid

angle subtended by an entire sphere is 4π .
∗∗ Section 2.2.7.2 discusses the construction required for going from the c.m. angular distribution

to the observed scattering in the laboratory system. The inverse problem is harder.
† There is an important refinement when the deflection function (cf. Figure 4.5) is such that

there may be more than one value of b corresponding to a given θ = |χ |. This is discussed in

Section 4.2.5.
‡ The divergence of Eq. (4.9) is a defect of the classical mechanical approach to what is really

a quantal problem (cf. Figure 4.8). There are really three problems: (1) the divergence for

large values of b, where θ → 0. This is discussed further in Section 4.2.4. (2) The diver-

gence at the “glory impact parameter” where χ (bg) = 0, so that sin θ = 0 (also discussed in

Section 4.2.4). (3) The divergence at the rainbow impact parameter where dχ/db = 0, discussed
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quantum mechanics comes to the rescue, as already mentioned in Section 2.2.6
and will be discussed in more detail in Section 4.3.

4.2 Elastic scattering as a probe of the interaction potential

4.2.1 Scattering as a probe of the potential

We are finally ready to use the angular distribution as a probe for the potential.
As usual, we begin with the rigid-sphere model. Using Eq. (4.8) for the deflection
function needed in Eq. (4.9), Eq. (4.10) yields, ∗ for the hard-sphere scattering,

I (θ ) = d2/4 (4.11)

a constant (independent of θ ) angular distribution. This equation implies not only
isotropic scattering, but also that the scattering is independent of collision energy.

in Section 4.2.5. In all three cases the quantal treatment yields a finite value. The physical

manifestations of these classical singularities are an important source of information about the

intermolecular potential. The classical divergences are all made finite by quantal interference

effects and so are also important as an illustration that interference effects do have observable

implications. We shall later discuss how this allows us an option of control.
∗ Introduce the variable x = cos(θ/2). Equation (4.8) gives x = b/d. Hence compute db2/dx2 and

use dx2/d cos θ = 1/2.



120 Scattering as a probe of collision dynamics

0 90 180

θ (deg)

−15

−16

−14

−13

lo
g 1

0 
I(

θ)
Quantal
Classical

Figure 4.8 Comparison of quantal, solid curve, vs. classical, dashed, calculation of
I(θ ), on a logarithmic scale, for the same realistic potential at the same collision
energy. The classical differential cross-section diverges at θ = 0 and at the rainbow
angle while the oscillatory quantal cross-section is everywhere finite. In the
backward direction, where there is only one classical trajectory, there is close
agreement between the classical and quantal results. The backward scattering
results from low b collisions, and these sample the inner repulsive core of the
potential. The backward angular distribution is therefore hard-sphere-like, see
Eq. (4.11).

For a more realistic intermolecular potential function, however, the angular
distribution will be anisotropic and energy-dependent. We expect the scattering to
be concentrated in the low-angle, forward, direction as shown in Figure 4.7. The
reason is the large contribution to the scattering from ever larger annular areas
(2πb db) at large bs and thus small deflections (cf. Figure 4.5). Thus the low-
angle scattering is mainly caused by, and thus tells us about, the long-range part
of the potential. The wide-angle, backward scattering comes from the repulsive
collisions at small b (note that χ (b → 0) → π ) and is approximately that of the
hard-sphere model (to the extent that the realistic deflection function, Figure 4.6,
resembles, at low bs, that for the hard-sphere model, Figure 4.3).

In summary, we reiterate: forward scattering originates from large impact
parameters and hence is characteristic of the long-range force. Backward scat-
tering originates from small impact parameters and hence is characteristic of the
short-range force. The region of the well of the potential induces scattering in the
rainbow range. This summary is so important that, below, we shall first derive it in
a semi-quantitative fashion. Then we will get exact results in classical mechanics
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and finally discuss the quantal approach to the angular distribution of the elastic
scattering.

4.2.2 The angle of deflection as a measure of the potential

A semi-quantitative route from the force acting on the trajectory to the resulting
deflection is obtained by noting that a deflection means that the velocity vector
has acquired a component perpendicular to its initial direction. When the initial
impact parameter is high so that the deflection is small enough tan χ ≈ χ . Using
⊥ to denote the component perpendicular to the initial direction of the velocity

χ ∼= momentum⊥/initial momentum high bs (4.12)

By definition, before the collision, momentum⊥ = 0. Therefore, the required
component of the momentum can be computed as the integral, along the trajectory,
of the ⊥ component of the force

momentum⊥ = −
∞∫

−∞

dt
(
dV

/
dR

)
⊥

= −2

∞∫
b

dR
(
dt

/
dR

) (
dV

/
dR

)
⊥ (4.13)

The evaluation of the integral over the trajectory is done by breaking the trajectory
into two identical contributions, up to the point of closest approach (which, to
be consistent with the small angle approximation, we take to be at R = b) and
from that point on. The integral

∫
dt |(dV /dR)⊥| can be evaluated exactly∗ for the

long-range part of the potential, −Cs/Rs. Its approximate value is V(b). Putting
ET = µv2/2 we have the simple final result

χ ≈ V (b)/ET (4.14)

All the approximations are forgiven in view of the considerable insight that is
gained: the deflection function is the image of the potential. The small deflections
arise from the long-range part, the rainbow minimum is the minimum of the
potential and there is a steep increase in the deflection for small bs. Equation
(4.14) was derived for high bs, but the only range where it is qualitatively wrong
is b → 0, where the correct deflection function goes to a finite value, namely π .
Furthermore, Eq. (4.14) is a very explicit and simple result as to the role of the
potential and the energy of the collision.

∗ Using y as the ⊥ Cartesian component of R and the straight-line trajectory, ∂R/∂y = y/R
∼= b/R or (dV/dR)⊥ = (∂V/∂y) = (dV/dR)(∂R/∂y) ∼= (dV/dR)b/R. Also, ∂ R/∂t = vt/R =√

R2 − b2/R.
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*4.2.2.1. The energy and impact parameter dependence of
the angle of deflection
Equation (4.14) is so useful that it is tempting to seek a better approximation. In
the high-energy limit where V(b)/ET < 1, it can be shown that the variable ETχ

is a function of b only (independent of ET). Therefore the useful generalization
is to replace V(b) by a quantity τ (b), defined by

τ (b) = ETχ (b, ET) (4.15)

such that for all bs, τ (b) is a function of b only and at large impact parameters
the b-dependence of τ is essentially that of V(b). In terms of the variable τ , i.e.,
using Eq. (4.15), we can bring Eq. (4.9) to the form

θ sin θ I (θ ) = (τ/2)|db2/dτ | (4.16)

where τ is only a function of b so that there is no explicit dependence upon ET.
Hence, in this high-energy approximation, a plot of θ sin θ I(θ ) vs. τ is indepen-
dent of the collision energy.

For a long-range potential of the form V ∝ R−s, θ sin θ I(θ ) ∝ τ−2/s. For small
angles (sin θ ∼= θ ), this yields

θ sin θ (ETθ )2/s I (θ ) ∼= E2/s
T θ (2s+2)/s I (θ ) = const. forward scattering (4.17)

For realistic molecular systems the attractive long-range potential is dominated
by an inverse sixth power R-dependence. For s = 6, Eq. (4.17) implies that
I (θ ) ∝ θ−7/3 E−1/3

T , which has been found to accord well with the experimental
low-angle scattering data.

4.2.3 The quantitative route from the potential to
the deflection function

Computing the deflection function enables us to go from the potential to the
observed scattering. Ultimately what we want to do is an inversion, that is, to
go from the observable angular distribution I(θ ) to the intermolecular potential.
First, however, we discuss the direct route.

We evaluate the deflection function using the equation of motion, Eq. (4.6),
for the angle, ψ , of orientation of the interparticle vector R:

ψ̇ = bv/R2 (4.18)

where v is the initial velocity. To integrate Eq. (4.18) along the collision trajectory,
we need to know the classical path R(t) as a function of time and to select the
initial, pre-collision value of ψ . From Eq. (4.7)

Ṙ = v

[
1 − V (R)

ET
− b2

R2

]1/2

(4.19)



4.2 Elastic scattering as probe of the potential 123

and so

(dψ/dR) = ψ̇/Ṙ = −(b/R2)

[
1 − V (R)

ET
− b2

R2

]−1/2

(4.20)

The minus sign arises because the value of ψ increases with decreasing R,
Figure 4.2. We can now integrate Eq. (4.20) from the pre-collision condition
(R → ∞, ψ → 0) to the point of closest approach (R = R0):

ψ0 =
R0∫

∞

(dψ/dR)dR = b

∞∫
R0

dR

R2

[
1 − V (R)

ET
− b2

R2

] 1/2 (4.21)

From Figure 4.2, χ = π − 2ψ0 so that

χ = π − 2b

∞∫
R0

dR R−2[ 1 − Veff(R)/ET]−1/2 (4.22)

For the collision of structureless particles, where the potential depends only on
their separation R, Eq. (4.22) is exact within the framework of classical mechanics.

With Eq. (4.22) we have established a quantitative route from the potential
V(R) to the deflection function χ (b,ET) and thereby to the differential cross-
section I(θ ). Next we begin to consider the inverse problem: how can we go from
the observation of the angular distribution back to V(R).

4.2.4 The total cross-section and the glory effect

We recall from Section 2.2.4 that the total collision cross-section can be written
as the integral

σ = 2π

bc∫
0

b db = πb2
c (4.23)

where bc is the largest value of b that can lead to an observable angular deflection.
For finite-ranged potentials, Eq. (4.23) is very explicit∗ but for a realistic

intermolecular potential while χ (b) decreases, it remains finite at any large
b. Equation (4.23) therefore predicts an infinite total collision cross-section.
Quantum mechanics rounds off this singularity and shows that the cross-section
is finite.

One way to understand this qualitative failure of classical mechanics is to
note that the origin of the problem is our attempt to observe very small deflec-
tions as a function of b. As we saw, a deflection arises from momentum transfer
in the direction of b. So what we are seeking to do is to measure simultane-
ously momentum and position in the same direction. The Heisenberg uncertainty
principle puts a limit on our inherent ability to do so. When can we no longer

∗ For example, for the rigid-sphere potential, χ = 0 for b ≥ d, so bmax = d and σ = πd2.
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resolve a deflection? When the inherent quantal uncertainties become compara-
ble to the quantities themselves. The cutoff is therefore at b = bc: momentum
transfer⊥ · bc

∼= h. Dividing both sides by the initial momentum we find that the
cutoff is at χ · bc

∼= h/p = λ. Here λ is the de Broglie wavelength of the relative
motion. When the wavelength is λ, what the uncertainty principle tells us is that
the smallest angle that can be resolved is given by χ (bc) = λ/bc. Below we offer
yet another way of looking at this essentially quantal phenomenon.

Thus a measurement of the total cross-section σ is equivalent to a measurement
of χ (b) at the one value of b = bc. A measurement of the velocity dependence
of σ is therefore equivalent to measuring χ (b) over a range of b (at large b). In
particular, when bc is large we can deduce the long-range part of the potential
function from the measured σ (v). For the long-range form V(R) → −Cs/Rs we
have, using Eq. (4.14) for the small deflection angle, χc ≈ 2Cs/bs

cµv2. Equating
this value to the uncertainty principle cutoff, χ c = h/µvbc, we have the upper limit
on the impact parameter leading to a discernible deflection, bc = (2Cs/hν)1/(s−1).
Since bc is larger at low velocities, at thermal energies the total collision cross-
section is determined primarily by the long-range part of the potential. Explicitly

σ = 2π (2Cs/hν)2/(s−1) (4.24)

where a more detailed evaluation shows that the fore-factor is only approximately
2π .

Referring to Figure 2.4 we note that a plot of log σ (v) vs. log v is essentially
linear also at higher velocities. This is also in accord with Eq. (4.24), because at
high collision energies the scattering is sensitive primarily to the repulsive part
of the potential, and this potential also scales roughly as R−s except that for the
repulsive part typically s > 6.

Experiments with a good velocity resolution show an undulatory velocity
dependence of σ (v) about the mean line predicted by (4.24). These glory oscil-
lations are a manifestation of a quantum-mechanical interference phenomenon,
Section 2.2.6, between trajectories that are forward scattered, see Figure 4.5, and
those trajectories that are deemed to be unscattered, because their impact param-
eter is so large that it exceeds the cutoff, b > bc. This interference depends on
the collision velocity as discussed in Section 2.2.6.

4.2.5 Rainbow scattering as a probe of the potential well

For closer-in collisions and when the potential has a well there can be three values
of b that contribute to the scattering, each corresponding to the same observable
deflection angle θ = |χ |, see Figure 4.5. For such a case Eq. (4.9) needs to be
written as

I (θ ) =
3∑

i=1

bi

sin θ |dχ/db|b=bi

, θ ≤ θr (4.25)
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where the three values bi are the three solutions of the implicit equation θ =
|χ(bi )|.

For scattering at angles over the rainbow, θ > θ r, there is only one possible
value of b, but for θ < θ r there are three. Thus there is a discontinuity in I(θ )
at θr. But when θ is very near θ r we have a range of impact parameters giving
rise to scattering at the same angle, i.e., |dχ/db|br

= 0. This reasoning implies a
divergence in I(θ ), but this discontinuity and divergence at θr is an artifact of the
classical approximation.

In the quantal treatment of Section 4.3, the issue is resolved. The angular
distribution exhibits an oscillatory interference pattern with an envelope showing
successive humps and valleys for θ < θ r leading to a large maximum at about the
rainbow angle θ r. This oscillatory pattern is followed by a drop in the cross-section
on the “dark” side of the rainbow. Beyond this drop the quantal and classical cross-
sections are in close agreement with one another and so are roughly constant, as
expected for hard-sphere scattering. Figure 4.8 showed a comparison of a quantal
vs. classically calculated angular distribution.

Experimental observations of the rainbow effect provided early evidence for
the existence (and magnitude) of the shallow, intermolecular potential well, for
chemically non-bonding systems.

To sum up, elastic scattering measurements serve as a probe of the collision
dynamics and can reveal detailed information on the intermolecular potential.
But to do a complete job we cannot overlook quantal effects.

4.3 Elements of quantal scattering theory

4.3.1 Essential quantum mechanics: the
superposition principle

In electricity and magnetism, the intensity is given by the square of the cor-
responding electric field amplitude. In quantum mechanics the probability is
expressed as the (absolute) value squared of a corresponding amplitude. We are
concerned with the scattering intensity and it is expressed in terms of the scat-
tering amplitude f(θ ) as

I (θ ) = | f (θ )|2 (4.26)

The amplitude is generally a complex number. Computing it is the business of
the Schrödinger equation. The essential point is that when a final outcome can
be reached in several different ways, the amplitude to realize the outcome is the
sum (= superposition) of the amplitudes for the different routes.∗ For molecular
collisions, where classical dynamics is often a realistic description, it is a useful

∗ But in an experiment that is capable of determining which alternative is actually followed, we are

to add intensities. In such an experiment there is no interference.
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approximation∗ to regard different classical trajectories that lead to the same
observation as the different routes. In other words, we assign an amplitude to each
classical trajectory. For example, the scattering intensity is written differently on
the two sides of the rainbow:

I (θ ) =
{

| f (θ )|2 , θ > θr

| f1(θ ) + f2(θ ) + f3(θ )|2 , θ < θr
(4.27)

For angles on the dark side of the rainbow there is only one trajectory that leads
to scattering into a given angle. Classical mechanics may fail to predict fully
quantitatively the scattering intensity, but it is not expected to have qualitative
shortcomings. The situation is quite different on the bright side. In addition to
the three classical terms, which are the analogs of the three terms in the purely
classical result, Eq. (4.25), there are interference terms:

I (θ ) = | f1(θ )|2 + | f2(θ )|2 + | f3(θ )|2 + 2 | f1(θ ) f2(θ )| cos δ1,2

+ 2 | f1(θ ) f3(θ )| cos δ1,3 + 2 | f2(θ ) f3(θ )| cos δ2,3, θ < θr (4.28)

δn,m = δn− δm is the difference in the phase of the corresponding amplitudes,
where fn = | fn| exp(iδn). The determination of the phase is one of the key subjects
of this section.

The intensities, | fn(θ )|2, can be reliably estimated from classical mechanics.
In other words, each such term is of the form of Eq. (4.9). Hence the moduli of
the interference terms are not small and so their importance is to be judged by
the phase differences. For a perfect resolution in scattering angle and in collision
energy the quantum and classical results can therefore be very different. But the
phase difference is large compared to 2π and it is rapidly varying with energy
and scattering angle so that the interference terms tend to average out. There are
two very important exceptions caused by the phase difference between different
amplitudes being slowly varying. Either case corresponds to interference between
only two trajectories. These two cases are therefore not only important in their
own right, but also as clear examples of the observable role of interference.
As much as we love classical mechanics because of its simplicity and intuitive
appeal, we live in a quantum world in which trajectories on the microscopic level
are not well defined. Not only is the quantum world one that is inherently more
wiggly and undulatory, it is also one that removes the discontinuities of classical
treatments and replaces them with transitions from oscillatory behavior on the
bright side of the rainbow to an exponential falloff on the dark side.

As shown in Figure 4.5, there are three trajectories that lead to scattering into
angles just below the rainbow. Trajectories 3 and 2 sample the well region of the

∗ Approximations can go wrong. What we say is almost always correct but there are very interesting

exceptions. These are possible because certain outcomes are observable and yet they cannot occur

in classical mechanics. Tunneling through a barrier is the most familiar example.
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potential and so have comparable impact parameters. From the approximation
Eq. (4.14), the bs are just above and just below the equilibrium distance, Rm, of
the potential. Trajectory 1, which samples the repulsive forces, has an impact
parameter smaller than the range parameter σ , which is the distance of the onset
of repulsion, cf. Figure 2.5. Trajectories 3 and 2 are similar and the interference
between them leads to the rainbow oscillations in the quantum mechanical cross-
section.

Glory oscillations occur for low angle scattering. It is now trajectories 2 and
1 that are similar. Trajectory 3, which samples the long-range attractive forces,
has a high impact parameter and so corresponds to a far higher cross-section.
Trajectories 2 and 1 correspond to a low angle scattering because they sample
the attractive and repulsive forces to about the same extent. It is their interference
that leads to glory oscillations.

Computing the amplitudes and their phases is the subject of quantum mechani-
cal scattering theory although, as a practical matter, semiclassical approximations
are quite useful.

4.3.2 The quantum mechanical approach to
elastic scattering

Our purpose is to discuss the key aspects of the quantum mechanical treatment
of elastic scattering rather than to offer detailed derivations.1 We shall be guided
by the classical approach. The essential difference is the superposition principle,
unique to quantum mechanics, as introduced in the last subsection. What this
means at the technical level is that the Schrödinger equation is linear, so any
linear combination of solutions is a physically possible solution. The way we
want to use this idea is to find such linear combinations of wave functions that are
appropriate for a scattering event. The second guide will be the familiar orbital
structure of the hydrogen atom, where the wave function describes the relative
motion of the electron and proton under a central (= coulomb) force. We here
use the time-independent approach, where a stationary scattering wave function
of definite energy is to describe the entire course of the collision. In later chapters
we shall introduce the time-dependent approach, often known as a wave-packet
picture.

The physics that corresponds to the stationary, time-independent, description
is that there is a large number of binary collisions. Some have started a long time
ago and the products are already receding, others are yet to enter the range of the
force. In such a description the rate of collisions is constant. It is like a crossed
molecular beam experiment that is running under steady conditions. Like the
experiment, what we want to determine is the flux of products.

To write a stationary scattering wave function we argue by a familiar example.
Textbooks write the wave function for the hydrogen atom at a given energy as a
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product of a radial wave function, the orbital, labeled by the principal quantum
number n and the angular momentum quantum number l (l = 0, 1, 2, . . . , often
being designated as s, p, d, . . .), and a wave function giving the angular shape of
the orbital. This angular part of the wave function is labeled by l and m, where m
is the projection of l on the z axis, −l ≤ m ≤ l. m provides the discrete quantum
version of the azimuthal angle φ that specifies the plane of the collision. One
other familiar result about the hydrogen atom is that orbitals of different values
of l but the same value of n are degenerate, i.e., they have the same energy.

The form of the stationary scattering wave function is an immediate applica-
tion of what we know about the hydrogen atom and what we discussed about
the classical description of the approach motion. First of all, we typically do not
select m and l. We would like to be able to select the plane of the collision and
the magnitude of the impact parameter, but very often we do not. Therefore, the
scattering wave function will be a superposition of degenerate wave functions of
given m and l. As for the hydrogen atom, these wave functions are products of an
orbital part, a part that describes the relative motion, and an angular part. Two
technical points. First, we need an analog of the principal quantum number n, the
quantum number that determines the energy. This extension is required because
for our problem the relative motion is unbounded. It is traditional to use the wave
number k for this purpose. We define k in terms of the energy E = �2k2/2µ or,
as a vector, p = �k. Second, electrons are lighter than nuclei and so, as we have
already seen in Problem A, quite high values of l, of the order of kσ, σ range of the
potential, can contribute to the wave function for heavy particle collisions. It is
an important practical point but there is nothing essential about it. For collisions
of very cold atoms, for which the value of k is rather low, it can easily be the case
that only very few values of l, or even only s-wave (l = 0) collisions, are important.

We are ready for the scattering wave function at a given energy, expressed as
a superposition of states over all l and m values:

ψk (R) = 4π

∞∑
l=0

l∑
m=−l

ilψkl (R) Y m
l

(
R̂

)
Y m∗

l

(
k̂
)

(4.29)

The Y m
l s are the spherical harmonics. The carat denotes the solid angle in the

direction of the vector. The (absolute value) squares of the spherical harmonics
are familiar as the angular shape of electronic orbitals. The key point about the
superposition Eq. (4.29) is that it gives equal weight to all the orbitals of given l
and m. This is because there is no selection of either the magnitude or the direction
of the angular momentum of the relative motion of the two particles that collide.
This is just as in classical mechanics, where we allowed all values of the azimuthal
angle φ and all values of the impact parameter. The new feature is that we sum over
amplitudes and not over observables. The wave functions ψkl(R) that describe
the relative motion for a given value of l need yet to be determined by requiring
that the form Eq. (4.29) solves the Schrödinger equation. For convenience, we

took the factor
(√−1

)l = exp(ilπ/2) out of these wave functions.
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The collision is also specified by the initial momentum that we write as the
wave vector k. We can refer the direction of the vector R to the initial direction of
the vector k. The addition theorem of spherical harmonics (Zare, 1988), where
the Pl(cos θ )s are the Legendre polynomials,

Pl (R̂ · k̂) = 4π

2l + 1

l∑
m=−l

Y m
l (R̂)Y m∗

l (k̂) (4.30)

is the made-to-measure tool for doing so. The resulting form of the wave function
is

ψk(R) =
∞∑

l=0

(2l + 1) ilψkl (R) Pl (cos θ ) (4.31)

and this form is what you will find in most textbooks. θ is the polar angle of the
position vector R with respect to the incident velocity. The orbitals that appear
in the expansion of the wave function are known as partial waves.2 As for the
hydrogen atom and other central potential problems it is convenient to factor
out an R−1 dependence from the orbital and to define a radial wave function
Gl(R) = k Rψkl(R). As shown in Eq. (4.36) below, the radial wave function
vanishes at the origin.

Let us check. A scattering wave function must also describe the relative motion
of two structureless particles if no force acts between them. Such a motion is
described by a plane wave, where the momentum is constant along the trajectory.
We have the mathematical identity (Levine, 1969; Zare, 1988)

exp(ik · R) = exp(ik R cos θ ) =
∞∑

l=0

(2l + 1) il jkl (R) Pl (cos θ ) (4.32)

Here jkl(R) = jl(kR) are the (regular) spherical Bessel functions and are therefore
the orbitals for a free motion. The adjective “regular” refers to an orbital that is
finite at the origin, just as in the theory of electronic orbitals where, as here, on
physical grounds irregular solutions are excluded.

The essential new feature of scattering problems as compared to bound state
problems is that the boundary conditions, namely the behavior of the orbitals as
R → ∞, need to be explicitly specified.∗ Common to all elastic scattering prob-
lems is that the incident motion is in the direction of decreasing R and the scattered
motion is in the direction of increasing R. First, say that there is no potential. Then
the orbitals should give equal weight to the incoming and outgoing waves. The
mathematical form of the Bessel functions for large argument shows that this is

∗ For bound states, the condition that the wave function is normalized implicitly specifies that it

vanishes at large distances. For scattering at a fixed energy, we do not want to impose the condition

that the number of collisions is one (or some other finite number). Rather, we want collisions to

occur at a steady rate. This requires a constant flux of incoming molecules. The flux is, as usual,

the velocity times the density. The density is |φ|2 where φ is the incoming wave. The velocity is

constant because the wave vector k is specified.



130 Scattering as a probe of collision dynamics

indeed so:

Gl (R) ∝ k R jl (k R) →




(i/2) {exp [−i(k R − lπ/2)]
− exp [i(k R − lπ/2)]} , R → ∞

0, R → 0
(4.33)

where jl (kR) is the regular spherical Bessel function of order l. It is an oscillatory
function having essentially its sinusoidal R-dependence all the way back to the
point where the first maximum of sin(kR − lπ/2) occurs; it then declines to zero.
Because l + 1/2 ≈ µvb/� = kb, the innermost maximum of the radial wave
function occurs at about the classical turning point, R = b, of the free motion.

When there is a potential, it will no longer be the case that the outgoing wave in
Eq. (4.33) has the same weight as the incoming wave. Therefore, when R is large
enough that the role of the potential is negligible, we expect the wave function
Gl(R) to be a superposition, as in Eq. (4.33), but now the two components differ
in their amplitude. We write this as

Gl (R)
R→∞−→ (i/2) {exp [−i(k R − lπ/2)] − Sl exp [i(k R − lπ/2)]} (4.34)

Here Sl is the scattering amplitude for the lth partial wave. It is our first encounter
with an element of what is known in general as the scattering matrix. The con-
servation of the angular momentum and of the collision energy means that for
our case the scattering matrix is diagonal and its diagonal elements are the Sls.
The matrix is defined such that, if there is no scattering it reduces to the unit
matrix. Indeed, for Sl = 1, Eq. (4.34) reduces to (4.33). In the general case of
elastic scattering, where the flux that comes in must equal the flux that goes out,
it remains the case that |Sl | = 1. We therefore put

Sl = exp(2iδl ) (4.35)

and refer to the real number δl as the phase shift. The origin of the name is as
follows. In terms of the shape of the orbitals, what we have learned is that the
presence of the potential causes the wave function to have its argument shifted.
The radial wave function has a sinusoidal shape so we refer to its argument as the
phase of the orbital. Owing to the action of the potential, the radial wave function
will have a phase somewhat different from that for the free motion. What matters
to us is the charge, or shift, in the phase. We expect, for example, that if the
potential is repulsive, the wave function is pushed out compared to the case of no
scattering, see Figure 4.9. Compared to the orbital without a potential, kRjl (kR) →
sin(kR − lπ/2), the general solution of the scattering problem, Eq. (4.34) with
(4.35), has the form

Gl (R) →
{

exp(iδl ) sin(k R − lπ/2 + δl ), R → ∞
0, R → 0

(4.36)

where δl is the phase shift.
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Figure 4.9 The orbital for scattering by a repulsive potential exp(−ρR ). The figure
shows that a repulsive potential keeps the wave function out of the region that is
accessible to the motion without a potential. Outside the range of the potential, this
orbital must describe a free motion. It therefore differs from an orbital that describes
a motion free for all Rs, dashed curve, by having the argument of its trigonometric
function (= the phase) shifted.

For elastic scattering the only role played by the potential is to shift the phase
of the wave function. The magnitude of this shift is computed by solving∗ for the
radial wave function and determining δl from its definition by using the asymptotic
form, Eq. (4.36).

What we have concluded is actually rather remarkable. If all that we can do is
to probe the system after the collision is over, that is, as R → ∞, then everything
about the dynamics of the lth partial wave is contained in one number, the phase
shift, δl! We turn to some important applications of this result. In addition, this
observation points to a direction for further research: to get deeper we need to be
able to probe the collision as it is taking place and not only after it is over.

4.3.3 The scattering amplitude

The amplitude f (θ ) of the scattered wave at the angle θ from the direction of the
incident wave is defined by comparing the full scattering wave function to φ(R),
the wave function for free motion:

ψk(R)
R→∞−→ φ(R) + exp(ik · R)

R
f (θ ) (4.37)

Using Eqs. (4.31), (4.32), and (4.36), we obtain after some rearrangements

f (θ ) = (2ik)−1
∞∑

l=0

(2l + 1) [exp(2iδl ) − 1] Pl (cos θ ) (4.38)

∗ For a general potential the solution needs to be done numerically. Even a most modest PC can

handle this task. Many mathematics packages offer dedicated routines. The secret is to insure

that one generates a regular solution, namely an orbital that vanishes at the origin. Semiclassical

approximations for evaluating the phase shift as a definite integral are readily available and have

the additional merit of providing insight.
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The scattered intensity is I (θ ) = | f (θ )|2 as in Eq. (4.26), where I(θ ) is the dif-
ferential cross-section.

Two features of our result for the scattering amplitude, Eq. (4.38), deserve
immediate comment. First we need to prove that the infinite sum in Eq. (4.38)
is convergent. The key is that it is Sl − 1 rather than Sl itself that appears in
the scattering amplitude of the lth partial wave. For sufficiently large l, the wave
function hardly samples the potential (being kept away by the centrifugal barrier).
As l increases, the phase shift must therefore ultimately decline to zero, or Sl → 1
when l� kσ , whereσ is the range parameter of the potential (shown in Figure 2.5).
Hence the sum of Eq. (4.38) is effectively a sum over a (typically large, see Prob-
lem A, but) finite number of terms and thus convergent! The classical divergences
of the differential cross-section have been eliminated.∗

Still, the sum of Eq. (4.38) will, in general, contain many terms. The reason is
that at all but the very lowest relative velocities, atoms and molecules are heavy
enough that their de Broglie wavelength λ is significantly shorter than the range
σ of the potential. But if λ = 2π/k < σ , then kσ > 1 and we must retain many
terms, up to l � kσ , in the sum of Eq. (4.38). Because the Legendre polynomials
are oscillatory functions of θ , there will be very many highly oscillatory terms
when we compute | f(θ )|2, as shown in Figure 4.8. At higher relative velocities,
as the de Broglie wavelength gets shorter (and more terms need to be included),
the oscillations become more rapid and tend increasingly to average out to the
classical scattering angle dependence for a detector with finite angular resolution.

Much as the deflection function serves as an intermediate construct between
the potential and the observed differential cross-section in classical mechanics,
so does the set of phase shifts in quantum mechanics. Indeed, the relation between
the two is even closer than this formal similarity might suggest. A sketchy but
correct relation is provided in the footnote, leading to the conclusion that while
all the partial waves contribute to the scattering at a given angle θ only a narrow
range of l values contributes significantly. This range is determined by∗∗

θ = 2
∂δl

∂l
(4.39)

∗ The secret is the factor Sl − 1 that appears in Eq. (4.38). The “1” comes from the presence of

the incident wave, φ(R), in the scattering wave function, Eq. (4.38). It is the superposition of the

incident and scattered waves that eliminates the classical divergences. This is also the origin of

the shadow contribution that we mention later.
∗∗ To derive Eq. (4.39) take l to be a continuous variable and regard the partial wave sum in Eq. (4.38)

as an integral over l. In principle all the partial waves contribute to the scattering at a given angle θ .

In practice, because the Legendre polynomials at a given θ are a rapidly varying function of l, only

a narrow range of l values contributes significantly. This range is determined as follows. When the

partial wave sum is written as an integral, the integrand rapidly oscillates about the value zero. It

therefore averages out. Why is the integral not zero? Because there is a narrow range in l where

the integrand is not oscillatory. This is the range where the oscillation of Pl(cos θ ) exactly cancels

the oscillation of exp(2iδl). At a given θ , Pl(cos θ ) varies with l as sin(lθ ). The range in l where the

integrand is a stationary function of l is where its phase, exp(i(2δl − lθ )), regarded as a function

of l, is constant. The point of stationary phase is at ∂(2δl − lθ )/∂l = 0.
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Figure 4.10 The phase shift δl computed for a realistic interatomic potential vs. l.
The computation is for the realistic value A = kσ = 100, meaning that many partial
waves contribute to the scattering (σ is the range of the potential and k = p/� is the
wave vector). Note the steep variation of the phase shift at lower ls that is due to the
repulsive core of the potential (the initial decline is with a slope of π/2, which is what
we expect for a hard-sphere scattering). The stationary point occurs at the glory
impact parameter, lg= kbg.

Equation (4.39) is a “semiclassical” correspondence between the l-dependence
of the phase shift as shown in Figure 4.10, and the deflection angle at the impact
parameter b ∼= l/k. Conversely, for a given θ , Eq. (4.39) determines the dominant
l value that leads to scattering into that given angle.

4.3.4 The cross-section and the random phase
approximation

By integrating the scattering intensity over all scattering angles θ and over all colli-
sion planes specified by the azimuthal angle φ we obtain the quantum mechanical
total cross-section as a sum over the contributions of partial waves

σ =
∫∫

d cos θ dφ | f (θ )|2 = 4π

k2

∞∑
l=0

(2l + 1) sin2 δl (4.40)

The infinite sum effectively terminates when the phase shift becomes small
enough. When many terms contribute to the sum, it follows from Eq. (4.39)
that before the phase shift declines to zero it falls through many values of π .
Therefore sin2 δl can be approximated by the typical value of 1/2. This limiting
behavior, that the phase shift is large enough that its restriction to the interval 0 to π
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yields effectively a random variable, is a useful approximation in many aspects of
the scattering of heavy particles. It does have its limitations, for example, when the
phase shift is not a rapidly varying function of l. Such will be the case near the
glory condition, where the deflection is zero. The random phase approxima-
tion for the cross-section, Eq. (4.41) below, therefore will not exhibit the glory
oscillations.

Ultimately the phase shift stops changing rapidly. We denote by lc the highest
value of l at which sin2δl = 1/2. Neglecting the contribution from higher l values
to the sum (which is an error of about 10–20%), the cross-section is given by

σ ∼= 4π

k2

lc∑
l=0

(2l + 1)
1

2
∼= 2πl2

c

k2
∼= 2πb2

c (4.41)

where bc ≡ lc/k is the maximal impact parameter that contributes to the cross-
section. The result looks classical but, on closer inspection, it is twice as large!
This quantal effect is real and it is known as shadow scattering.

4.3.5 Time delay and resonances

The phase shift is a function of the collision energy and of the angular momen-
tum. The l-dependence gives rise to the angular deflection as explicitly seen in
Eq. (4.39). Here we show that the energy dependence of the phase shift measures
the time deflection of the scattered wave. We define the temporal deflection just as
we did for the angular deflection, that is, with reference to the unscattered wave.

Recall that as a result of the scattering the wave function acquires a phase
shift compared with the unperturbed wave. The time-dependent form of the out-
going wave is exp[i(2δl + kR − Et/� − lπ/2)], where we multiplied the stati-
onary outgoing wave, Eq. (4.34), by the time dependence of a stationary state,
exp(− iEt/�).

To proceed correctly we should form a wave-packet as a linear superposition
of waves of different energies. Taking a liberty, we look at one component and
ask when will the wave function reach a point R, where R is large and so the
products are out of the range of the potential. The wave function is delocalized,
but for such R values that the rapidly varying exponent of exp[i(kR − Et/� −
lπ/2)] will be nearly stationary the wave function is maximal. (About that point
the wave function is not oscillatory and so there is a high probability of locating
the system in that region.) Because E = �2k2/2µ, taking a derivative with respect
to k shows that the stationary phase is at R = (�k/µ)t = vt, which is just what
we would expect from classical mechanics. If there is a potential, the stationary
phase of the outgoing wave function is at R = (�k/µ)t + 2∂δl/∂k = v(t + τ ) where
τ

τ = 2

v

(
∂δl

∂k

)
l

= 2�

(
∂δl

∂E

)
l

(4.42)

is the additional time delay arising from the scattering.



4.3 Elements of quantal scattering theory 135

The formalism does not promise that the time delay is positive. Indeed, why
should it necessarily be positive? If the potential is repulsive, the scattering wave
function cannot penetrate into the repulsive core while the wave function in the
absence of the potential can get further in. So the scattered wave will come out
ahead. We can almost guess from the shift 2∂δl/∂k in the location of the wave
front that for low ls, ∂δl/∂k is the range, d, of the repulsive core so that δl ≈ −
kd + lπ/2. The second term is to insure the backward scattering for low impact
parameters, cf. Eq. (4.39). A well in the potential will also lead to a negative
delay because the kinetic energy over the well is higher than it is in its absence.
Structureless particles appear to exit rather promptly from the region of their
interaction. We speak of direct collisions in this case.

In a situation where the time delay is positive, the colliding particles spend a
longer time in the region of their interaction, longer than the time necessary to
transverse the region. What can cause such a delay? We shall encounter many
examples when the colliding particles do have an internal structure. Then the
kinetic energy of the relative motion can be converted to internal excitation,
leaving the relative motion bound in the attractive well of the potential V(R).
Eventually the energy will reflow into the relative motion and the particles will
separate, after being delayed. For structureless particles, a recognized route to
a delay is by quantal tunneling through the centrifugal barrier, as discussed in
Section 4.3.6.

Unlike the case of a direct collision, a delay requires that the phase shift
increases with energy.3 A long delay requires a steep increase and this behavior
is often represented by a Breit–Wigner form

δ = δdirect + arctan

(
�/2

E0 − E

)
(4.43)

shown in Figure 4.11. Here δdirect is the background or direct contribution, which
is present as a term that decreases moderately with energy. E0 is the center energy
of the resonance and � is the range in energy over which the contribution of the
resonance is significant. For a number of good reasons we refer to � as the width
of the resonance. One such reason is the delay time associated with a resonance
located at E0 is �/�. From the time–energy uncertainty principle we therefore
expect that the energy of the resonance is defined only up to �. An equivalent
way to understand this behavior is to plot the contribution of the resonance to the
cross-section as also shown in Figure 4.11. From Eq. (4.40), the cross-section
has an energy dependence known as a Fano profile

sin2 δ = sin2

[
δdirect + arctan

(
�/2

E0 − E

)]
= (ε + q)2

1 + ε2
sin2 δdirect

= δdirect=0
(�/2)2

(E − E0)2 + (�/2)2 (4.44)

The two line profile parameters are the index, q = cot δdirect, which measures
the asymmetry of the line arising from the interference4 between the direct and
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Figure 4.11 A resonance in elastic scattering. Left: the phase shift in the energy
vicinity of a resonance, Eq. (4.43), vs. the energy in units of the width, �, of the
resonance (the resonance is at the energy E0; in the plot, E0/� = 6). Outside the
range of the resonance the scattering is direct and the phase shift decreases with
increasing energy. The dashed line is to show that the resonant part of the phase
shift increases by π as the energy increases about E0. Right: the contribution of such
a resonance to the cross-section, Eq. (4.44). The role of the direct scattering is
measured by the asymmetry parameter q. If there is no direct background, the line
profile is a symmetric Lorentzian about E0 with a width �, shown as a dashed line.

compound scattering and the reduced energy, ε = (E0 − E)/(�/2). If there is
no direct scattering, we find, using sin arctan(1/ε) = 1/(ε2 + 1)2, the symmetric
Breit–Wigner profile, which has a Lorentzian shape.

The increment in the cross-section arising from a resonance as discussed above
occurs in a particular partial wave. Under usual scattering conditions, when many
partial waves contribute, the observable role will be small. To observe a resonance
we need a large width, or a mechanism where many partial waves are affected,
or the experimental ability to select one or a few partial waves. As mentioned in
t he next section, “half collisions” are one way toward such a selection.

4.3.6 Low-energy collisions: classical orbiting and
quantal resonances

Figure 2.10(a) shows the effective potential for a collision with a finite impact
parameter. Coming from far apart and moving classically, the two particles can
only approach up to the distance of closest approach where their kinetic energy
equals the effective potential, Eq. (2.31). But quantum mechanically, the radial
motion can tunnel through the barrier and then stay in the classical regime in the
well to the left of the barrier. Eventually, the particles will tunnel back out and
escape. This situation is possible whenever there are multiple solutions for the
classical turning point, Rtp, defined by analogy to Eq. (2.31):

ET = Veff(Rtp) = V (Rtp) + �
2l(l + 1)/2µR2

tp (4.45)



4.4 Angular distribution for reactive molecular collisions 137

The classical signature of these resonances is the orbiting; that is, the rather large
(negative) deflection angle χ when the collision energy equals the top of the
barrier in the effective potential (Ford and Wheeler, 1959). For an exactly orbiting
collision, the two particles can rotate around their center of mass for any number
of times before they separate again. The height of the barrier in the effective
potential is not high. We have already computed it, with another motivation, in
Chapter 2, but for realistic potentials it is typically below the value of the well
depth. So the orbiting region and hence the tunneling resonances are characteristic
of low-energy collisions, unless there is a strong chemical interaction between
the particles.

Historically, tunneling resonances and their line profiles were first seen in
so-called half collisions. That is, the quasi-bound state of a given value of l is
prepared by optical excitation from a bound lower state. The absorption line to
such a state will have a width in frequency arising from the inherent uncertainty
in the energy of a state that is only temporarily bound. When the dissociation
is by tunneling through a centrifugal barrier, hydrides offer the best examples
because the width will not be too small. The reason is that, by the uncertainty
principle, the width in frequency is the inverse lifetime. As a rough guide, the
width is given by the frequency of the bound state motion reaching the left side
of the barrier, �ω/2π , times the (small) probability p of tunneling through the
barrier:5

� = (1/lifetime) ≈ (1/τvib) probability of tunneling (4.46)

= (�ω/2π )p

Semiclassically, p ≈ exp(− ∫
dR

√
2µ(V (R) − E) ) where the integral spans the

region where the system moves under the barrier. We therefore expect p to scale
exponentially down with the reduced mass. This type of “momentum gap” esti-
mate provides a useful guide also in other examples of what we call predissoci-
ation. For tunneling, the momentum gap rule also tells us that states at energies
just below the barrier height have the largest widths and so will be most amenable
to observation in the frequency domain.

4.4 Angular distribution for reactive molecular collisions

Our agenda in this section is quite rich. We start with direct reactive collisions and
the physically complementary case of compound collisions where the molecules
stay for a while in the region of the chemical forces. Consistently with earlier
sections of this chapter, we look at the angular distribution from a two-body
point of view. Only later in the book will we leave the two-body simplicity and
recognize that the products have different internal states that can be populated. The
discussion will not be as quantitative as in earlier sections, and will blend physical
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Figure 4.12 The “cones” containing most of the products’ intensity (in the c.m.
system). For the CH3I + K reaction (above) the KI product appears primarily in the
backward (“rebound”) direction; not so for the KI from K + I2 (below), which shows
typical stripping behavior.

insights with what we have learned about elastic scattering. This approach is
sometimes known as the optical model.6

4.4.1 The angular distribution as a probe of direct vs.
compound collisions

The observation of the very specific energy disposal in exoergic reactions
(Section 1.2) is often accompanied by a strong preferential angular disposition
of the products. For example, in reactions such as

CH3I + K → KI + CH3

The KI product molecules were observed in the “backward” hemisphere, with
respect to the incident K atom. This is a rebound mode. On the other hand, for
reactions such as

K + I2 → KI + I

the KI is scattered strongly “forward,” i.e., in the direction of the incident K atom.
This forward scattering is typical of stripping mode behavior (the spectator limit),
discussed already in Chapter 1. A generalization will be discussed in Section 4.4.3
below and then in Section 10.2.2.

Figure 4.12 shows the predominant “cones” of scattered products for two
KI-forming reactions. Such anisotropic angular distributions, when first observed
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Figure 4.13 Understanding the products’ angular distribution in complex-forming
reactions. Left: A + B collision in the center-of-mass system. The collision takes
place in a plane perpendicular to the direction of the angular momentum L. A
long-living A–B “diatomic” complex is formed. The complex dissociates along its
axis. If A–B rotated for a while prior to dissociation, the products would come out in
the plane of the collision, uniformly in all directions. This is called, pictorially, the
sprinkler model. Right: construction for the observed angular distribution. The
direction of L is not selected. It is therefore necessary to average over all possible
orientations. When we rotate L about the axis formed by the initial (c.m.) velocities
the products come out distributed on a sphere, as shown. In particular, all products
that dissociate into the angular range θ to θ + dθ come out through a ring. The
scattering intensity through a ring is constant, if the complex is long living. The area
of the ring, 2π sin θ d θ , is minimal near the two poles, where (θ → 0), and maximal
near the equator. The scattering intensity is defined as the flux of products into the
angular range sin θ dθ dφ. Hence the scattering intensity is maximal near the two
poles.

in the early molecular beam scattering studies of the early 1960s, were considered
rather unexpected. The preferential scattering indicates that the process of reac-
tion (i.e., the atomic rearrangement) must be over quickly. Chemists expected the
reactants to form a “complex” that lasts for a while before forming the products.
Say that this mechanism is correct. A two-body view of two particles forming a
complex is shown in Figure 4.13. The conservation of angular momentum does
not depend on how sticky the collision is, so the two-particle complex rotates in
the plane of the collision. It acts just like a bound diatomic molecule with the
rotational angular momentum l ∼= µvb/�. Eventually the complex will dissociate
and the two particles will fly apart. If the complex survived for more than a few
classical rotation periods the products would fly off in a random direction and
not in such a concentrated, “directed” cone disposed so specifically with respect
to the initial relative velocity vector.

Reactions that proceed through a compound mechanism and where the com-
plex is long living (compared to a rotational period of the interparticle axis) will
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have an angular distribution that is uniform in the plane of the collision. Here
again we remember that typically the orientation of this plane is not selected and
so we must allow for all azimuthal angles φ. When we do so we recognize that not
all scattering angles θ are equivalent. Products that exit in the original direction
or opposite to it, i.e., products that exit near the poles, θ ≈ 0 or π , all come out in
a small solid angle. Products that exit near the equator, θ ≈ π/2, all come out in
a wide solid angle. Therefore, for compound collisions, the angular distribution
in space is not uniform. Rather, it is maximal near the poles and minimal near
the equator:

dσ

dω
= dσ

2π sin θ dθ
∝ 1

sin θ
sprinkler model (4.47)

The key point is that, for a long-living complex, the angular distribution has a
forward–backward symmetry. The dynamics appears to have forgotten the initial
direction. The only thing that it remembers is that the angular momentum (and, of
course, energy) is conserved. Problem D and Section 10.3.1.1 provide a quantum
version of this result.

Thus we have an experimental or “operational” definition of a direct reaction,
i.e., whenever the angular distribution is not symmetrical with respect to the
forward vs. backward hemisphere. This establishes a time base, such that if the
“time of reaction” is less than, say, one rotational period of the combined system
(typically 10−12 s), we can say the reaction is of the “direct” type.

4.4.2 Direct reactions: forward vs. backward scattering

We have seen in Section 2.2.5 how the differential elastic cross-section I(θ ) serves
as a sensitive probe of the dynamics of the collision of structureless particles. In
a similar fashion one can introduce the differential reactive cross-section IR(θ ),
except that here we mean the number of product molecules scattered at the (center-
of-mass) angle θ (per unit time and unit solid angle) divided by the incident flux
of reactant molecules. In other words, we write Eq. (3.5) as

d2ṅR(θ, φ)

d2ω
= (IAnB)IR(θ ) (4.48)

where ṅR(θ, φ) is the number of reactive collisions per unit time, with the products
scattered into a given angular range d2ω = sin θ dθ dφ in the direction specified
by θ and φ. If the differential reaction cross-section IR(θ ) is integrated over all
solid angles it gives us the total reaction cross-section, σ R.

We shall defer a simple but quantitative analysis of IR(θ ) to Section 4.4.3.
Here we are interested in a qualitative picture, comparable to the interpretation
of σR in terms of the opacity function as presented in Section 3.2.

Figure 4.14 shows a comparison of the two angular distributions corresponding
to the two KI-forming reactions. We note that the entire backscattered cross-
section for the KI from the rebound reaction of K + ICH3 fits under the backward
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Figure 4.14 The complete angular distribution of KI for the K + I2 and K + CH3I
reactions. Plotted is the polar differential reaction cross-section 2π sin θ IR(θ ) vs. θ .
When integrated over θ , this gives directly the reaction cross-section σR and the
result is quoted in the figure [adapted from the experimental results of K. T. Gillen,
A. M. Rulis, and R. B. Bernstein, J. Chem. Phys. 54, 2831 (1971); A. M. Rulis and R. B.
Bernstein, J. Chem. Phys. 57, 5497 (1972)].

“tail” of the angular distribution for the predominantly forward-scattered KI from
the reaction of K + I2.

We interpret this in terms of the reaction probability as a function of impact
parameter, the opacity function P(b) (Section 3.2.1). Low-impact-parameter col-
lisions (nearly “head-on”) usually lead to reaction and because they are mainly
head-on, the product diatomic rebounds backwards; K reacts with I2 by the har-
poon mechanism, Section 3.2.4. Therefore, encounters at long range with very
large impact parameters are also effective in yielding reaction, i.e., P(b) is near
unity out to very large b (roughly bmax ≈ 7Å). We know that this is so because
the reaction cross-section is large, σR ≈ 125 Å2. For these large-b encounters the
K + ion, remember the harpoon, simply “picks up” an I− ion and carries it for-
ward with very little deflection, and the remaining I atom must sadly recoil in
the opposite direction with a velocity determined by momentum conservation.
This is the so-called stripping mechanism, which is characterized by the forward
scattering of the product molecule.

Of course we have oversimplified the picture of direct reactions; there is obvi-
ously a range of angles involved and for each reaction the degree to which the
scattered product concentrates in a given angular region will be different. In some
cases we find preferential sideways scattering in certain direction reactions. In
general, the empirical trend is clear: the more “forward” the reaction, the larger
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the magnitude of the reaction cross-section. For the K + CH3I reaction, which
is predominantly “backward,” the reaction cross-section is much smaller (by a
factor of c. 3) in comparison with the magnitudes of the stripping reaction cross-
sections, Figure 4.14.

We turn now to a more quantitative application of the concept of the reaction
probability to the analysis of scattering in direct reactions.

4.4.3 Scattering in direct reactions

The optical model provides a unified framework, based upon general principles,
for a simplistic analysis of collision dynamics. We begin, as usual, with the form
of the reaction collision cross-section for reactants with an impact parameter in
the range b to b + db,

dσR = 2πbP(b) db (4.49)

To get the angular distribution we need to relate the impact parameter and scat-
tering angle. For elastic collisions, this is possible because at a given collision
energy, the impact parameter specifies a unique classical trajectory that describes
the collision. This is not true for reactive processes. There are more variables that
are necessary, such as the initial orientation, etc. We either have to compute many
classical trajectories, all having the same initial impact parameter, which we will
do in Chapter 5, or we have to simplify the situation by a physical assumption.

We shall assume that direct reactions are sudden-like; that there is a criti-
cal configuration at which the reactants instantly become products. Up to that
configuration, the reactants approach.∗ Beyond that configuration, the prod-
ucts recede. For direct reactions it is therefore reasonable to assume that since
the actual rearrangement is so rapid, the net angle of deflection is the sum
of the angle of deflection of the reactants coming in and that of the products
going out. Specifically, we replace the elastic scattering result for the deflection
angle χ = π − 2ψ0 by χ = π − (ψ in + ψout) where the two ψs refer to the angle
of rotation of R on the incoming and outgoing parts of the reactive trajectory.

For explicit results we need, however, to adopt specific models. One such model
is that of rebound reactions. Here one assumes that reaction only occurs on close
collisions when the reactants are subject to the short-range repulsive part of the
intermolecular potential. The rearrangement thus takes place “at close quarters”
and the newly formed products recede under the influence of the short-range
repulsion. Hence, the net deflection is that typical of hard-sphere scattering.

For hard-sphere scattering we have seen that the angular distribution is a
constant, independent of the collision energy, (2πb db/dω) = d2/4. If d is the
radius at which reaction takes place, we therefore have for rebound reactions

dσR/dω = (d2/4) P(b(θ )) (4.50)

∗ In Chapter 10 we apply this idea to vector quantities. Problem E is a quantal version of the model.
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Here, the only dependence on θ is through the b-dependence of the opacity
function and the higher the impact parameter the more forward is the scattering.
Our model predicts, therefore, backward scattering of the products, since for
rebound reactions P(b) contributes only at low b values. As we increase the
collision energy, a rebound character at low energy changes to a more forward
scattering at higher energy. There are two factors that govern this behavior. First,
for reactions with an energy threshold, the range of b values that lead to reaction
increases with increasing ET, Section 3.2.7. Then, a strict hard-sphere scattering
is an idealization. There are forces on the trajectory en route to the reaction shell
of radius d. So the deflection angle is expected to scale inversely with the collision
energy. The general statement we made earlier is that ETχ (b) = τ (b), Eq. (4.15),
so that collisions at a given impact parameter, and hence given τ (b), will lead
to decreasing deflections as the collision energy is increased. In conclusion, the
angular distribution for direct reactive scattering lends itself to the approximate
two-body representation

IR(θ) = P[b(θ )]I o
R(θ ) (4.51)

where the reference angular distribution I o
R(θ ) = b/ sin θ |dχ/db| is to be com-

puted from the motion into and out of the configuration at which reaction occurs.

*4.4.4 Information gained from non-reactive scattering

The cross-section for non-reactive collisions can be expressed in terms of the
fraction, 1 − P(b), of collisions that do not lead to reaction

dσNR = 2πb[1 − P(b)]db (4.52)

The non-reactive cross-section is necessarily smaller than it would have been had
the reaction not taken place, i.e., if P(b) = 0, dσ o

NR = 2πb db. Here dσ o
NR is the

cross-section if P(b) were zero for all b. In picturesque terms we can say that
the non-reactive cross-section is quenched by the occurrence of the reaction. The
closer the reaction probability P(b) to unity the more severe the quenching.

While we cannot measure the differential cross-section dσ NR/db, we can mea-
sure the angular distribution INR(θ ) of the non-reactively scattered molecules.
We expect that P(b) will contribute primarily at low b values and hence that the
quenching of dσNR will correspond to the (near) absence of non-reactively scat-
tered molecules in the backward direction. In quantitative terms we thus have
that

INR(θ) = [1 − P(b(θ ))]I o
NR(θ ) (4.53)

The qualitative implications of Eq. (4.53) are clear: INR(θ ) is quenched in the
presence of reaction. The greater the range of impact parameters over which
reaction is possible, the wider the angular range over which INR(θ ) is quenched.
But what can we use for the relation of b to θ? Here too we need a model
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assumption, namely a reasonable estimate of χ (b). Given that information, we can
determine P(b) from Eq. (4.53). Intuitively, the “reference” angular distribution
I o
NR(θ ) should not differ much from the angular distribution for a closely related

but inert system. For example, a reasonable guess is to use the angular distribution
of K + Xe as the “reference” one for K + CH3I. Using such techniques one can
obtain an estimate of P(b) from Eq. (4.53).

4.4.5 Summary

We can summarize as follows: those direct reactions that occur primarily at low
impact parameter are characterized by a small reaction cross-section; there is
predominantly backward scattering of the products and the non-reactive angular
distribution is quenched in the backward direction. Reactions that occur with a
high probability over a wide range of impact parameters will have a large reaction
cross-section, the products will appear mostly in the forward direction, and the
non-reactive cross-section will be severely quenched except in the very forward
directions. As the energy is increased the tendency towards forward scattering of
the products should be favored.

4.4.6 On to polyatomics

Thus far we mainly used a two-body point of view. From now on the discussion
will emphasize the polyatomic nature of the dynamics of chemical reactions. This
is the same transition that is made in books on spectroscopy. These go from bound
AB to bound ABC, while we go from unbound AB to unbound ABC. There is
more than one vibrational coordinate in ABC. Which one is to be unbound? Well,
this is very much part of the discussion of Chapter 5. Nor is it only the stretch
vibrations that are of interest. The bending vibration of ABC is the carrier of the
steric preference during the collision.

Problems

A. How large is the angular momentum in molecular collisions? The angular
momentum L has the same dimensions, length · momentum, as Planck’s constant.
The quantum number l is a measure of L in units of �, L = l�. Classically,
L = µvb = �kb, where k is the wave number, k = µv/�. For molecular collisions
the reduced mass µ can vary by over two orders of magnitude, but even for
H + H collision it is three orders of magnitude bigger than the mass of the
electron. For reasonable values of the impact parameter and collision velocity,
and remembering that for reactions with a barrier we need that ET = µv2/2 > E0,
compute a reasonable range for L values. Conclude that typically l � 1 and that
it requires very low velocities to be in the fully quantal regime where only a few
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values of l are important. The dimensionless parameter A = kσ, where σ is the
range parameter of the potential, is a useful guide to the range of l values that
contribute.

B. Use the higher velocity data shown in Figure 2.4 and Eq. (4.24) to draw
conclusions about the R-dependence of the short-range repulsive potential. What
can you conclude from the low-velocity end of the plot?

C. The relative position vector of two particles is R = R1 − R2. Assume that
the potential between them depends only on the distance R. Derive Eq. (4.1) by
writing equations of motion for R1 and R2.

D. Angular distribution in resonance scattering. If there is a resonance in
the lth partial wave then one term in the sum (Eq. (4.38)) dominates. Therefore
I (θ ) ∝ |Pl(cos θ )|2. Averaging over the fast oscillations of the Legendre function,
derive Eq. (4.47). See also Section 10.3.1.

E. Direct chemical reactions are fast. Suppose the two reactants approach one
another and suddenly switch into products that then depart. By analogy with
the scattering amplitude for elastic collisions, Eq. (4.36), we can now write the
amplitude for reaction as exp(iδout) |Sl | exp(iδin), where P(b) = |Sl |2. Show that
this amplitude accounts not only for the deflection angle having the form in the
text but also for the fact that there is no time delay due to the reaction itself. The
delay is entirely made up from any excess time it takes the reactants to move in,
and similarly for the products.

F. Back to chemistry. (a) Suggest a plausible interpretation for all three obser-
vations: K atoms scattered in a collision with Kr are found preferentially in the
forward direction with respect to the incident K atoms; the intensity in the back-
ward direction is lower and is almost independent of angle. K atoms scattered in
a collision with HBr are found very preferentially in the forward direction; there
is almost no scattering intensity in the backward direction. K atoms scattered in
a collision with NaBr are found somewhat preferentially in the forward direc-
tion; the intensity in the backwards direction is significantly higher than that for
K + Kr and it increases as θ → 180◦. ∗(b) K atoms scattered in a low-energy
collision with SO2 are found preferentially in the forward direction. The intensity
in the backward direction is however also high and it increases as θ → 180◦; see
D. O. Ham and J. L. Kinsey, J. Chem. Phys. 48, 939 (1968).

G. The K + (CN)2 and K + CH3CN reactions. In many ways the CN radical acts
as a halogen atom (Bersohn, 1976). Compare and contrast the two KCN-forming
reactions. Chapter 5 will allow you to draw conclusions regarding the vibrational
excitation of the nascent KCN. Another similarity is the stereochemistry, with
KCN being formed preferentially for a K approach from the CN end of the
CH3CN molecule, see Figure 1.5. A collision of fast (hyperthermal) K atoms
with CH3CN molecules leads to the formation of separated ions K+ and CN−.
The CN− ions are produced predominantly by attack of the K atom on the CH3-
end of CH3CN [S. A. Harris, P. W. Harland, and P. R. Brooks, Phys. Chem. Chem.
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Phys. 2, 787 (2000)]. The electron apparently enters the lowest unfilled π*CN
orbital to form an unstable linear molecular negative ion that then breaks up as it
attempts to bend into the geometry of the stable products, KCN and CH3.

Notes
1 Classical, semiclassical, and quantum elastic scattering are thoroughly covered in Child

(1974). The same material but within a more mathematical approach can be found in

Newton (1982). The classic review is Bernstein (1966). See also Pauly (1979). The seminal

paper on semiclassical scattering is Ford and Wheeler (1959). The venerable scattering

theory text is Mott and Massey (1965). A more accessible text is Johnson (1982). It is

nowadays straightforward to generate numerical tables of, say, the deflection function vs.

impact parameter for a range of collision energies. Still, the discussion and extensive tables

in Hirschfelder et al. (1954) provide much insight. An introduction to quantum mechanics

with an emphasis on the superposition principle is Feynman et al. (1966).

The theoretical discussion of this section should not make us forget that the theory is to

guide and interpret real experiments. Four books stand out in making this connection:

Bernstein (1979, 1982), Scoles (1986), Pauly (2000).

We deal only with collisions of structureless particles. But there is a highly developed

quantum scattering theory for both inelastic and reactive collisions. For general background

see Levine (1969). Inelastic collisions are simpler to handle because the need to change

coordinates in going from reactants to products, discussed in Appendix A of Chapter 6,

does not arise. See, for example, Gianturco (1979), Murrell and Bosanac (1989). There are

many sources for reactive collisions, including Baer (1985), Kouri (1985), Clary (1986),

Schatz (1988), Miller (1990), Bowman and Schatz (1995), Schatz (1996), Clary (1998),

Miller (1998), Nyman and Yu (2000), Althorpe and Clay (2003). Quantum theory is

nowadays reaching all the way to enzyme kinetics, see Gao and Truhlar (2002).

2 We shall not make use of it, but to complete the analogy with the electronic problem, we

point out that the partial waves can be determined by the solution of the Schrödinger

equation. (E − H)ψ(R) = 0 is a differential equation in three variables, the three

components of R. The conservation of angular momentum allows us to rewrite it as many

separate Schrödinger equations, one for each partial wave. These have the form of a radial

equation where the name refers to the differential equation depending only on the radial

(i.e., scalar) distance R:(
k2 + d2

dR2
− l(l + 1)

R2
− 2µ

�2
V (R)

)
Gl (R) = 0, l = 0, 1, 2, . . .

with ψ l(R) = Gl(R)/kR. The collision energy E is expressed in terms of the wave number k,

E = �
2k2/2µ, so that k = p/� = 2π/λ, where λ is the de Broglie wavelength. Note the

effective potential energy for radial motion, Veff (R) = V (R) + �
2l(l + 1)/2µR2 that we

already met in the classical scattering.

3 It is not obvious, but perhaps not unintuitive, that the second virial coefficient,

Section 2.1.10.1, is closely related to the time delay. The two regimes where B(T) is

respectively positive and negative correspond to negative and positive time delays.

4 Interference between different ways of reaching the same product state will be a key

element in our discussion of control in later chapters. The Fano line shape is a special case

where the alternative routes have a clear physical interpretation, one being direct scattering



Notes 147

and one scattering through a resonance. Another example of an interference is the rainbow

scattering. For measuring the resonance contribution to the phase shift, δ − δdirect, see

Gordon et al. (2001).

5 This estimate shows that the widths of two adjacent tunneling resonances are significantly

smaller than their spacing, �ω. Such resonances are said to be non-overlapping.

6 For a detailed application to alkali atoms and alkyl iodide reactions, see J. L. Kinsey, G. H.

Kwei, and D. R. Herschbach, J. Chem. Phys. 64, 1914 (1976).



Chapter 5
Introduction to polyatomic dynamics

In this chapter we recognize that reactants (and hence products) have internal
structure. We need to describe the potential energy that gives rise to the forces
that act during the collision and to determine the dynamics. With this background
we examine what features of the potential energy play a special role in the dynam-
ics and how the internal states of the reactants participate. The rate of chemical
reactions for polyatomic reactants is discussed in Sections 6.1 and 6.2. The deriva-
tion therein makes essential use of two features of the potential that we examine
in this chapter. These are the potential energy barrier that separates reactants and
products and the not unusual possibility that there are two (or more) barriers,
between which there must be a hollow. To fully appreciate the approximations
that are made in deriving expressions for the reaction rate that are based only on
structural information, it is necessary to examine the dynamics, as we do in this
chapter.∗ We begin by reminding you about the Born–Oppenheimer separation
of electronic and nuclear motions that underlies our work in this chapter,1 and
the possibility of its failure.

5.0.1 The Born–Oppenheimer separation: a caveat

This chapter is based on generalizing the concept of an interatomic potential to
the polyatomic case. Specifically, we are interested in many-atom systems that
have enough energy to undergo a chemical change. It is therefore important to
point out that the concept of a unique potential function governing the motion
of the atoms is an approximation. It requires that, throughout its time evolution,
the system remains in the same electronic state. When this is the case then the

∗ In this chapter we emphasize energetic aspects and these are scalar quantities. If we want to

understand more about reaction directionality then we need to examine vectorial aspects, which are

treated in Chapter 10. In this chapter we treat the dynamics by classical mechanics. When we want

to understand coherence effects we need to examine quantal superposition of states. We pick up on

this theme from Chapter 7 onwards. There we will also extend the discussion to reactions that do

not necessarily proceed for reactants in their ground electronic state.

148
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electronic energy is the potential for the nuclear motion.∗ Born and Oppenheimer
showed that this can be so because the electrons are much lighter and hence move
much faster than the nuclei. Thus in the time it takes the nuclei to move a very
small distance the electrons can thoroughly sample their accessible space. This
enables us to treat the two motions separately. First, we freeze the nuclei in some
configuration and diagonalize the electronic Hamiltonian to determine the low-
est eigenvalue and the stationary wave function for the electrons. The nuclei are
then moved to another configuration for the atoms where the diagonalization is
repeated. Continuing in this manner one eventually has the (lowest) electronic
energy for an entire range of configurations of the nuclei. This electronic energy
is the desired potential function and it can be used to determine the dynamics of
the nuclei, assuming that as the heavy atoms move, the light electrons “instanta-
neously” adjust to the new position. In Chapter 9 we shall come to call this rapid
and smooth adjustment of the electrons to the new circumstances an adiabatic
behavior. The maintaining of the same quantum state despite a perturbation (= an
adiabatic limit) is typical when the time scale of the perturbation is long com-
pared to the time scale over which the system can adjust. In the present context,
the perturbation is the motion of the heavy nuclei and we take it to be slow on
the time scale of electronic reorganization.

The Born–Oppenheimer separation is a most useful approximation because
it allows us to understand the geometrical structure of molecules at equilibrium
and also for small vibrations about equilibrium. Another advantage is that the
potential remains the same under isotopic substitution. For our purpose we need
a potential that describes large displacements, large enough that bonds can be
broken and formed. Furthermore, we often need to deal with open-shell systems.
All of this means that we need to be more careful than colleagues dealing with
stable species. The ground electronic state of the system is often sufficiently

∗ Some details. Write the (non-relativistic) Hamiltonian as H = T + Hel, where T is the kinetic energy

operator for the relative motion of the nuclei. For a diatomic molecule, T = −(h̄2/2µ)∇2
R. The

“electronic Hamiltonian” (Hel) is a sum of the kinetic energy operator of the electrons and potential

terms, all electrostatic. We list them so as to emphasize that a number of these terms depend on the

distance R between the two nuclei: the repulsion between the two nuclei, the attraction of the elec-

trons to the two nuclei, and the repulsion between the electrons. In the Born–Oppenheimer separation

we first hold R constant and diagonalize the electronic Hamiltonian Helψ(r;R) = Eel(R)ψ(r;R). We

write ψ(r;R) as a reminder that while the electronic wave function is a function of the coordinates, r,

of the electrons, the function has been determined at a given value of R. Diagonalizing the electronic

problem provides a number of eigenvalues, the lowest one being the ground state. The diagonal-

ization is now repeated at other values of R. This yields the electronic states and their energies

as a function of R. For any particular electronic state the wave function for the full Hamiltonian

H� = E� is approximated as � = χ (R)ψ(r;R). The nature of the approximation is that we do not

allow T to operate on the electronic state ψ(r;R). Then, from 〈ψ(r;R)|H|�〉 = E〈ψ(r;R)|�〉 we get

(T + Eel(R))χ (R) = Eχ (R). In words, the electronic energy plays the role of the potential for the

motion of the nuclei. Different electronic states give rise to different potentials for the nuclei. For

excited states some of the potentials can be repulsive. The approximation fails when the matrix

element of T between two different electronic states is not small, Problem A.
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lower in energy than electronically excited states that the Born–Oppenheimer
separation of fast-moving electrons and slow-moving nuclei is valid. The reason
is that, as we shall show in Chapter 7, the “time” available for the electrons to
adjust to the motion of the nuclei is Planck’s constant h divided by the gap, where
the gap is the difference between the electronic energy of a given electronic state
and its near neighbors, see Problem A. The gap can be large, so large that the
electrons adjust before the nuclei appreciably move and then all is well. But the gap
depends on the configuration of the nuclei and while it can be large in the reactants
or products region, it need not necessarily stay large when the system is in the
transition state region. In fact, in the polyatomic case the gap can outright vanish,
leading to a so-called conical intersection of two electronic states.2

How can one tell if the Born–Oppenheimer separation is valid during the
reactive event? We have no easy answers. We provide qualitative reasoning about
when the separation is likely to fail, but only quantum chemistry can tell for sure.
We need to know the electronic energies and even then we need to know more,
as discussed in Chapter 7. A limited guidance is available from experiment. If
reactants in a given state can give rise to products in more than one electronic
state, or vice versa, then the separation has certainly failed. Unfortunately, the
converse does not follow. Entrance and exit can be on a single electronic state and
yet a second electronic state can be populated during the collision. Life is simpler
when we have the concept of a unique potential for the motion of the nuclei.
Pragmatically therefore one tends to assume that, in the absence of evidence to the
contrary, the Born–Oppenheimer separation is valid. We shall do so in this chapter,
but the caveat must be kept in mind. This warning is particularly important when
we discuss photochemistry, Chapter 7, where the system is promoted to an excited
electronic state whose dynamics are of interest.

5.1 Potential energy functions and chemical reactions

5.1.1 Potential energy surfaces

We are about to generalize the concept of an interatomic potential. We need to
know the interaction energy as a function of the configuration of the system
throughout the rearrangement from reactants to products.3 Even in the simplest
case of an atom–diatom collision, A + BC, the potential energy is a function of
three coordinates, e.g., the three interatomic distances.∗ However, a function of
even three variables is difficult to visualize. It is therefore customary to begin
by examining the potential for the “collinear” (A–B–C) configuration, when the

∗ The interaction potential is a function of the positions of the three nuclei and hence, in principle,

a function of nine coordinates. Imagine now the three atoms as the vertices of a triangle in an

otherwise empty space. The interparticle energy will not be changed if the triangle is rotated or

translated as a rigid body. Hence the potential is a function only of the three coordinates required

to specify the atomic triangle. These can be the three interatomic distances, but they can also be

two distances and the angle between them or even one distance and two angles.
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Minimum energy path
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A + B+C

AB+C

X
RB−C

Figure 5.1 A potential energy surface for the A + BC → AB + C reaction in the
collinear configuration (schematic). The minimum energy path leading from
reactants to products is shown as a dashed line. It is also referred to as the reaction
coordinate. The highest point along the minimal energy path is the saddle point (X).
It is a saddle because the energy increases if we deviate from the reaction
coordinate in either direction but along the path it is a maximum. In the vicinity of
the saddle point the motion along the minimum energy route, where one bond
shrinks and the other bond extends, is what, in a stable molecule, we call the
asymmetric stretch motion of A–B–C. For a direct reaction as shown here this is an
unbounded motion that takes the system from reactants to products. The motion in
the direction perpendicular to the minimum energy path is bound. As we cross the
saddle point region this motion changes in character from the A–B vibration to the
symmetric vibration of A–B–C to the vibration of B–C. The plateau corresponds to
the three separated atoms A+B+C. The inner repulsive wall is the region where two
or all three atoms get close to one another.

three atoms are confined to a straight line so that there are only two independent
interatomic distances, the A–C distances being constrained to equal the sum of
the A–B and B–C distances. In this case we can plot the potential as a function
of the two coordinates as a potential contour map, showing equipotential lines in
a two-dimensional plot in a manner made familiar by topographical maps.∗

Chemical intuition can help us identify the main topographical features
expected when the potential is plotted as a function of the two bond distances:
there is the “old” A–B bond distance, limited to motion near equilibrium in the
reactants region when atom C is far away, and there is the “new” B–C bond dis-
tance, limited to motion near equilibrium in the products region when atom A is
far away. Chemistry is what happens in the middle and we expect that the plot
looks schematically as Figure 5.1. It shows a stylized potential energy function

∗ A topographical contour map is a 2D plot of the height as a function of longitude and latitude.

We plot the potential as a function of the two bond distances. Computers easily allow you to make

a three-dimensional perspective plot of the potential as a function of two variables. Even for the

triatomic ABC system what we really want is to view the potential as a function of three variables.

We know of no easy way for doing so.
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Minimum energy path

V = 0

(A+BC)

V = −De(BC)

RA−B

R
B

−C

(AB+C)
V = −De(AB)

Figure 5.2 A contour map for the potential energy surface of Figure 5.1. The solid
lines are contours of given potential energy. The minimum reaction path is shown as
a dashed line. The entrance valley has a depth −V = De(BC), the dissociation energy
of BC (as measured from the bottom of the valley) and similarly for the exit valley. At
the saddle point (X) the potential energy is above that of either valley but below that
of the dissociation plateau, where both bonds are broken and the three atoms are far
apart from one another. It is customary to take the zero of energy as the energy of
the plateau.

drawn in a perspective three-dimensional form. The same function is displayed
as a contour map in Figure 5.2.

The “mountain pass” en route from the reactants to products (along the min-
imum energy route) is a dominant feature of such a surface, explaining why
the energy threshold for reaction is often much smaller than a bond dissocia-
tion energy. As pointed out by Eyring, Polanyi, and Evans in the early 1930s, a
chemical reaction, say

D + H H → H + H D

proceeds not by breaking the “old” bond and subsequent formation of the “new”
bond, but via the concerted motion of the nuclei in a continuous transformation
from the reactants’ to the products’ valley. The new bond forms as the old bond is
broken. A potential energy surface thus serves to mediate between the reactants’
and products’ configuration.

Because the reaction path passes through the local minima of the surface, the
potential energy increases when we deviate sideways from the path. Hence, near
the barrier the potential surface has the form of a saddle. The location of the
barrier is thus referred to as the saddle point of the surface (sometimes as the
col). The configurations about the saddle point are the transition state region.
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Figure 5.3 Potential energy profile along the reaction path for the collinear and for
a number of bent configurations of H3. Each one of these profiles is for a fixed value
of the approach angle as in the insert. From an ab initio computation with an
accuracy of better than 1 kcal mol−1 [adapted from P. Siegbahn and B. Liu, J. Chem.
Phys. 68, 2457 (1978) and the analytical representation4 by D. G. Truhlar and C. J.
Horowitz, J. Chem. Phys. 68, 2466 (1978)]. Note how the barrier height increases for
a sideways approach of the H atom to the H H axis. To interpret this, note that H3

has three electrons. In Section 5.1.4 we show that two can be placed in a strongly
bonding orbital extending over the three atoms. The third electron goes into an
orbital that becomes increasingly antibonding as the bend angle decreases.

The height of the barrier along the minimum reaction path is the lowest max-
imum of the potential between the reactants’ and products’ valleys. In classical
mechanics this height is therefore the minimal energy for a trajectory to go over.
Such a trajectory represents a possible motion of the nuclei during a reactive
collision. Of course, in an actual collision the three atoms need not be confined
to move on a line. The trajectory needs to be computed using the potential when
all three bond distances are allowed to move independently, subject of course to
the forces.

In Figure 5.3 we read that the lowest barrier in the potential for the H + H2

reaction is at the collinear configuration and its height is about 10 kcal mol−1.
For thermal reactants at room temperature only an exponentially small fraction of
collisions will have enough energy to cross the barrier (recall Figure 3.3). Reach-
ing the three-atom plateau is even less likely because it is about 100 kcal mol−1

higher than the reactants’ valley.
It is not invariably the case that the reaction is concerted with the new bond

forming as the old bond is being broken. Organic chemists are familiar with
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Figure 5.4 Ab initio computed potential energy surface and the corresponding
contour map for the collinear configuration of FH2.5 Energy in kcal mol−1 and the
zero of energy is taken here to be at the reactants’ well. The contour extending from
the reactants’ to the products’ region is at 3 kcal mol−1. Below it are contours at 1.5,
0, −5, −10, −15, −20 and −25 kcal mol−1 [drawn from the results of K. Stark and
H.-J. Werner, J. Chem. Phys. 104, 6515 (1996)].

so-called SN1 reactions,6 where the old bond is entirely or largely broken before
the new bond forms. We expect such reactions to have higher barriers because
energy is required to loosen the old bond before there is any gain in energy from
the formation of the new bond.

One of the most significant recent trends in quantum chemistry is the devel-
opment of computationally tractable schemes for the evaluation of three-atom
potential surfaces that can reach a kJ mol−1 accuracy. Such variational calcula-
tions must be better than Hartree–Fock (i.e., they must take into account electron
correlation) in order to be usable in the kind of dynamical problems in which we
are interested, where bonds rearrange.

5.1.2 The reaction path

To better understand the origin of a threshold energy for reaction consider the
“cost” in energy required to cross over from the reactants’ to the products’ regions.
We define a reaction path as the line of minimal energy from the reactant to the
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Figure 5.5 Potential energy profile along the reaction coordinate for an early,
midway, and late barrier. We show the two asymmetric cases as corresponding to an
exoergic and endoergic reaction. The correlation between location of the barrier,
shown by an arrow, and relative stability of reactants and products can be
understood on the basis of the Evans–Polanyi model that we will discuss. The
correlation shown is a useful rule of thumb, known in organic chemistry as
Hammond’s postulate. In structural terms this is sometimes stated as: the more
exoergic the reaction, the more the configuration at the barrier will be reactant-like.

product valley. Figure 5.3 shows the potential energy along such a minimum
energy path for the H3 system in the collinear configuration (which is the one of
lowest energy) and for several bent configurations. We note that the barrier along
this “energy profile” is relatively small, Eb

∼= 10 kcal mol−1, in the collinear
configuration. This barrier is less than 10% of the dissociation energy of H2. It is
the presence of a low-energy mountain pass between the reactants’ and products’
valleys that favors the concerted (i.e., bimolecular) mechanism of atom (or group)
transfer.

Figure 5.4 shows an ab initio calculated potential surface for a highly reactive
system: F + H2 → HF + H. For this very exoergic reaction we see that the
barrier is significantly smaller than for H3 and it occurs at a rather “early” stage
of reaction. Immediately beyond the barrier the potential energy drops rather
steeply. For such a reaction, the exoergicity is released early along the reaction
path and is available to be pumped into the vibration of the emerging new bond. A
surface with an early release of the exoergicity is often referred to as an attractive
potential energy surface. A surface of the opposite type, i.e., a late release, is
termed repulsive, see Figure 5.5. (Of course, if a surface is attractive for the
forward reaction it is repulsive for the reverse reaction.)

The F + H2 → HF + H potential shown in Figure 5.4 is an example of a quite
early barrier for a very exoergic reaction. As can be seen from the location of the
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barrier in terms of the two bond distances, the transition state region resembles
the reactants: the H H bond is hardly stretched and the F atom is still far from
the H atom it will depart with. We expect this to be the more common situation;
exoergic reactions have an early barrier as shown schematically in Figure 5.5. We
do not require a rule for endoergic reactions because their potential is the same
as that for the reversed exoergic reaction. So the more endoergic the reaction, the
later along the reaction path is the barrier. For the thermoneutral H + H2 → H2 +
H, Figure 5.3, the barrier is in the middle.

There is a hierarchy in what one can expect from quantum chemistry.7 At most
we want full, accurate, computations of potential surfaces for many-atom systems.
This is still not easy to do, but when it can be done the computation provides
not only the energy but also its gradient, namely the force.8 What is currently
realistic is to reduce the labor by restricting attention to the potential along the
reaction path. What is definitely possible is to examine only the stationary points
of the potential along this path. The results of such a computation are shown in
Figure 5.6 for the important combustion reaction9

C2H5 + O2 →




C2H4 + HO2

c-CH2CH2O + OH
CH3CHO + OH

As the reagents approach, some charge transfer from the hydrocarbon radical
to molecular oxygen takes place. The higher ionization potential of the radical
means that the transfer is only partial and occurs when the reactants are already
close in.

One new feature revealed in Figure 5.6 is that there can be more than one
barrier along the reaction path. Between two barriers there has to be a well, as
shown. Such a well corresponds to an intermediate. When this intermediate is
reached from the reactants then it is not stable because it has enough energy to
cross the barrier back to the reactants’ valley. The intermediate will be stable if
its energy is lowered so that it cannot dissociate.∗ Also seen in Figure 5.6 are
precursor states that are en route from the reactants to the barrier. These too will
be stable if drained of the energy that is available when they are formed from the
reactants.

In a large biological molecule such as a protein, the potential energy
landscape10 for its intramolecular motions is far richer than we can easily visual-
ize or even characterize. The interplay of chemical forces between bonded atoms
and longer-range forces between spatially adjacent atoms leads to a potential
function that is replete with local minima separated by both low and high bar-
riers. It is expected that there is a funnel region about the lowest energy state
so that a protein (unlike, say, a glass) can reasonably quickly fold to its natural

∗ This is not possible for an isolated collision but can be achieved if we intervene from the outside

and cool the intermediate.
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Figure 5.6 Five possible mechanisms for the C2H5+O2 reaction. The mechanisms
are distinguished by the different stationary points (both minima and maxima) along
the reaction paths [adapted from J. C. Rienstra-Kiracofe, D. Allen, and H. F. Schaefer
III, J. Phys. Chem. A 104, 9823 (2000)]. Higher-level quantum chemistry computations
can identify the configurations at the stationary points along these paths of
steepest descent and determine not only their energies but also the forces that
act on the atoms (Pulay, 1995; Pulay and Baker, 2001). Density functional methods
can then be used to determine the potentials (and forces) along the minimum
energy paths connecting the stationary points and even map the entire potential
energy surface, for use in dynamical computations [see, for example, Kohn et al.
(1996), Tse (2002)].

state. But there are also numerous (exponentially many in the number of amino
acids) secondary minima.11 We will come back to this when we discuss molecular
machines in Section 6.2.4.

*5.1.2.1 Input from spectroscopy of large-amplitude motions
For stable molecules, the potential energy in the vicinity of the well is determined
experimentally by spectroscopic means. Increasingly, spectroscopy is providing
access to outer reaches. Overtone spectroscopy directly pumps higher vibrational
states. The method relies on deviations from the harmonic approximation, but
the higher up we go the weaker is the transition strength. Overcoming this lim-
itation is possible by promoting the molecule to an excited electronic state that
has a different equilibrium configuration. This state will emit light and one can
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Figure 5.7 Extracting information about the potential energy surface from the light
emitted by electronically excited CH3I as it is falling apart following laser excitation
from the ground state. An interpretation of the emission spectrum is provided using
a contour plot of the excited state potential as a function of the C I stretch
coordinate and the umbrella-bending mode of CH3. The photoexcitation promotes
the molecule to the spot shown. From this region the (mean) motion traces a
trajectory represented as a heavier line. The trajectory shows that early in the
photodissociation process, CH3I∗ → CH3 + I, it is the C I bond that elongates. Later,
the CH3 group that is initially pyramidal flattens to a planar configuration. The
different configurations of the molecule are shown as snapshots above the plot. The
sequence of events is inferred* from the nature of the emission and the
Franck–Condon principle as discussed in Section 7.01 [adapted from Imre et al.
(1984); B. R. Johnson et al., J. Phys. Chem. 100, 7743 (1996)].

enhance the signal by stimulating the downward transition, see Chapter 7. It is not
necessary that the excited state be stable. Figure 5.7 shows the potential inferred
from the emission of light from a CH3I molecule as it is falling apart on an excited
repulsive state.

* In doing so it should be remembered that the emission depends not only on the potentials but also

on the variation of the electronic transition dipole with the position of the nuclei.
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The analysis of the light emission experiment provides a trace of the mean
path (heavy line) followed by the dynamics. The trajectory shown in Figure 5.7
takes a wide oscillation about the umbrella-bending mode of CH3, indicating that
this mode is born highly excited. There is an important lesson: the reaction path
is a key idea but the actual motion is under no obligation to follow it. We will
return to this lesson.

5.1.3 Semi-empirical potential surfaces

Quantum chemical computations can provide the main topological features of
the surface for systems of chemical interest and can even map the complete surface
for the simpler, fewer-atom systems. There is still a computational barrier to the
generation of purely theoretical potentials for larger systems and there is another,
seemingly trivial but all the same real, problem. The potential is a function of the
bond distances. The computations provide the potential (and its gradients, namely
the forces) for different configurations. It is not easy to store and recall a function
defined over discrete points. It would be much better to fit the computations to a
functional form. Getting a flexible enough form is sometimes a challenge.∗

A simple empirical functional form is the use of “switching functions.” It is
based on the realization that the surface in effect switches off the old bond and
switches on the new one. For the simple case of a surface for the A + BC →
AB + C collinear reaction

V (RBC, RAB) = VBC(RBC) f1(RAB) + VAB(RAB) f2(RBC) incomplete (5.1)

Here VBC and VAB are the spectroscopically known potentials of the stable
diatomics, and the switching functions f1 and f2 range from zero to one, increasing
to unity for large values of their argument. Such a form correctly describes the
asymptotic form of the potential (and hence the correct overall energetics) and
brings out explicitly the concept of the potential surface as the mediator between
reactants and products. We have to guess at the switching functions but more than
that, Eq. (5.1) misses a three-body term, sometimes called a mixing term, that
insures the potential has a central barrier and has the correct stereochemistry.

The use of known diatomic potentials to estimate the three-atom potential
function is at the heart of the so-called London–Eyring–Polanyi(–Sato) (LEP(S))
method. This is a semi-empirical scheme based on the London equation, originally
intended to deal with four one-electron S-state atoms. In its most primitive form,
we begin by writing the potential between two atoms as a sum of a coulomb (Q)

∗ As an alternative there is the approach that gives up trying to have a global form of the potential.

Instead, it computes the potential at those configurations where it is of interest or where it is called

for during a dynamic computation. The latter is known as computing on the fly because the potential

is determined as we are flying over the potential landscape. (We are over rather than on the potential

because our height is the total energy. It is the sum of the kinetic and potential energies.)
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Figure 5.8 A conical intersection in H3 plotted using the two LEP(S) potential
functions, Eq. (5.3). The lower surface corresponds to the ground state reactants.
The upper surface is the other solution of the LEP(S) potential. The plot is for H3 in a
triangular configuration. The H H distance that is the base of the triangle is held
constant at 1 while the other two distances are allowed to vary. The intersection
occurs where all three bond distances are equal. In this manner of plotting, every
displacement leads away from the intersection and, for small displacements, the
energy varies linearly thereby generating a conelike structure. A conical intersection
provides an efficient funnel out of the excited and into the ground electronic state.
Passage between the two potentials is very much aided by a conical intersection
because transitions between two electronic states are (exponentially, see Chapter 9)
more likely the smaller is the energetic gap between the two potentials. Therefore, a
system prepared on the upper state is funneled by a conical intersection into a
localized region of the lower potential energy surface, in the very vicinity of the
apex. Entry into the lower state via a conical intersection offers a way for
starting the subsequent dynamics on that state with a rather restricted range of
initial conditions.

and an exchange (J) term:12

V (RAB) = QAB ± JAB (5.2)

Both Q and J are functions of R that tend to zero for very large R. We need two
equations so as to separately determine Q and J. When the singlet, ground state,
potential, and repulsive triplet potential (that correlates to ground state atoms)
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are known,13 we assume that both known potentials can be expressed as Eq. (5.2)
taking the positive and negative sign respectively. This determines J and Q.

When three atoms are in close proximity, the LEP(S) potential function is

VABC = QAB + QBC + QCA

± (1/2)1/2 [ (JAB − JBC)2 + (JBC − JCA)2 + (JCA − JAB)2] 1/2 (5.3)

When one atom is removed to infinity, the coulomb and exchange terms for the
two broken bonds vanish and Eq. (5.3) reduces to (5.2).

5.1.3.1 The conical intersection for the LEP(S) potential
The LEP(S) functional form provides an explicit example of a conical intersec-
tion. Generally, the two surfaces represented by Eq. (5.3) are quite far apart.
The lower surface has a barrier for atom exchange. The upper surface has a well
corresponding to a bound but electronically excited ABC molecule. The conical
intersection is when the barrier reaches all the way up to the bottom of the well,
Figure 5.8.

To examine the intersection, consider for simplicity the case of three identical
atoms. Then the coulomb and exchange integrals for all three pairs have the same
functional dependence on the distance. At any equilateral configuration of the
atoms the square root term in (5.3) must therefore vanish and the upper and lower
roots merge. Now make a small displacement from the equilateral configuration.
If the displacement is small, the exchange integrals differ by a term linear in the
displacement.∗ Therefore, about the intersection point, the two surfaces decrease
and increase linearly. This linear divergence is like two cones joined at their apex:

Of course, further away from the intersection the divergence need not be linear.
Also, please do not be misled. The intersection need not be a point. It occurs along
the entire surface defined by the condition that the square root term vanishes.
For three atoms, the configuration space is three-dimensional so the intersection
occurs along a two-dimensional surface.

∗ Keep the AB and BC distances at the same value R and increase the AC distance by δR. Of the three

terms in the square root in Eq. (5.3), the first vanishes and the other two are equal to one another

and to (J(R)δR)2, where the prime denotes the derivative. Hence the two values of Eq. (5.3) differ

by J(R)δR.
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Figure 5.9 A curve-crossing model for a potential energy along the reaction
coordinate, for a somewhat exoergic reaction. Each solid curve is the potential when
the electronic state is constrained to be either that of the reactants or that of the
products. So if we fix the state as that of A + BC but bring the nuclei to AB being near
and BC being far apart, the energy is high because we broke the BC bond but did not
compensate by the formation of the AB bond. The (ground) adiabatic potential is
shown as a dashed line.* It changes smoothly from the reactant BC being bound to
the bound AB product. Within this Evans–Polanyi type model, it is easy to visualize
how the location of the barrier shifts if the reaction is made less exoergic. See
Figure 5.5 and Problem G.

5.1.4 The Evans–Polanyi model

A considerableamount of work has been done on the properties of semi-empirical
surfaces. There is evidence to suggest that in a family of related reactions of
decreasing barrier heights, the location of the barrier occurs correspondingly
earlier along the reaction coordinate, as is summarized by the Hammond postu-
late. Moreover, in a family of related reactions, the barrier height decreases with
an increase in the reaction exoergicity. The curve-crossing model as discussed
in Section 3.2.4 has been used by Evans and Polanyi to rationalize these correla-
tions. It has found many applications in organic chemistry,14 and we will return
to it also for a unified approach to the role of solvent and solute interactions in
Chapter 11. The feature that we emphasize here is the crossing taking place along
the reaction coordinate, Figure 5.9. As in any curve-crossing model, we start with
potential curves for the system in a frozen diabatic electronic state. These are not
necessarily the Born–Oppenheimer (or adiabatic) electronic states because we
do not allow the electrons to fully adjust to the motion of the nuclei. Instead,
we restrict the states accessible to the electrons. In the Evans–Polanyi model
we take the two states as the electronic states corresponding to the reactants

* The variational principle of quantum mechanics tells us that when the wave function is made

more flexible, the energy of the ground state goes down (or stays the same). The dashed line in

Figure 5.9 is an example of this general result because it results from allowing the electrons to fully

adjust to the position of the nuclei.
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A + BC and the products AB + C. In other words, as we move along the reaction
coordinate we respectively do not allow the new bond to be formed or, starting
with the state of the products, we do not allow the old bond to be formed. The
adiabatic potential, the one where we freely allow the electrons to adjust to where
the nuclei are, is different, and it is shown in Figure 5.9 as a dashed line. More
on this model in Chapters 6 and 7.

5.1.5 The cone of acceptance: qualitative considerations

We have already discussed the origin of the steric effect in chemical reactions as
due to preferential orientation at the barrier to reaction. In Figure 5.3 we show
that the barrier of the H + H2 reaction is lowest for the collinear configuration.
Thus, at collision energies only slightly higher than the barrier, the preferred
orientation for reaction is expected to be essentially collinear. As the collision
energy increases, the range of “acceptance angles” for reaction increases, that
is, the cone of acceptance opens up. The line-of-centers model introduced in
Section 3.2.7 interprets this as showing that a greater range of impact parameters
can then contribute to reaction at a higher energy.

The results for the angle-dependent barrier to reaction shown in Figure 5.3
are based on accurate ab initio computations. Can one, however, understand the
origin of the orientation dependence from simple ideas of chemical bonding? This
is important not only for its own sake but also for demonstrating that electronic
structure theory provides a unified approach encompassing chemical reactivity.

A simple interpretation of the bonding “during” a reactive collision can be
obtained via the standard molecular-orbital approach. The molecular orbitals
(MOs) are constructed as a linear combination of atomic orbitals (AOs). The
number of independent MOs is equal to the number of AOs used. To arrange
these MOs in order of increasing energy, we note that when an MO acquires
another node, its energy is higher. Once the order of the orbitals is established,
the electronic configuration is determined by assigning two electrons (of opposite
spin) to each MO, starting with the one lowest in energy, until all electrons are
assigned.

To discuss the H + H2 system, consider first the H2 reagent. Using a 1s AO on
each H atom (denoted by a sphere), we have two independent linear combinations:

s∗(1s)

s(1s)

The dots represent the nuclei and the shading defines the sign (sometimes known
as the phase) of the atomic orbitals. In the σ orbital, the two 1s functions have the
same sign. Therefore this MO has no node and hence it is a low-energy bonding
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orbital. In the σ ∗ MO, the two atomic functions have opposite signs. There is a
node midway between the two nuclei so the energy of the σ ∗ orbital is higher
and it is called an antibonding orbital. The ground state configuration of H2 is
σ (1s)2.

Now let an H atom (with its 1s orbital) collinearly approach H H. The 1s
orbital can add, with the same sign or with an opposite one, to either σ or σ ∗:

H   H   HH   +  H   H

The in-phase addition to σ gives rise to a lowest (node-free) MO of H3. The out-
of-phase addition to σ ∗ (producing a node at each bond) gives rise to a strongly
antibonding MO, one with two nodes. The two middle “alternatives” shown in
the left column are really the same: a node at one H H bond, no node at the other.
An alternative description is to add them together so as to have the orbital picture
on the right, which shows that this orbital is somewhat antibonding: it has a node
midway between the two end nuclei.

Three electrons are to be assigned: two go to the lowest, bonding orbital; the
third is assigned to the higher-energy, somewhat antibonding orbital. We expect
a small energy barrier for the collinear approach of H to H2.

Next, let the H atom approach at an angle (<180◦) with respect to the H H
bond. The corresponding orbitals for H3 are pictured as follows:

The energy of the bonding orbital is not greatly affected by the change in the H3

bond angle. But the middle, singly occupied orbital, that was a somewhat anti-
bonding orbital, is now more strongly antibonding, because its node is between
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two nuclei that are now nearer to one another and so it screens them less. The
electron assigned to that orbital will thus have a higher energy. Therefore, the
barrier to a sideways approach of H to H H is higher and should increase
monotonically as the bond is bent further. The detailed computations (e.g., see
Figure 5.3) verify this qualitative conclusion.

A computation-free test of our considerations is the case of the H+
3 ion, where

only two electrons need be assigned, and they go into the lowest bonding orbital.
We thus expect that H+

3 will be a stable species and, moreover, that H+ can
approach H2 from all directions. Such is indeed the case. Are the dynamics of the
H+ + H2 going to be simpler than H + H2? Unfortunately, no. There is a second
potential that correlates asymptotically to H + H+

2 . The two surfaces can cross
and the dynamics is not electronically adiabatic.

*5.1.5.1 From structure to reactivity: on orbital steering
Let us get further into chemistry. The purpose is to show how considerations of
electronic structure that were tested for the geometry of stable triatomic molecules
can be used to understand the configuration of the transition state. We will want
even more, namely how the orbitals steer the approach to the barrier. As an exam-
ple consider the approach of a hydrogen atom to a halogen molecule, beginning
with a homonuclear one, say Cl2. Again, let the initial approach be collinear, say
along the z axis. The 1s, 2s, 2p, and 3s Cl orbitals are far too low-lying in energy
to interact with the 1s H orbital. In our simplistic approach only the 3p orbitals
are relevant. Of the 3p orbitals of each Cl atom, two are orthogonal to the Cl2
bond and hence, by symmetry, do not interact with the spherically symmetrical
1s H orbital, which approaches along the z direction. Only the σ (3pz) and σ ∗(3pz)
orbitals can be combined with the 1s H. To construct the HClCl orbitals, consider
the available Cl2 orbitals

s∗(3pz)

p∗(3px) and p∗(3py) 

p∗(3px) and p(3py) 

σ(3pz)

CI CI−−

Next add the 1s H orbital in- and out-of-phase, using only the σ (3pz) and σ ∗(3pz)
orbitals:
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4s∗

3s∗

2s

CI CI ClCl

primarily

--H H+

As in H3, we have three independent MOs made out of three atomic ones, 1s on
H and 3pz on each of the Cl atoms. In contrast to the H3 case, here it is found
that the middle orbital is primarily bonding on H Cl and antibonding on Cl Cl,
rather than “equal mixture” as in H3. The rationale is, of course, that the H Cl
bond is stronger than the Cl Cl bond.

Each Cl atom has five 3p electrons and H brings one for a total of 11: two
are in the bonding HClCl orbital, four are in the bonding π (3px ) and π (3py) Cl2
orbitals, and another four in the antibonding ones. Thus 10 electrons have been
assigned. As in H3, the remaining odd electron is assigned to the middle orbital
of HClCl, that is, the orbital that is antibonding on Cl Cl but bonding on H Cl.
It is a singly occupied molecular orbital (SOMO), just as in H3. Therefore there
should not be a large barrier for collinear approach and the energy release upon
reaction should be as a repulsion between the two Cl atoms.∗

Say now that the H atom approaches Cl2 sideways, in the x–z plane. The
π (3py) MO remains orthogonal to the plane and hence by symmetry, is indif-
ferent to the approaching 1s H atom. Not so for the π (3px ) and π∗(3px ) MOs
of Cl2. In particular, the π∗(3px ) acquires strong H Cl bonding character and
hence is considerably stabilized. The stabilization of the π∗(3px ) orbital is coun-
tered, however, by the less efficient overlap in the 2σ orbital. Will a collinear
or a bent H + XY intermediate be more stable? Here we require real quantita-
tive computations. An example of the results of such computations is shown in
Figure 5.10 for the simpler case of the F + H2 reaction. It is seen that the energies
of several MOs change with the approach angle.

∗ The HClCl complex will thus dissociate along the Cl2 bond axis. The products’ scattering angle is

then the angle that the Cl2 bond makes with the initial relative velocity. Since the H atom is light

and usually fast moving, the Cl2 molecule will not rotate much during the interaction time. For

H + Cl2 the angle of scattering of the products is therefore indicative of the preferred approach

geometry. Experimentally, the HCl product is found to be backscattered, that is, the HCl rebounds,

consistent with the prediction of a nearly collinear preferred approach.



5.1 Potential energy functions and chemical reactions 167

Px Py Pz

3s (SOMO)

SOMO

H

1px 1py

2s

sg

3s

1p

H----

H H----

H H----

H H----

FHH bend coordinate

180°

−18

−16

90°

E
ne

rg
y 

(e
V

)

Figure 5.10 Understanding the barrier and its orientation dependence for the
F + H2 reaction. Left: molecular orbital interaction diagram. The 1s and 2s orbitals of
F are too low down in energy and are essentially uninvolved and not shown. For a
collinear approach along the z axis, the px and py orbitals of F are orthogonal to the
σ orbital of H2. In terms of their symmetry they are labeled as 1a′′ and 3a. The pz

orbital of F interacts with the σ orbital of H2 forming a bonding, 2a orbital and
antibonding, 4a orbitals. The latter is the SOMO and its energy increases when the
molecule is bent. The variation with bond angle of the energy of the MOs is shown
on the right. Also shown (dashed line) is the sum of the energies of the MO showing
a preference for a collinear attack. Note however that there is a delicate balance
because if the atom is a shade more electronegative, e.g., Ne+, then the energy of
the bonding, 2a, orbital will decrease faster with bending and the lowest barrier can
be for a somewhat off-collinear configuration [adapted from D. M. Proserpio, R.
Hoffmann, and R. D. Levine, JACS, 113, 3217 (1991)]. Walsh diagrams, as shown on
the right, are useful for understanding the geometry of bound molecules (Walsh,
1953). They can also be used to advantage in understanding the origin of steric
effects in reaction dynamics. See Herschbach (1973), Mahan (1975). This application
of Walsh diagrams reminds us that the same forces operate in bound and unbound
molecular systems.

One aspect of the general H + XY case that still allows for a qualitative dis-
cussion is which “end” of the heteronuclear molecule will the H atom attack pref-
erentially? To answer that, we note that in a heteronuclear diatomic the bonding
MO is more localized on the more electronegative atom, whereas the antibonding
MO is more localized on the atom that is less electronegative. Now the crucial
orbital (3σ ∗), which governs the approach geometry, is essentially an in-phase
linear combination of the 1s H orbital with the σ ∗(3p) antibonding XY orbital,
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localized on the less electronegative atom. The H atom will therefore preferen-
tially approach the less electronegative halogen atom. Thus, for the reaction of H
and ICl, HI will be preferred over HCl as the principal product. (This is despite
the obvious fact that the reaction to form HCl is more exoergic!)

Qualitative considerations cannot replace detailed computations of the height
of the barrier vs. the approach angle; however, such arguments do provide valuable
insight and also must serve as guides for more complex systems. For such many-
atom systems one also must not overlook the role of atoms or groups that are
“in the way” and block the entrance. These repulsive interactions can, at zeroth
order, be well anticipated on the basis of molecular models, cf. Figure 1.4, or,
more quantitatively, using molecular mechanics (Davidson, 1993), a method that
assigns sizes to atoms and bonds. At the same time we must note a recurring motif
in many-atom systems: molecules are not rigid and they can and do adjust to the
approach of a reactive reactant. During a reaction, substrates are more flexible
than our conventional chemical upbringing, with its emphasis on rigid structures,
prepares us for. New bonds form during the reaction and these can modify the
preferred geometry.

5.1.6 The steric effect: the polar map representation

An often-used representation of the steric effect is by a polar map, showing
equipotential contours as a function of the angle of orientation of the approaching
atom with respect to the molecule. Figure 5.11 shows such a plot for the approach
of Cl to HI (based on a semi-empirical surface for the Cl + HI → I + HCl
reaction). The bond distance in HI is held constant (at its equilibrium value) as we
vary the distance and orientation. The contours show clearly the steric hindrance
to the H-atom abstraction by the bulky iodine atom, leaving only a narrow cone
of approach along which the chlorine can approach the small hydrogen atom and
abstract it. In the course of an actual reaction, the HI distance gradually increases
as the Cl approaches, so such a polar map is not quite a complete indication of
the steric requirements. In general one expects that the cone of acceptance will
open up when the old bond is stretched.

5.1.7 Stable and unstable polyatomics

The potential energy function for a stable polyatomic molecule must exhibit a
well. The bottom of the well is the equilibrium geometry of the bound molecule.
At low vibrational energies the motion of the atoms is confined to be near the
bottom of the well. As the energy is increased the molecule vibrates more vigor-
ously and can access higher-up regions. At sufficiently high energy a molecule
can dissociate. It follows that the well must connect to one or more exit val-
leys. If there is a barrier between the well and the exit valley then the threshold
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Figure 5.11 A polar representation of a potential contour map for the ClHI system,
based on a semi-empirical LEP(S) computation. The potential energy contours
(energy in kcal mol−1) show the dependence of the potential on the approach angle
γ of the Cl, at fixed H I separation. The dashed line shows the cone of approach
within which the chlorine can abstract the H atom [adapted from C. A. Parr, J. C.
Polanyi, and W. H. Wong, J. Chem. Phys. 58, 5 (1973)].

energy for dissociation is higher than the bond energy. Otherwise, the two are
equal.

The wells along several potential energy profiles as shown in Figure 5.6 are
therefore not unexpected. We should anticipate that, in general, more than one
barrier occurs along the reaction coordinate. Between any two such barriers there
is necessarily a well. If the total energy of the system is above the barrier, its
motion is not confined to the well region. But at a lower energy the system must
stay in the well; it is bound. Of course, such a truly bound system cannot be formed
in an isolated collision starting from either the reactants’ or products’ side. Such
starting conditions, plus the requirement that we reach the well, necessarily imply
that the energy is higher than the barrier. But once we reach the well region the
system can be stabilized, say by collisions with a third body. Stable bound states
are therefore routinely well known.

We shall come to think that direct reactions are typical for a single barrier along
the reaction coordinate. A well along the reaction coordinate means complex
dynamics. For direct reactions we needed considerable ingenuity to initiate the
reactants in the middle of a collision. Not so when there is a well. A suitable
starting configuration is readily available. What we need to do is to supply
the energy required so that the stable bound state can dissociate. This is what
we usually call a unimolecular reaction. No wonder there is a rich literature on
this and related subjects, as we discuss throughout Chapters 6 and 7.
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5.1.8 Collision-induced dissociation

At higher translational energies it becomes possible for the actual reaction tra-
jectories to deviate increasingly from the minimum energy path, and eventually
it is energetically unnecessary that the system exits along the product valley at
all. Provided that the available energy exceeds the thermochemical requirement
(the dissociation energy of the reactant molecule) the atoms can separate, i.e., the
“system” can exit to the plateau corresponding to the free atoms.

One well-studied example is the reaction of H+
2 with He, which for E < 2 eV

proceeds mainly to HeH+ + H but for E > �E0
∼= 2 eV goes almost exclusively

into dissociation:

H+
2 + He → H+ + H + He

This is also an illustration of our rough correlation of energetic effects: as the
translational energy is increased, newly allowed reaction paths take over at the
expense of the old ones.

5.1.9 On to energy requirements and energy disposal
of chemical reactions

We have learned to recognize energy to be a factor of central importance in the
dynamics of chemical change. Energy is needed to drive the reaction forward;
energy determines the magnitude of the cross-section or reaction rate and the
branching between different possible final states; energy governs the details of
the collision trajectory and energy is what we can get out of the products. To make
such a discussion quantitative we need to know how one calculates the collision
dynamics on a given potential. At the same time we continue to seek to correlate
qualitative surface features (such as a well) with important dynamic effects (such
as a sticky collision). We can thereby infer the major features of the surface from
the observed dynamics.

5.2 The classical trajectory approach to reaction dynamics

5.2.1 From the potential surface to the dynamics

Classical mechanics provides a direct route from the potential energy surface to
the dynamics of the collision, namely, the (numerical) solution of the classical
equations of motion for the atoms. The solution uses Newton’s law of motion to
determine the position of each atom as a function of time. This output is known
as a trajectory. It allows us to visualize how each atom moves as the reaction
is taking place. Trajectory computations are carried out for two purposes. First,
as a diagnostic of trends, i.e., features of the dynamics arising from different
features of the surface or from changes in reactants’ energies, masses, and so
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Figure 5.12 Comparing experiment and a classical trajectory simulation for the
angular distribution of state-selected HD molecules from the H + D2 → HD(v ,j ) + D
reaction at an initial translational energy of 1.64 eV [adapted from Fernandez-Alonso
and Zare (2002)]. The experiment determines the angular distribution of HD in a
definite final vibrational and rotational state (shown to be backward scattered for v =
3, j = 2) as a function of scattering angle with respect to the incident H atom. It is the
higher initial translational energy that allows higher rovibrational states of the HD
product to be populated. The classical trajectory computations are seen to mimic the
observed distribution of final outcomes. This is because certain classical variables,
such as the initial impact parameter, have a range of possible values. Each classical
trajectory has definite initial conditions. We therefore need to run many trajectories
to generate the required distribution, as is discussed further in Section 5.2.2.

on. Second, to investigate particular reactions for the purpose of accounting for
observed chemical dynamical behavior or reaction rate or for anticipating exper-
imental results. Before discussing the main results of diagnostic studies we need
to elaborate below on the point that a classical trajectory describing the collision
has definite starting conditions and these lead to a definite outcome. To generate
the distributions, say over an angle, that are measured in an experiment one must
generate an ensemble of trajectories that mimics the experimental distribution
in initial conditions. In this way we can simulate all the non-quantal features of
the reaction dynamics15 as shown, for example, in Figure 5.12. This section is
not a manual on how to generate such plots, but a discussion of a few essential
principles.

The essence of the procedure is to choose a set of initial conditions and solve
the classical equations of motion for each atom. In other words, one computes
the time-development of the coordinates of each particle by solving the Newton
second-order-in-time differential equation of motion. To do so we need the force
acting on each atom. The force is computed as the change in the potential when
that atom is displaced. Here is where we need to know the potential as a function
of the positions of the atoms. An equivalent method for generating a trajectory
is to solve Hamilton’s equation for the position and the momentum. There are
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Figure 5.13 Plot of a collision trajectory for a reactive collision of the “direct” type
(the time scale is that for the H + H2 reaction). The collision is direct because of the
fast switchover between the old and new bonds. Note also the vibration of the
reactant BC molecule prior to the encounter with the reactant atom and the
low-amplitude oscillation of the newly formed AB bond, indicating only a minimal
product vibrational excitation. To interpret the dynamics recall that the slope of a
plot of distance vs. time is the velocity. From Newton’s first law, a change in the
slope in such a plot indicates that a force is acting.

twice as many equations, but the equations are first order in time so we need just
as many initial conditions as when we use Newton’s second-order differential
equations.

Computers allow us to exhibit a single trajectory as a movie showing the actual
atoms as they move. One can also have a poor person’s movie, namely a set of
snapshots of the atoms at different times.∗ A simple and instructive alternative is
to plot the interatomic distance Rij(t) for a pair of atoms i, j vs. time, as shown in
Figure 5.13 for a three-particle system.

The idea of a direct reaction, one that is over in a vibrational period as seen
in Figure 5.13, was not quite what chemists expected. It was somehow felt that
chemical rearrangement is more protracted. The interpretation of the early experi-
ments probing the dynamics of direct reactions, such as those discussed in
Chapter 1, received further support from trajectory computations.

∗ At the other extreme, if you have access to a virtual reality room you can view the reaction taking

place in the space around you.



5.2 The classical trajectory approach 173

Along the trajectory one knows the position and velocity of each atom. These
completely specify the mechanical state of the system, so it is possible to compute
all the observables of interest. But this determinism carries with it an implication.
A classical trajectory has a completely definite outcome. The collision is either
reactive (meaning that the new bond distance is short whereas the old bond
distance is long) or it is not reactive. The products come out in a definite angle.
Their internal energy is sharply defined, and so on. What gives rise to all the
distributions that we have been talking about?

5.2.2 The need for averaging trajectory results

The trajectory shown in Figure 5.13 corresponds to a particular choice of initial
values for the coordinates and velocities of the participating atoms. To obtain
quantities of physical interest (such as cross-sections, rates, etc.) it is necessary
to average over some or all of these initial conditions. For example, to determine
the opacity function, P(b), at fixed energy E, it is necessary to average over all
possible initial orientations of the reactants at the given b. We have already seen
(Section 3.2.7) how this averaging leads to the concept of a steric factor, that is,
P(b) < 1.

The sampling of initial conditions for the purpose of executing an average
over them is often done by a so-called Monte Carlo (i.e., a random selection)
procedure. Thus the computation of the observable dynamical quantities by the
use of averages over classical trajectories is often referred to as the Monte Carlo
method. We describe the technical essence in Appendix 5.A and here we discuss
the reason why averaging over the initial conditions is inherently required.

An essential difference between classical and quantal mechanics is the number
of initial conditions that need to be specified if the initial state is to be fully defined.
In classical mechanics one must specify both the position and the momentum for
each degree of freedom. In quantum mechanics the uncertainty principle implies
that if, say, the momentum is well specified, the value of the position can be
anywhere within its possible range. Since molecules are inherently quantal, a
complete specification of initial conditions for a collision in a system of n degrees
of freedom consists of n quantum numbers. In contrast, a classical trajectory for
the system requires 2n initial conditions. The method of classical trajectories
mimics this quantal aspect by running many classical trajectories where, of the
2n initial conditions, n are held constant (the same n that correspond to the quantal
case) while the other n are allowed to vary. The final outcome is determined by
averaging over those initial conditions that are varied. We refer to these initial
conditions that need to be inherently averaged over as the phases.16

In conclusion, there are two separate reasons why we need to run many trajec-
tories and then to average over the results. One is inherent. A classical trajectory
is necessarily specified beyond what quantum mechanics allows and therefore
corresponds to an initial state that cannot be realized in the laboratory. We can
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mimic the quantum uncertainty by the so-called quasi-classical method of gen-
erating many trajectories and only looking at the averaged results. The second
and additional reason for averaging is practical. In the laboratory one seldom pre-
pares a fully (quantal) state-selected initial state. We would like to, but it is often
just not practical to realize this wish. A clear example is that we typically do not
select the angular momentum quantum number l or its projection, m. In classical
language, we sample all values of the impact parameter b and all orientations of
the plane of the collision. As we discussed, this experimental reality requires us
to average over those initial conditions that could be selected, but were not. For-
tunately, both needs to average can be combined in one procedure and the Monte
Carlo method, Appendix 5.A., offers a practical procedure for doing so. Thereby,
classical trajectories can provide the most exquisite details about the dynamics,
as was shown in Figure 5.12 for the highly resolved final state distribution in the
reaction H + D2 → HD + D.

*5.2.2.1 Chaos and longer time evolution of the quasi-classical
trajectory method
Even within classical mechanics there are a number of limitations on the descrip-
tion of the dynamics using numerically generated classical trajectories. Surpris-
ingly, the sheer number of atoms is not, in itself, a limitation. One can, given
a very modest workstation, keep track of the motion of a very large number of
atoms, enough even for the description of biological processes. Experts can han-
dle millions of atoms so that, e.g., the behavior of bulk matter under extreme
disequilibrium (fracture, turbulent flow, and so on) can be simulated. What is
computationally challenging is not the solution of a large number of differential
equations of motion that are coupled (because the force on one atom depends on
where the other atoms are). What often is the slowest step is the computation of
the forces.17

There are several important limitations on what one can do with classical
trajectories. An important one is technically known as deterministic chaos.18 The
characteristic of chaos that is relevant here is the sensitivity to initial conditions.
This means that two trajectories that start with rather similar initial conditions
(= positions and velocities of the atoms) end up after the collision with rather
different outcomes, up to that, one trajectory is reactive and another, with a rather
similar starting point, is not.

On the one hand, chaos is good news. It explains the sense in which a classical
mechanical system can forget where it came from.19 It implies that unless the
initial conditions are fully tightly specified, the longer-time outcome is not totally
determined. Initial classical conditions can never be truly fully specified because
this calls for keeping an infinite number of digits for each number (position and
velocity) and, in any case, quantum mechanics implies a necessary fuzziness in
the classical initial conditions. Further, a real experiment will have even more
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averaging on initial conditions. The more averaging, the more statistical is the
result likely to be. We shall come to find that this is an important consideration.
Averaging over initial conditions averages over details in the outcome and makes
the results look less specific.

Chaos is bad news if one wants numerically to integrate the equations of
motion. Two aspects contribute. One is the necessarily finite precision with which
the initial conditions are specified and the other is the inevitable numerical error
(due to the finite precision of the algorithm and the computer round-off of digits)
in any time propagation step. After some propagation time it is no longer certain
that the trajectory that is being propagated is indeed the one starting from the
specified initial conditions. The only check is to reverse the directions of all the
velocities and to integrate back in time. If one (approximately) recovers the initial
conditions, all is well. Typically, if the reaction is direct, this check will work. But
if the dynamics is not direct and, in general, if the integration time is long, the
trajectory will not integrate back. Hence the problem, in many-atom systems the
method of classical trajectories is only useful for relatively not too long times:
times that are definitely long on the inherent scale of a vibrational motion but
short on the scale of bulk interest such as the time interval between collisions.

In the face of chaos the option that we recommend20 is to initiate the dynamics
at the configuration of interest, which need not be that of the separated reactants.
For example, if we have a barrier with wells on either side, as in Figure 5.6,
and one needs to understand the dynamics, start the integration at the barrier.
Similarly, if one wants to simulate the role of the solvent in barrier crossing, start
the (solvated) reactants in the transition state region.

For long-time evolution of a many-atom system it is probably best to recognize
that a large subset of all degrees of freedom is not strongly coupled to motion along
the reaction path and to other primary degrees of freedom. They can therefore be
thought of as “secondary” or “solvent” modes, meaning that they act as a bath
for the primary degrees of freedom. Many-atom systems of biological interest
are in a real sense solvated. Similarly, for example, for a chemical reaction taking
place on a surface. The role of the bulk of the solvent (the part of the environment
that is not strongly coupled as well as effects due to other intramolecular degrees
of freedom) can be mimicked by Brownian (or Langevin) dynamics.21 These
are equations of motion for the primary degrees of freedom that allow for the
role of the other degrees of freedom (= the environment) through introducing
a frictional or dissipative force that drains energy out of the primary degrees
of freedom. But if this is uncompensated for then the motion in the primary
degrees of freedom will eventually come to a stop. So, in addition to the persistent
friction, the Langevin equation of motion includes a fluctuating force due to the
environment that can restore energy to the primary system. The combination of
a frictional and fluctuating force insures that at long times the system reaches
thermal equilibrium.22
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5.A Appendix: Monte Carlo sampling

The advantages of Monte Carlo sampling are familiar to us because we are
constantly exposed to the results of polls of public opinion. In a tightly con-
tested election, pollsters approach just over 500 representatively chosen persons
to get a reasonably reliable (reported as <5% uncertainty) prediction. What is
the secret?23 How can such a small sample reliably predict the outcome of a
country-wide election? The point is that the pollsters ask a single yes/no question
where the answers are about equally likely. They do not seek to check if a yes
answer correlates with the gender of the person nor with her/his income level, etc.
Nor do they ask about fringe candidates. If they did any of this, they would need
a much larger poll. The empirical observation is therefore that a simple yes/no
question needs a relatively small sample to provide an approximate but reliable
prediction. Rather than the major effort of asking everybody, we accept a small
sampling error and ask far, far fewer people.

How does this apply to our problem? What we want to do is to properly sample
the initial phases. Take the simplest case, A + BC. Excluding the center of mass,
we have six degrees of freedom. Therefore, six phases need to be sampled.24

Say we plan to do so systematically. A phase angle spans the range 0 to 2π , so
ten different values of the initial phase is a reasonable minimal sample for each
degree of freedom. But there are six different coordinates and a full specification
of initial conditions means choosing a value for each phase. So the sample has
to have 106 systematically chosen different initial conditions. If all we want is an
answer to “what fraction of collisions are reactive?” then we suspect that this is
too large a sample. Just like the opinion pollsters we should be able to make do
with about 500 different trajectories if, like them, we know how to sample in a
representative manner. We shall show that this is possible by an explicit example.
Our demonstration will be that a relatively small sample is enough when we seek
a simple answer. The more resolution that we want, the more trajectories we need
to run to be able to generate a representative sample where enough trajectories
end up with the desired outcome.

The simplistic discussion above is really the heart of the issue. The method of
quasi-classical trajectories is most suitable when the degree of resolution required
is not very high. Otherwise, the more correlations we need between different
attributes of the products, the more trajectories need to be computed. For example,
generating results as shown in Figure 5.12, where the product HD vibrational and
rotational states are determined as a function of scattering angle, requires very
many trajectories. Determining the probability of rare events, such as the crossing
of a high barrier by thermal reactants, will require so many trajectories that fine-
tuning of the sampling is inevitable.* Classical trajectories with Monte Carlo
selection of initial conditions is the standard workhorse.25

∗ After we discuss transition state theory we will be in a better position to handle this issue. Pun

intended.
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*5.A.1 An example of Monte Carlo sampling

The Monte Carlo sampling of initial conditions in the method of classical tra-
jectories is illustrated here for the particular problem of computing the reaction
cross-section σ R given in terms of the opacity function P(b) by, Eq. (3.14),

σR = 2π

∞∫
0

bP(b) db (A.5.1)

Now P(b) is the probability of reaction at impact parameter b. Let us therefore
run N(b) classical trajectories, all of which have the same initial parameter b.
Not all of these trajectories will necessarily lead to reaction. The reason is that
they will differ in some other initial conditions (e.g., the phase of vibration or
rotation of the diatomic reagent). Let NR(b), NR(b) ≤ N(b), be the number of
trajectories that do exit in the products’ valley. Then if N(b) is large enough,
P(b) = NR(b)/N(b), and so we need to evaluate the integral

σR = 2π

B∫
0

b
NR(b)

N (b)
db (A.5.2)

where B is a sufficiently large impact parameter such that no reaction takes
place for b > B (i.e., NR(b) ∼= 0 beyond B*). We could replace the continuous
integration over b by a sum over a large number of discrete b values (i.e., generate
a histogramic representation of P(b)). At each b value we would need to run N(b)
trajectories, determine NR(b), and then compute the sum. This is feasible but
requires running trajectories at a number of different b values. However, what we
are after is not P(b) but the cross-section σ R. Say that we are willing not to know
P(b), will it simplify the task?

Let us sample initial b values with some attention to the physics. In other
words, like the public opinion pollsters let us prepare a representative sample.
Higher b values are more heavily weighted in the cross-section, via the annulus
2πb db. Therefore, if we plan to run a grand total of N trajectories, let us allot the
number N(b)�b, where

N (b) = (2πb/πB2) N (A.5.3)

to initial values of the impact parameter in the range b to b + �b. Note that in
doing so we run more trajectories at higher values of b.

Integrating Eq. (A.5.3), over b from 0 to B, we verify that N is the total number
of trajectories

B∫
0

N (b) db = N (A.5.4)

*∗ In Section 3.2 we saw how to estimate such a value. To be on the safe side, add 10%. Taking a

larger value of B requires running a shade too many trajectories but will not change the computed

value of the reaction cross-section, Problem J.
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Let NR(b)�b be the number of trajectories in the range b to b + �b that did lead
to reaction. Then, for the particular choice of N(b) given in (A.5.3), we have, by
substituting in Eq. (A.5.2),

σR = πB2

B∫
0

NR(b) db

N
(A.5.5)

We now introduce NR as the grand total of trajectories that did lead to reaction,

NR =
B∫

0

NR(b) db (A.5.6)

Since NR(b) ≤ N(b), NR ≤ N. The number NR of reactive trajectories is obtained
by sampling according to Eq. (A.5.3) and counting how many trajectories are
reactive. Using Eqs. (A.5.5) and (A.5.6), the reaction cross-section can now be
written as

σR = πB2 NR

N
(A.5.7)

What we have gained is that far fewer trajectories are now needed. Why?
Because the percentage error in a sampling of a probability like P = NR/N is
((1 − P)/NR)1/2. So it scales as 1/

√
N . (If we want to estimate the cross-section

to, say, 10% accuracy and we take P = 1/2 we need, roughly, (0.5/NR)1/2 = 0.1 or
NR/P = N = 100 trajectories.) Roughly the same number of trajectories is needed
to compute P(b) = NR(b)/N(b) at a given value of b. Therefore, a much higher
number of trajectories is needed if we first compute P(b) and then compute the
cross-section. By giving up the ability to provide an accurate sampling for P(b)
we have achieved a computational advantage.* Conversely, the more resolution
we need to generate, the higher the computational effort. To know everything
that one possibly can about even an atom–diatom reaction in a given initial state
requires running millions of trajectories.

The Monte Carlo sampling is equally useful for other types of averages, for
example the thermal average that defines the thermal reaction rate constant,
k(T) = 〈vσ R〉. Problem J asks for a sampling procedure that will generate k(T)
directly without computing σ R first and shows that the computational effort is
comparable to that required for Eq. (A.5.7). This is the strength and the weakness
of the method. There is a price to pay if higher resolution is needed but more
averaged quantities can be efficiently determined. By all means, look at the results
of a single trajectory but know that no reaction can be represented by only one
trajectory. Instead, we must average over all initial conditions.

∗ Technically, we have achieved this advantage by using a more representative or a “biased” sampling:

we gave a higher weight in the sample to higher values of b.
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5.3 Energy and dynamics of the chemical change

Aided by the ability to run and visualize classical trajectories we discuss the
role of energy in driving chemical reactions and the complementary question of
energy disposal in reactions.

5.3.1 Energy disposal in direct exoergic reactions

Our journey begins with the groundbreaking “atomic flame” experiments of
M. Polanyi. These suggested that in such harpoon reactions as

K + Br2 → KBr† + Br

the newly-formed salt molecule is highly vibrationally excited (as denoted by the
dagger), so much so that in a subsequent collision with an alkali atom it can cause
electronic excitation of the alkali:

KBr† + K → KBr + K∗

↓
K + hν

The electronically excited atom decays by fluorescence leading to a visible
“flame,” with a color typical of the alkali metal used.

At the same time Eyring, Polanyi, and others used a form of the London
equation to generate the first “realistic” LEP(S)-type potential energy surfaces,
Eq. (5.3). Then they sought to interpret the dynamics of such reactive collisions
(including the vibrational excitation of the products) using these potential func-
tions. Ever since, energy disposal in exoergic reactions has been interpreted and
discussed in terms of the analysis of classical trajectories.

One of the correlations that has emerged is as follows: for given reactant masses
(and at not too high energies) the conversion of the reaction exoergicity into the
product vibration occurs while the attacking atom A is still on its approach motion
toward the BC molecule, see Figure 5.14. An early release of the exoergicity is
manifested as a repulsion between B and C and this channels the exoergicity into
the relative motion of A and B, that is, into product vibration. The efficacy of the
conversion will be greater the earlier is the release of the exoergicity. A potential
where the attacking atom is being accelerated toward the other reactant is known
as an attractive potential energy surface, as shown in Figure 5.14.

An alternative representation of the same phenomenon is shown in Figure 5.15,
where the trajectory is superimposed on the (attractive) potential energy surface.
Recall that, by the Hammond postulate, we expect that the more exoergic the
reaction, the more attractive will the potential be. As a rough guide, we expect
that exoergic reactions channel the energy into the vibration of the newly formed
bond.

The early release of the exoergicity appears initially as kinetic energy in the
AB direction. This leads to the so-called bobsled effect. As the potential contours
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Figure 5.14 Schematic
interpretation of the
correlation between
product vibration and the
timing of the release of
the exoergicity along the
reaction path. Upper: an
attractive (early downhill)
surface. The progress of
the collision, as shown in
the adjacent panel,
illustrates an early release
of the exoergicity
(designated by ) during
the approach of A. This
accelerates A and B
toward one another and
leads to a vibrationally
excited AB product. For
the repulsive surface
(lower) the late release of
the exoergicity, while the
new molecule AB is
already receding from C,
ejects AB with high
translational energy but
with low vibrational
excitation [adapted from
Polanyi (1972)].

bend round (because of AB and BC repulsions) the trajectory cannot follow
the minimum-energy path but tends to continue in a straight line (owing to the
large momentum in the AB direction) leading to a “bobsled” motion. Ultimately,
the AB repulsion converts the exoergicity into vibration of the AB product.
This is in accord with our expectations of an early release of exoergicity in
alkali–halogen reactions based on the harpoon model. The early barrier for the
F + H2 reaction, Figure 5.4, similarly leads to highly vibrationally excited HF.
Abstraction reactions of F with organic molecules RH also release much of the
energy into the vibration of HF, meaning that the large organic radical R is a
spectator and remains internally cold.

All of our discussion thus far on the relations between the topology of the
potential surface and the dynamics of the system has so far ignored the impor-
tant question of the influence of the masses of the particles upon the dynamical
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RBC

RAB

X

Figure 5.15 Schematic representation of efficient channeling of the reaction
exoergicity into product vibrational excitation, for an attractive potential energy
surface. The drawing is generated from a trajectory, as shown in Figure 5.13, by
plotting successive values of the two bond distances. The early release of the
exoergicity (past the early saddle point) leads to a deviation of the actual collision
trajectory (solid line) from the minimum-energy path (broken line). The early
acceleration enables the trajectory to climb to the side of the potential and thereby
initiates an A–B vibration. Had the trajectory followed the minimum-energy path the
exoergicity would be released as relative translational energy of the products.

behavior of the system. It was recognized early on that there would be strong mass
effects on any given potential surface (since, after all, Newton’s laws involve the
masses rather directly!). In order to see these effects clearly a mass-weighted
coordinate system was devised upon which to plot the potential energy surface.

In this representation the system can be characterized by a point particle mov-
ing on an actual potential energy landscape, as further discussed in Appendix 5.B.
By imagining the motion of a mass point on such a potential one can more easily
understand the influence of initial translational energy, or of initial vibrational
energy of the reactants upon the trajectories and the exoergicity disposal. The
effect of mass-weighting of the axes in such a plot can be such that it is possible
to have high product vibrational excitation even on a repulsive, late downhill
surface, when the attacking atom is very light. Problem E describes a simple
potential for which mass effects can easily be visualized.

As an illustration of the application of the classical trajectory method to the
problem of the energy disposal in exoergic reactions, Figure 5.16 compares the
computed and the measured HF vibrational energy distribution for the H + FCl →
HF + Cl reaction.

Hydrides have a very high vibrational frequency and also a low moment of
inertia (a high rotational constant). Extensive product vibrational excitation is
not unique to hydrides, as already shown in the atomic flame experiments and
as found for such well-studied exoergic reactions as O + CS → CO + S,
Figure 5.17, and F + I2 → IF + I. Nor is it essential for the reaction to be
exoergic. One can rapidly approach the bend along the reaction path by initiating
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Figure 5.16 Comparison of the experimental HF vibrational state distribution,
points (normalized to unity at the most probable final state), and the results of
trajectory computations (based on an ab initio potential energy surface) for the very
exoergic reaction H + FCl → HF + Cl, open points. The error bars shown for the
trajectory results are due to the Monte Carlo sampling [adapted from R. Says et al.,
Phys. Chem. Chem. Phys. 2, 523 (2000); experimental results o from D. Brandt and
J. C. Polanyi, Chem. Phys. 35, 23 (1978) and � from K. Tamagake and D. W. Setser,
J. Phys. Chem. 83, 1000 (1979)]. Trajectory computations for D + FCl → DF + Cl, not
shown in the figure, indicate that the DF vibrational distribution is essentially the
same as that of HF when the results are plotted vs. fv, the fraction of the available
energy in the vibration of the product. As discussed in Section 5.1.5.1, the reaction is
expected to proceed by two mechanisms, a direct abstraction and a migratory route
where the H atom approaches from the direction of Cl. The migratory route is
favored by higher-impact-parameter collisions and so leads to more forward
scattering [for earlier results for the H + F2 → HF + F reaction see N. Jonathan,
S. Okuda, and D. Timlin, Mol. Phys. 24, 1143 (1972) and J. C. Polanyi, J. L. Schreiber,
and J. J. Sloan, Chem. Phys. 9, 403 (1975)].

a collision with high translational energy. The bobsled effect will equally take
place and some of that energy will be converted to products’ vibration, as shown
for H + D2 in Figure 1.3, but the conversion is not as efficient as when exoergicity
is released early on along the reaction path.

5.3.2 Energy requirements for reactions with a barrier

For endoergic reactions, and also for exoergic reactions with a barrier located
along the reaction path, we seek to obtain information on the energy requirements
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Figure 5.17 CO vibrational state distribution following the highly exoergic O(3P ) +
CS → CO + S(3P) reaction. Dots: experimental [adapted from G. Hancock, B. A.
Ridley, and I. W. M. Smith, J. Chem. Soc. Faraday Trans 2 68, 2117 (1972)]. Open
symbols: trajectory computations for thermal (�) and translationally hot (�) atoms
[adapted from D. Summerfield et al., J. Chem. Phys. 108, 1391 (1997)]. Dashed
line: a fit of the distribution by a linear vibrational surprisal as discussed in
Section 6.4 [adapted from H. Kaplan, R. D. Levine, and J. Manz, Chem. Phys. 12,
447 (1976)].

for reaction. Obviously we require a total energy E in excess of the barrier height
Eb to achieve a reactive trajectory. But must we supply this energy, say, as initial
translation?

On the basis of microscopic reversibility and the discussion of Section 5.3.1
on energy release, we expect a correlation between the location of the barrier
along the reaction path and the form of initial energy most conducive to reaction.
Translational energy is most effective for passage across an early barrier while
vibrational energy of the reactant molecule is more efficient for surmounting a
late barrier (i.e., in the exit valley).

These requirements can be interpreted, as shown in Figure 5.18, in terms of
the availability of kinetic energy in the proper coordinate. For an early barrier,
one requires momentum along RAB, while to overcome a late barrier the energy
is needed in the RBC coordinate.
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Figure 5.18 Influence of reactant energy for the thermoneutral A + BC → AB + C
reaction on a LEP(S) surface with a barrier (X). In all four cases E > Eb so that
reaction is allowed on energetic grounds. When the relative translational energy (ET)
is high (top row) there is ample kinetic energy for motion along RAB. Reaction thus
occurs for a barrier in the entrance valley (i.e., along RAB, left column), but fails if the
barrier is in the exit valley (i.e., along RBC, right column). The opposite is found
when the reactant diatomic has high vibrational excitation (EV) but ET is low, bottom
row. The reactant vibrational energy (which means that kinetic energy is available
along RBC) helps in surmounting a late barrier [adapted from J. C. Polanyi and W. H.
Wong, J. Chem. Phys. 51, 1439 (1969)].

The energy requirements of reactions will obviously become less restrictive
at higher collision energies. Even so, experiments, simulations (Figure 5.18),
and considerations of detailed balance all agree that at low collision energies
(and particularly so in the thermal regime) the selective energy requirements can
significantly influence the reaction rate.

5.3.3 Direct vs. compound collisions

For a given potential surface (and mass), classical mechanics can be used to
illustrate the progress of the reaction through plotting the interatomic distances
as a function of time. Typically, for a direct reaction the switchover between the
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Figure 5.19 Bond distances (in atomic units) vs. time from a classical trajectory
computation for the KCl + NaBr → KBr + NaCl reaction [P. Brumer, Ph.D. thesis
(1972)]. The most stable structure of the tetratomic ionic intermediate is shown as an
insert.

two bonds occurs within a very short time interval, corresponding to about one
vibrational period, as shown in Figure 5.13. By way of qualitative contrast, let us
have a look at another trajectory calculation for the (gas-phase) reaction

KCl + NaBr → KBr + NaCl

where the experimental evidence suggests that there is a long-lived intermediate.
The potential energy surface has a deep well and the equilibrium structure of
the ionic complex is shown in Figure 5.19. The trajectory shown in this figure is
very “snarled” and it is quite reasonable that it would look very much the same
if we started it at the KBr + NaCl configuration. By the time the trajectory gets
out of the well it hardly remembers from which side of the well it entered. ∗ By
running many trajectories at different initial conditions we verify that the exit to
products or back to the reactants is essentially independent of how the collision
was initiated. This is an extreme example of the compound or complex mode of
reaction.

Many reactions are more similar to one mode or the other but it is quite possible
for the same chemical transformation to proceed by both a direct and a complex
mode. Early on, Figure 1.4, we noted that the insertion reaction of O(1D) into
H2, that is, primarily a complex mode, also has a direct component that proceeds
by abstraction and is detected as backward scattering. Even the H + H2 reaction

∗ How can an accurately computed trajectory forget? All that we need to do is to run the trajectory

backwards in time and eventually it will show clearly which side of the well it entered on. Correct.

But as discussed in Section 5.2.2.1, if we make even a very tiny change in the initial conditions of

the trajectory then, owing to the required long integration time, it may well not exit in the same

valley. So what we really mean is that a sample of trajectories, all quite similar, forgets. Some

members go out as reactants, others as products.
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Figure 5.20 Potential energy along the reaction coordinate with a well between two
barriers, for an exoergic reaction. Reactants starting at the left with the total energy
E being mostly in translation can cross the first barrier and proceed promptly to
form products. However, once the trajectory enters the well region, there is another
option: some fraction of the total energy, indicated by the double arrow, can flow
into the other degrees of freedom, the internal degrees of freedom of the system. In
classical mechanics the total energy must always be above the potential energy so
this scenario is only possible because of the presence of the well in the potential.
Once this energy redistribution occurs, the energy along the reaction coordinate,
dashed line in the figure, is insufficient for the molecule to escape across either
barrier. The system behaves as if it is bound even though it has enough energy to
dissociate. What happens next depends on the size of the reactants, a central theme
of Section 6.2. Sooner, if the reactants are small, or later, energy will flow back to the
reaction coordinate and the energy-rich molecule will “dissociate,” meaning that it
will cross a barrier and exit.

has a minor contribution from an insertion mechanism, particularly at higher
energies (Fernandez-Alonso and Zare, 2002). Another example that we already
encountered is the C2H5 + O2 → C2H4 + HO2 reaction, Figure 5.6, where at
lower collision energies the reaction will proceed by a complex mode because
the direct path has a higher barrier.

5.3.3.1 Complex mode trajectories and unimolecular reactions
Trajectories that proceed over a well along the reaction coordinate can be delayed
and the reaction occurs by a complex mode.26 Why should that be? At low
energy the well represents a stable molecule, but a trajectory that comes from the
reactants’ region has enough energy to cross over the well and directly proceed
to the products’ side. The “molecule” that is formed is energy-rich and can
immediately dissociate. Figure 5.20 shows schematically why the presence of
a well enables a trajectory to spend some time seemingly as a stable molecule
before dissociation takes place.

When the trajectory rattles many times within the well before exiting, the
dynamics can be broken into two stages: capture into the well and the delayed
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dissociation of an energy-rich molecule. The second stage is what we know as a
unimolecular dissociation. To cleanly separate the two stages we need the system
to spend a long time over the well, long enough that it forgets how it got into the
well. As we discuss in Section 6.2, the more internal degrees of freedom there
are, the far more ways there are to distribute the energy E and the much longer
it will take for it to return to the reaction coordinate. For few-atom systems the
delay can be but a few vibrational periods, which is quite short.

*5.3.3.2 Prompt trajectories
The majority of trajectories are delayed by a passage over the well because they
will lose energy to other degrees of freedom. Yet a small but finite fraction will
exit promptly. One can see that this can be so by the very argument that suggests
that the energy is partitioned amongst all degrees of freedom. Let us accept that
the energy is distributed. Even then there is a small probability that energy in
excess of the dissociation energy remains localized in the reaction coordinate.
This fraction of molecules dissociates promptly because it has the energy in the
mode where it is needed. Furthermore, the energy redistribution depends on the
coupling between the motion along the reaction coordinate and the other, internal,
modes.

Another sense in which an intermediate situation arises is to note that we
have contrasted two limits. Direct reactions, where the trajectory crosses over
immediately from the reactants’ to the products’ valley and compound collisions,
where the trajectory rattles many times within the well. So many times that it can
lose the memory of where it came from. It is reasonable to expect that there are
intermediate situations where the trajectory goes through the well region more
than once but it still does so for only a limited number of times before it exits.

5.3.4 Stereodynamics

Exploring the dynamics using classical trajectories can provide more than a val-
idation of our intuitive view of the cone of acceptance for reaction, Figure 1.5.
Nor are they limited to the simple A + BC problem. A much-studied example is
the prototype SN2 reaction

Cl− + CH3Cl → ClCH3 + Cl−

The energy along the reaction path has a double-well shape, with two symmet-
rical minima that are due to the strong ion–molecule polarization force and a
central barrier to atom exchange. The structure at the barrier corresponds to a
planar CH3 group. The reaction therefore proceeds through a Walden inversion,
Figure 5.21.

An important point clearly brought forth by trajectory computations is that
reactants accommodate one another en route to the reaction. The steric require-
ments are then not simply those of the isolated reactants. A simple example,
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Figure 5.21 The
configuration of the
reactants, transition state,
and products along the
reaction path for the SN2
reaction of Cl− with
CH3Cl. The approach (or
retreat) motion to the
transition state can
deviate from a collinear
Cl C Cl configuration.

observed also in atom–diatom reactions, is how the elongation of the old bond
opens up the cone of acceptance for reaction. The reason is that at the transition
state, particularly if it is not early, the old bond distance is extended well above its
value at equilibrium for the reactant. Therefore, the barrier height as a function
of approach angle is lower when the old bond is extended and this allows for a
wider range of approach angles to react. Figure 5.22 shows the effect for the H3

energy surface.
Another aspect is that atoms or groups that could offer a steric hindrance move

out of the way. This can be as simple as the transition to planarity of CH3 during the
SN2 reaction shown in Figure 5.21 to the “gate opening” when a ligand approaches
a biological receptor. It is a speciality of proteins that their internal adaptation can
be limited and yet the resulting change in binding can be considerable.∗ A well-
known example is when hemoglobin adjusts to admit oxygen, then the second
oxygen molecule is admitted more easily.∗∗ But the conformational change of
biopolymers can also be substantial, as in the unstacking of adjacent base pairs
in the double helix required for the intercalation (of drugs or other effectors) in
DNA, Figure 5.23.

The theme of structural adaptation during reaction is not limited to biological
substrates. In Chapter 12 we discuss surface chemical reactions and catalysis. We
shall then draw attention to the flexible nature of the surface during a chemical
reaction taking place on it.27

Steering is another stereochemical concept that spans the range from quite
simple reactions to the association of biological molecules. Steering originates
from the anisotropic intermolcular force28 that can pull molecules into or deflect

∗ This is, of course, determined by the features designed by nature into the potential energy surface.

Unlike the more rigid molecules where the potential has one dominant well, the potential energy

landscape of a protein is far richer in minima with the result that the protein may be ready for

some action yet this does not take place until it is triggered by a binding of, typically, an ion, in

some site possibly quite remote. Proteins can communicate small local structural changes over

long distances. More on molecular machines in Section 6.2.4.
∗∗ This cooperative effect means that the fraction of bound oxygen has a sigmoid dependence on the

pressure of oxygen with the well-known result that a modest drop in oxygen pressure results in

oxygen being released.
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(a) RH–H = 1.4 a.u.

(b) RH–H = 1.9 a.u.

Figure 5.22 Polar
representation of the H3

potential energy. Shown
is the potential, for a fixed
reactant bond distance, as
a function of the distance
of the approaching H
atom from the center of
H2 and of the approach
angle, cf. Figure 5.3. The
two plots are for H2 at its
equilibrium separation
and for a higher bond
distance. Note how a cone
of acceptance opens up
when the reactant bond is
stretched [adapted from I.
Schechter, R. Kosloff, and
R. D. Levine, Chem. Phys.
Lett. 121, 297 (1985)].

∆θ = +40° (T)

Figure 5.23 A model study of the organization of water during the unstacking of
DNA base pairs (adenine and thymine). Each dot is a time-averaged position of the
O atom of a water molecule. The conformation shown corresponds to an opening of
thymine toward the major groove [adapted from E. Giudice, P. Vrnai, and R. Lavery,
Chem. Phys. Chem. 2, 673 (2001)].

them out of the cone of acceptance. Such effects are more noticeable for rota-
tionally excited reagents and trajectories have examined this role.29 The simplest
effect is that rotation can either mask or expose a reactive site, for example, in
K + HCl → KCl + H, where the center of mass of HCl is essentially on the Cl
atom. Rotational excitation of HCl makes the H atom rapidly orbit around Cl and
shield it from reacting with the K atom.
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To go beyond the simpler considerations above we must recognize that stereo-
dynamics is about the direction of attack and other quantities that are vectors.
Chapter 10 takes up this theme.

5.3.5 On to the specificity of energy disposal and
selectivity of energy requirements

What we have learned in this section is that certain dominant features of the
potential energy surface govern the chemical reactivity. Can we use this knowl-
edge to develop some simpler (albeit more approximate) theoretical approach
and thus obviate the need for extensive trajectory calculations? Reactions for
which the saddle-point region of the potential surface plays the major role would
be the most likely to yield to such an attack. We shall explore this possibility in
Chapter 6.

5.B Appendix: Mass-weighted coordinate systems

The solution of the classical equations of motion to yield trajectories requires a
digital computer. However, we can obtain considerable physical insight into the
dynamics simply by examining the potential-energy contour map drawn using a
mass-weighted coordinate system. We shall illustrate this approach for the case
of a collinear collision where one can exactly simulate the actual trajectory by the
process of “rolling a ball” on the actual potential energy surface. The Monte Carlo
averaging is then performed by varying the initial conditions for the motion of
the ball. We examine first the mathematical transformation to the mass-weighted
coordinates and then the physical implications.

Consider the collinear reactive collision A + BC → AB + C. V(RAB, RBC) is
then a function of only two bond distances, RAB = RB − RA and RBC = RC − RB,
and these are the natural variables for thinking about the potential. The issue is
that the kinetic energy (in the center-of-mass system) is not a simple function
of these two coordinates. It is a simple function if, instead, we use the old bond
distance, RBC, and the distance, R, of the attacking atom A to the center of mass
of BC, R = RAB + (mC/(mB + mC))RBC. Explicitly, using a dot to denote the
derivative with respect to time and denoting the reduced masses by µ,

T = µBC

2
Ṙ2

BC + µA−BC

2
Ṙ2

In a similar fashion, using a prime to denote products, R = RBC + (mA/(mB +
mA))RAB

T = µAB

2
Ṙ2

AB + µC−AB

2
Ṙ ′2

So what we want is to plot the potential as a function of the two Cartesian
coordinates, RBC and R or, equivalently, the pair RAB and R, Figure B5.1.
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R

RAB

RBC

A + BC

AB + C

b

R'

Figure B5.1 The two (equivalent) pairs of Cartesian coordinates, RBC and R, or, RAB

and R , that allow the kinetic energy to be written as a sum of squares [adapted from
F. T. Smith, J. Chem. Phys. 31, 1352 (1959)]. The reactants’ and products’ valleys are
along the new and old physical bond distances, RAB and RBC, and so appear to be at
a skew angle β with respect to one another. The mass-scaled coordinates Q are
defined in the text.

In terms of either pair of Cartesian coordinates the motion is simple because
each coordinate is only coupled to the other by the force and not by the kinetic
energy. This is really all there is to it except that different masses will lead to
different motions because of the mass factors. We can eliminate these by scaling
the coordinates by the (square roots) of the reduced masses µ. To do so introduce
two new coordinates Q1 and Q2 by the transformation

Q1 = a RAB + bRBC cos β = aR
(B.5.1)

Q2 = bRBC sin β = RBC
√

µBC

Here a, b, and cos β depend on the masses only, M = mA + mB + mC is the total
mass and the µs are the reduced masses in the reactants’ and products’ channels:

a = [mA(mB + mC)/M] 1/2 = √
µA−BC

(B.5.2)
b = [mC(mB + mA)/M]

1/2 = √
µC−AB

cos2 β = mAmC/(mB + mC)(mA + mB) (B.5.3)

The point of the coordinate transformation from the bond distances to the Qs is
that the kinetic energy for the collision (in the c.m. system) has the form

T = 1
2

(
Q̇2

1 + Q̇2
2

)
(B.5.4)

Equation (B.5.4) has the interpretation of the kinetic energy of a point particle
(often referred to as the system point) of unit mass, whose position is specified
by the two Cartesian coordinates Q1 and Q2.
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aRAB

bRBC

β

(Q1,Q2)

Figure B5.2 The construction of the Cartesian coordinates Q1 and Q2 in terms of the
physical internuclear distances RAB and RBC, Eqs. (B.5.1) and (B.5.2) [adapted from
J. O. Hirschfelder, Int. J. Quant. Chem. IIIS 17 (1969); see also B. H. Mahan, J. Chem.
Educ. 51, 308 (1974)]. When the coordinates Q1, Q2 are used as Cartesian axes the
physical distances are skewed by the angle β, as shown. Grid lines for the skewed
coordinates are shown as dashed lines. Why is the potential skewed? Because the
atoms repel when they are close in so that neither bond distance can be negative
and, by Eq. (B.5.1), neither can Q1 nor Q2. The angle between the physical bond
distances is not 90◦ because we want to express the dynamics as that of a single ball
rolling. This confines the motion to the sector shown. See also Figure B5.1.

When we express the potential surface as a function of Q1 and Q2, the solution
of the classical equations of motion for Q1 and Q2, i.e., Q1(t) and Q2(t), are
identical to the solution for the motion of the point particle on the potential
V(Q1, Q2). Rather than solve numerically the classical equation of motion, we
can simulate the solution by letting a ball (of unit mass) roll without friction along
a surface whose height at any point Q1, Q2 is V(Q1, Q2).30

The geometrical significance of the change of variables to Q1, Q2 is illustrated
in Figure B5.2. If we use Q1 and Q2 as two Cartesian axes, the effect of the
transformation is to skew the two bond distances at the angle β to one another.
Hence, if we regard the potential energy as a function of Q1 and Q2 and draw it in
the Q1, Q2 plane, the entrance and exit valleys will be at an angle β to one another.
Such a contour map is known as a (mass-weighted) skewed axis representation.

Such effects as the efficient conversion of the exoergicity into product vibration
on an attractive surface can readily be visualized in the skewed coordinate system.
On an attractive surface the ball is rolling “downhill” as Q1 decreases and hence it
enters the “bend” along the reaction path with a high speed. The ball will then fail
to make its exit along the products’ valley and instead it will climb the shoulder
of the potential (the bobsled effect) and thereby convert much of the exoergicity
to product vibration.

The lighter is the transferred atom, the larger is cos2 β and the sharper is the
“bend” between the reactants’ and products’ valley. You can imagine that the
rolling ball will try to cut the corner. In so doing it will hit the repulsive shoul-
der of the products’ valley and be reflected back to the reactants’ valley. It may
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chatter in this way for a few times between the two heavy partners, an effect
that can be discerned when we initiate the system near that region, as discussed
in Section 1.2.6 for Cl + HI. The lighter is the attacking (or retreating) atom,
the smaller is cos2 β and the more is the products’ valley stretched compared
to the reactants’ valley or, technically, the larger is the scale factor b as com-
pared to a (or vice versa). Hence a light atom approach on a repulsive surface
can still lead to significant products’ vibrational excitation, as is observed for
H + XY.

Problems

∗A. Failure of the Born–Oppenheimer approximation. Let g and e denote the
ground and excited electronic states. The Born–Oppenheimer separation fails
when the matrix element 〈ψg(r; R)|T|ψe(r; R)〉 is not negligible, where T is the
kinetic energy operator for the nuclei. Take the case of a diatomic molecule,
examine the commutator [H, ∂/∂R], and hence show that (Eg(R) − Ee(R))〈ψg

(r; R)|∂/∂R|ψe(r; R)〉 = 〈ψg(r; R)|∂Hel/∂R|ψe(r; R)〉. The “gap” between two
different electronic states is (Eg(R) − Ee(R)) and depends on the nuclear coordi-
nate. Conclude that the Born–Oppenheimer approximation is most liable to fail
when the gap is small.

B. The qualitative topography of the potential energy surface. Using chemical
knowledge (a) draw potential energy surfaces for a collinear configuration of
the atoms for the following collisions: Ar+ + HI, H + OH, Cl + K2 (recall
Problem B of Chapter 2), Br + HCl. For each surface locate the regions where
the potential energy is high and also where it is low, the relation between the well
depth of reactants and products, etc. (b) Plot also the potential along the reaction
coordinate and state whether the barrier is early or late. (c) For the reaction K2 +
Cl you should be able to make a drawing in (a) and (b) where at least one distance
is given a magnitude.∗ Do so. (d) How will your drawings change if we use a D
rather than an H atom? If we use an Ar atom instead of an Ar+ ion? (e) Discuss
the energy requirements and energy disposal in these reactions along the lines
introduced in Section 5.3. Next, we consider steric effects. (f) Taking the CH3

group as an “atom” draw potential energy surfaces for the collinear approach
K + CH3I and the collinear approach K + ICH3. (g) How will the polar map for
the K + I2 reaction vary with the angle of attack?

C. Qualitative considerations of energy disposal. The CO vibrational state
distribution from the reaction of O + CN is found to be bimodal; there is significant
population of quite high vibrational states, say v = 10 up to the exoergicity limit
but also lots of rather vibrationally cool molecules with a thermal-like distribution

∗ The K2 dimer has a relatively low ionization potential and a bond energy that is low by chemical

standards. (Use MO theory to explain why the ionization potential of the weakly bound dimer is

only a bit higher than that of the atom.)
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[J. Wolfrum, Ber. Bunsenges. Phys. Chem. 81, 114 (1977)]. It is proposed that
this highly exoergic reaction releases sufficient energy to form an N atom in
the excited 2D state. On the potential energy surface for the reaction leading
to N∗, NCO is an intermediate. The reaction producing ground state N atoms
is direct. Discuss the suggested explanation and propose one or more tests for
it. (Hint: recall from Figure 5.12 that we can measure the angular distribution
for different internal states of the products.) In a further experiment the reaction
was initiated with vibrationally hot CN. How will the CO vibrational distribution
change?

D. Hard-sphere models can be extended for reactive collisions [e.g., B. H.
Mahan, J. Chem. Educ. 51, 308 and 377 (1974)]. Since the hard-sphere potential
is purely repulsive, the one refinement that is needed is to modify the hard-sphere
potential so as to mimic a chemical bond. We do so by adding a square well, of
depth −D and finite range, to the atom–atom potential. It will then look like (i)
below. For an A + BC collision the hard-sphere potential energy surface will then
look like (ii).
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Panel (ii) lets you design your own potential energy surface by choosing suitable
values for two of the question marks. (a) Explain the labels on the potentials and
choose such values that the reaction is exoergic with a low barrier and that the
reaction is endoergic with a barrier that is/is not higher than the endoergicity.
(b) For either case in (a), what is the dissociation energy of AB? (c) The third
question mark corresponds to a value that is not arbitrary but is dictated by the
problem. What is it? There is also the question of what is the value of the potential
for short distances. (d) Specify values that will make the reaction proceed over
a well. (e) What is the threshold energy for reaction for the two potentials that
you specified in (a). (f) What is the threshold for collision-induced dissociation
on this potential?

∗E. Mass scaled coordinates. Statics. Using Appendix 5.B., scale the potential
surface of problem D for the case when (a) the attacking atom is light/heavy
compared to the two others, (b) atom B is far heavier than the two others,
(c) all three masses are equal. (d) Increase all masses by the same factor. How
will the scaled potential surface change?
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∗F. Mass scaled coordinates. Dynamics. Using Appendix 5.B., discuss the
dynamics for the potential energies you generated in (b) and (c) above. (a) Start
with a simple case – thermoneutral reaction with no barrier – and contrast the role
of reagent translation for cases (b) and (c). (b) How will you drive the reaction in
case (b)? (c) Say the exchanged atom is very light, conclude that it will rebound a
couple of times between its two heavy partners before the products exit. (d) As a
different example consider the (roughly) thermoneutral reaction of H with I2. (e)
Trajectory computations show that T, the heavy (mass 3) isotope of hydrogen, has
a significantly higher reaction cross-section. Explain. ∗(f) Assuming that there is
no barrier to reaction show that the cross-section is higher by about

√
3.

∗G. The Evans–Polanyi model. Go to the classic text Glasstone et al. (1941)
and see the derivation that leads to the diabatic potentials for the reactants. In the
notation of Section 5.1.3, this diabatic surface has the functional form

VA+BC = QAB + QBC + QCA + [
JBC − 1

2 (JAB + JAC)
]

(a) Write, by symmetry, the diabatic potential that correlates to the products.
(b) Draw the two diabatic potentials for a collinear collision for a very exoergic,
a mildly exoergic, and a thermoneutral reaction. You will need to infer the J and
Q terms as discussed in the text. The drawing can be done using even a hand-
held graphic calculator but is best done on a computer using a graphic program.
(c) Infer the Hammond postulate from your work in (b). (d) Get another result:
the height of the barrier to reaction correlates with the exoergicity.

∗H. How high in energy is the conical intersection in H3? Use spectroscopic
data to obtain the J and Q terms for H2 and hence determine the potential energy
at the intersection of the LEP(S) surfaces. The numerical value will depend on
the length of the side of the triangle, but what can be said in general? If the system
is NaH2 what will be the geometry at the intersection?

∗I. Chaos results in a rapid erasure of details of the starting point. We consider
a very simple example and for brevity do not discuss the kinetic context in which
this example arises. Let θ be an angle, measured in units of 2π . Say we write θ

in a binary notation. Then trigonometric functions depend only on the fractional
part of θ . Let successive values of θ be generated by the rule θn+1 = 2θn. Imagine
implementing this iteration on a computer. Let θ0 be the initial value. On a
computer θ0 is specified as a sequence of digits of finite length, say 16 figures.
Show that with each iteration you lose one digit in accuracy, θ1 is known only to
15 digits, θ2 is known only to 14 digits, etc. Implication: an expression can be
mathematically an identity and yet, when implemented on a digital computer, it
can rapidly lose numerical accuracy.

J. Monte Carlo sampling of initial conditions. (a) Discuss why the reaction
cross-section computed using Eq. (A.5.7) need not change in value if the value,
B, of the maximal impact parameter for reaction is taken larger than it has to be.
(b) The reaction rate constant for thermal reactants is obtained, Section 3.1, as
an average over the reaction cross-section. Determine a sampling of the relative
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velocity of thermal reactants such that the reaction rate constant is computed
directly without the need to explicitly perform the integral over the distribution
of the velocity, Eq. (3.7). The result is k(T) = πB2〈v〉Nr/N. Derive it, specify how
you will compute Nr, and discuss the implications. Will you or will you not use
this method if you want to compute the rate constant over a wide temperature
range? If not, what is a reasonable alternative? (Hint: the alternative will, for a
comparable computational effort, tell you more about the dynamics.)

K. Limitations on the Monte Carlo sampling of initial conditions. Say you
want to compute the reaction rate constant when there is a rather small steric
factor and/or a rather high activation energy. (a) Will you use a Monte Carlo
sampling of initial conditions? Discuss in detail why we think that getting
an accurate result will require a considerable consumption of computer time.
(b) Can you try to suggest at least two different options for getting the result
while computing far fewer trajectories? For a quick start see R. L. Jaffe, J. M.
Henry, and J. B. Anderson, J. Chem. Phys. 59, 1128 (1973).

L. The Lindemann mechanism. Textbooks usually invoke the steady-state
approximation for solving this kinetic scheme, see Section 6.2.1. But the use of
this approximation is not essential. Write [A∗] = a1 exp(−k1t) + a2 exp(−k2t)
and show that you can solve for the reaction rate using the kinetic scheme that
Lindemann proposed and initial values for the concentrations, e.g., [A∗] = 0 at
t = 0. Recover the steady-state result as an approximation. What have we gained?
That there is also a prompt decay component! Conclude that it is smaller in
magnitude than the delayed decay but it is not necessarily zero.

M. Reactions with a negative activation energy. Reactions that proceed via
formation of a complex and are measured at higher pressures can show a nega-
tive activation energy. As an example consider the reaction of C2H5 with O2 as
shown in Figure 5.6. The first step is the formation of the C2H5O2 complex. At
higher pressure this complex is stabilized by collisions and is brought to thermal
equilibrium with the reactants. The rate-determining step is the isomerization of
the complex to CH2 CH2O2H as shown in the concerted elimination pathway.
(a) Examine Figure 5.6 and explain why the rate of the net chemical change can
manifest a negative activation energy. The measured [O. Dobis and S. W. Benson,
JACS 115, 8798 (1993)] high-pressure value is about −20 kJ mol−1. (b) Suggest
why the Arrhenius A factor for the barrier crossing isomerization will be low.
(c) The reaction can also proceed by a direct route as shown in Figure 5.6. Discuss
if this route is favored at low or at high temperatures.

Notes
1 The Herzberg treatise on spectroscopy of molecules is in three volumes – one on diatomics

and two on polyatomics. This chapter is in the spirit of the first polyatomic volume, with the

essential difference that we deal with large-amplitude motions. The second Herzberg

polyatomic volume is on electronically excited states.
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2 Conical intersections is a topic that we will discuss in detail. See Michl (1972), Michl and

Bonacic-Koutecky (1990), Bernardi et al. (1996), Yarkony (1996, 1998), Worth and

Cederbaum (2004).

3 There is a rich literature on the topic of potential energy surfaces, e.g., “Potential energy

surfaces.” Faraday Discussions of the Chemical Society 62 (1977), Truhlar (1981), Hirst

(1985). This is because the potential is the structural underpinning of chemical reactivity.

Nor is the concept limited to reactive collisions. Energy transfer collisions, Chapter 9, are

possible because the potential depends not only on the relative position but also on the

internal coordinates. By Chapters 11 and 12 we will further extend the concept to

interaction with the environment. When it comes to rational drug design or catalysis, such

an extension is essential.

4 Fitting a potential energy function to an analytical form is not a simple task. See, for

example, Hirst (1985), Schatz (1989), Schlegel (1995), Hollebeek et al. (1999).

5 For the history leading to this accurate computation and for the implications to the

dynamics of the F + H2 reaction, see D. E. Manolopoulos, J. Chem. Soc. Faraday Trans.

95, 673 (1997).

6 See, for example, Rauk (1994), Pross (1995).

7 The quantum chemical software industry has produced quite a number of packaged

programs that use methods of increasing sophistication to compute at least the stationary

points along the reaction path and often much more. When using such packages it is

always advisable to assess the accuracy of the results by checking a few configurations

at a higher level of computational accuracy to know that the results are about converged.

Such a check is necessary not only for the barrier height (or well depth) but also for

geometrical features such as the configuration at the barrier and for the forces,

see note 8.

8 The force is a derivative of the potential. But the potential is the electronic energy so

the force can be computed from knowing the electronic wave functions at just one point

by using the Hellmann–Feynman theorem. We sketch a proof because it brings out the

essential point that the theorem is exactly correct only when we have exact wave

functions. Using the notation of Problem A, Eg(R) = 〈ψg(r; R)|Hel|ψg(r; R)〉. Using a

prime to denote a derivative, ∂Eg(R)/∂R = 〈ψ ′
g (r; R)|Hel|ψg(r; R)〉 + 〈ψg(r; R)|∂Hel/

∂R|ψg(r; R)〉 + 〈ψg(r; R)|Hel|ψ ′
g(r; R)〉. If we have exact (and normalized) wave

functions, then Hel|ψg(r; R)〉 = Eg(R)|ψg(r; R)〉 and the first and third terms vanish

because ∂〈ψg(r; R)|ψg(r; R)〉/∂R = ∂1/∂R = 0. The electronic Hamiltonian is a sum of

coulomb terms and so its derivative is easy to compute.

9 For more on combustion see Miller et al. (1990), Pilling et al. (1995), Pilling (1996),

Pilling and Robertson (2003).

10 Elber and Karplus (1987), Davidson (1993), Onuchic et al. (1997), Dobson et al. (1998).

11 As a last resort one can draw a connectivity diagram (Becker and Karplus, 1997), and this

is useful not only for proteins but also for other highly fluxional species such as clusters

(Berry, 1993; Wales et al., 1998; Wales, 2001). The diagram shows the lowest barrier

height along the path connecting one basin to another. Any more detailed description

requires a choice of the coordinate(s) along which the potential energy is to be displayed;

see, for example, Hayward and Go (1995).

12 The Sato modification allows for a finite overlap S between the orbitals on atoms A and B.

Then Eq. (5.2) needs to be modified to V(RAB) = (QAB ± JAB)/(1 ± S2)17/2.
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13 Consider a Morse potential, V(R) = De(exp(−2(R − Rm)/ρ) − 2 exp(−(R − Rm)/ρ)),

with the zero of energy such that the potential vanishes at infinity. An often-used device is

to fit this potential to the ground-state potential and approximate the triplet potential by an

anti-Morse functional form, which is an everywhere repulsive potential generated by

replacing the central minus sign on the right-hand side by a plus. The same procedure can

also be used for a Lennard-Jones potential. Either way, J is negative and |J| > Q near the

equilibrium separation of the diatomic. The Sato modification is equivalent to taking a

different value of De for the Morse and the anti-Morse functions.

14 See, for example, Pross and Shaik (1983), Pross (1995).

15 There can be important differences between classical and quantal dynamics results (cf.

Sections 2.2.6 and 4.3). Even so, classical mechanics is very useful in that it provides an

easily visualized representation of the dynamics. It also provides the correct overall trends

and average behavior even when it errs in the details. An important limitation is that the

method can only mimic but not really reproduce the quantization of internal degrees of

freedom. The proper handling of zero-point energy is a case in point. Quantal wave-packet

methods, Section 8.0.1, have the advantage that like a classical trajectory they provide an

image of the unfolding in time of the dynamics.

16 For example, in the simplest case of the A + BC reaction, one must average over the

phases of the vibrational and rotational motions of BC. What are the phases and why do

we regard the phases as randomly distributed? Because the phase angle is the classical

variable that is conjugate to the classical action. The semiclassical correspondence is that

a classical action, in units of Planck’s constant, is the quantum number. (We have seen this

already in the correspondence L ↔ h̄l for the angular momentum.) If the quantum number

is well specified the corresponding phase angle is unknown or, in the quasi-classical

mimic, it is averaged over. As an example, for a harmonic oscillator, the position and

momentum are related to the classical action J (energy E = Jν = J (ω/2π )) and the phase

ϕ by Goldstein (1950); Child (1991)

x = (2E/k)1/2 cos(ω t + ϕ)

p = (2m E)1/2 sin(ω t + ϕ)

Therefore the initial conditions for the trajectory can just as well be specified by the action

and angle variables. The classical actions are constants of the motion of the unperturbed

molecule and are therefore the natural variables if the state of the separated reactants is

stationary. When we come to discuss time-resolved studies we will allow for coherent

states where the phase angle is not random. (Yes, for such states, the quantum number will

not have a sharp value but only a mean value, see Figure 1.7.)

17 This is the case even if the potential function is given in an analytical form. An exception

is if the potential is extremely simple such as including only two-body terms. But such a

simple potential is not realistic when a chemical reaction is possible. If one needs to

compute the potential by quantum chemical methods then this becomes the bottleneck.

This is true even though so-called gradient methods compute not only the potential but

also the forces. For examples of computing the potential at each point along the trajectory

where it is needed, see Michalak and Ziegler (2001). This is often known as computing the

potential “on the fly.”

18 See Brumer (1981), Rice (1981), Brumer and Shapiro (1988), Uzer (1991), Wyatt et al.

(1995) for applications to intramolecular dynamics and Sagdeev et al. (1988), Schuster
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(1988) for background. Deterministic chaos is the chaos in the solution of mechanical

equations of motion, that is, equations that strictly speaking allow a reversal of the

direction of time. (Checking that time reversal is satisfied for the trajectory is a good test

of the validity of the numerical integration.)

19 So why not give up dynamics altogether and only do statistics? The technical problem is

that it need not be the case that all possible initial conditions lead to chaotic time

evolution. A trivial example is if the impact parameter is higher so that the forces are

weaker because the reactants do not get close in. The problem is to delineate the boundary

of the chaotic regimes.

20 Stated very crudely, another option is to say that a trajectory is a trajectory. It therefore

does not matter if it originated in the initial conditions that were given or from similar

but not identical values. The problem with this is that when errors accumulate it is no

longer certain that the trajectory has “similar” initial conditions. If such an approach

is used it is necessary to check that energy and other constants of the motion are

conserved. Engineers, who need to follow the properties of matter over longer times, are

actively developing integration schemes where larger time steps can be taken. To insure

convergence time is discretised not directly in the equations of motion themselves but in a

variational principle. See also ‘Tackling time-scale problems’ in Frenkel and Smit (2002).

21 For more on dynamics in large systems, see Adelman and Doll (1977), Adelman (1980),

Tully (1981), McCammon and Harvey (1983), McCammon and Karplus (1983), Hynes

(1985), Warshel (1991), Warshel and Parson (2001).

22 The Langevin equation can be derived from the mechanical equations of motion and, as

such, the exact equations are reversible in time. However, there are commonly made

approximations, for example that the energy spectrum of the secondary (or “bath”)

degrees of freedom is continuous (rather than a very dense but discrete quasi-continuum).

These, physically quite realistic, approximations insure the dissipative behavior. In

general, it is physically reasonable to mimic a dense manifold of states by a continuum if

the mean spacing, D, of states is such that h/D is a significantly longer time scale than is

relevant to the experiment, see Chapter 7. The exception is if the quasi-continuum of

states does not have a smooth density of states but has a coarse-grained structure (it is a

bumpy quasi-continuum).

23 The technical answer is the Monte Carlo theorem. We will not state it but paraphrase to

say that if there are more than four variables, a systematic sampling is not the most

economic route. See Porter and Raff (1976), Truhlar and Muckerman (1979).

24 For the expert, actually five will do but this does not change the argument.

25 There are important problems that we do not discuss in detail because they are of a more

technical nature. These include the need to assign quantum numbers to the products. This

is typically done by binning, that is by collecting all products’ states in a given energy

range into the same box and assigning the quantum number that corresponds to the mean

energy. Note that this goes against microscopic reversibility because we do not treat

reactants and products on an equal footing. There is the problem of zero-point energy that

was already mentioned. This is particularly serious in many-atom systems where the

energy “hidden” in zero-point motion is, classically, high.

26 Unimolecular reactions are extensively discussed in texts of chemical kinetics. In addition

to Steinfeld et al. (1999), Houston (2001), see the more specialized sources of Forst

(1973), Tardy and Rabinovitch (1977), Beynon and Gilbert (1984), Pritchard (1984),
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Reisler and Wittig (1986), Manz and Parmenter (1989), Gilbert and Smith (1990), Green

et al. (1992), Baer and Hase (1996), Holbrook et al. (1996), Schinke et al. (1997).

27 The mobile surface is discussed by Somorjai (1994), Somorjai and Rupprechter (1998).

28 The strongest anisotropy is due to an asymmetrical charge distribution or to electronic

orbital steering as discussed in Section 5.1.5.1.

29 For the role of reagent rotation, see Sathyamurthy (1983), Levine (1990), Loesch (1995).

30 The technique of solving equations of motion by constructing a mechanical system that is

moving under the same equations as the real problem is known as analog (as opposed to

digital) computation. Note, however, that here this is only useful for collinear collisions

and cannot describe, for example, migratory dynamics such as in H + ICl where the attack

is on one atom, iodine, as discussed in Section 5.1.5.1, but the final product is HCl.



Chapter 6
Structural considerations in the
calculation of reaction rates

We address the question that every chemist asks: given thermal reactants, how do
you compute the rate of crossing the barrier toward the products? We seek to cast
the answer using traditional tools and, specifically, the structure of the system at
the barrier. Using just one, physically realistic, approximation, transition state
theory enables us to do that. The theory identifies a bottleneck for the reaction
and computes the rate of passage through it.

The success of transition state theory inspires us to do more. We shall, but
we require additional assumptions to be made at each point where we seek a
generalization. The most pressing reasons for doing this are that there may be
more than one barrier separating the reactants and products and that there can be
multiple reaction paths. The case of the O2 + C2H5 reaction, shown in Figure 5.6,
represents the norm rather than the exception. Transition state theory allows
us to compute the rate of barrier crossing, but to get to the products we may
need to cross several barriers and/or take different paths. It is for this reason
that quantum chemists have grown proficient in computing the structures at each
barrier (and each hollow). But we still need to know how to compound the effects
of multiple bottlenecks to obtain the overall reaction rate – and this task calls for
either dynamical computations as in Chapter 5 or for an additional assumption
as introduced in Section 6.2. Another reason for wanting to go beyond transition
state theory is that we often measure the reaction rates for specific internal states
of the products or for selective initial states of the reactants. Even more, already
in Chapter 4 and in detail in Chapter 10 we want not just the final populations,
which are scalar quantities, but final vector quantities such as the orientation of
the products.

We divide the chapter into three sections. First, transition state theory (TST)
proper, where we compute the rate of barrier crossing for reactants in equilibrium.
Next, computing the reaction rate when more than one barrier is present, and
finally, state-resolved reactivities. As much as possible, we emphasize the close
link between structure and dynamics.
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6.1 Transition state theory: the rate of barrier crossing

Transition state theory is a method for predicting the rate of chemical reactions.
Technically, what the theory provides is the rate of crossing of a barrier. If there is
only one barrier between reactants and products, then transition state theory spec-
ifies how to compute the reaction rate constant. Transition state theory assumes
the validity of only one condition, but a cardinal one, namely that on one side
of the barrier, the states of the system are in equilibrium. If there is only one
barrier between reactants and products, then it is the reactants that should be kept
at equilibrium. The simplicity of transition state theory is lost if the reactants are
state-selected.1

The equilibrium condition required by the theory makes one sometimes think
that transition state theory is a theory like that described in Section 6.2 where
there is a collision complex. This impression is categorically false. If anything,
transition state theory is at the opposite extreme. It is a theory of direct crossing. In
one and only one go, the system is to cross the barrier.∗ The statistical assumption
made by transition state theory is not about the dynamics of the reaction; instead,
it is about the equilibrium nature of the reactants that are located to one side of
the barrier. A very important implication of this assumption is that it allows the
theory to be cast in structural terms, terms that are familiar to chemists.

The statistical assumption made by transition state theory is a specification
of the reactants to which the theory can be applied. It is not an approximation.
Either the reactants that you are interested in are in equilibrium and the theory is
applicable or the reactants are not in equilibrium and you should look for another
way to compute the reaction rate. Transition state theory does make one simple
and physically clear approximation to which we now turn.

6.1.1 The point of no return and the transition state

Transition state theory assumes that there is a configuration of no return such that,
starting from the reactants, when and if the system reaches this critical spatial
configuration, it will necessarily proceed to form products. If such a configuration
can be identified then it must be crossed by any reactive trajectory and transition
state theory assumes that it is only crossed once. The approximation of a single
crossing en route from reactants to products is the key to the simplicity of the
results. It implies that the reaction rate is given by the rate at which the colliding

∗ The expression for the rate of barrier crossing, as obtained by transition state theory, can also be

usefully applied when there is a well, with barriers on either side, separating reactants and products.

Under such circumstances, the theory can be applied but it is applied to the crossing of each barrier

separately, as discussed in detail in Section 6.2. Such an application requires that the motion of the

system rattles many times in the well region between the two barriers, see Section 5.3.3. Transition

state theory itself computes the rate of barrier crossing, and this rate equals the reaction rate only

for direct reactions.
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molecules reach (and thus pass through) this configuration. We do not need
to know how the system approaches this configuration, nor what dynamics it
undergoes beyond this configuration. All that is needed to compute the reaction
rate is to stand at the configuration of no return and to count the number of
reactants passing over the barrier to products, per unit time. Dynamics is thereby
reduced to counting, which is a real stroke of genius.

It is clear, however, that the existence of such a point of no return is an approx-
imation. Strictly speaking, it is only when the nascent products are significantly
separated from each other that we can be sure that they will indeed proceed along
the exit valley to form stable products. Even so, everything that we know thus far
supports the view that when there is a barrier along the reaction path, the location
of the barrier, i.e., the saddle point, is the sensible choice for a point of no return.
For reactions without an energy threshold, as we have seen in Section 3.2.6, the
centrifugal barrier can be used to determine the location of the point of no return,
which is identified with the maximum of the effective potential.

Dealing with thermal reactants and with barriers that are high compared to
thermal energies, the assumption is quite reasonable that if the barrier has been
crossed, the motion downhill to the products will not reverse upon itself. At
higher energies, when the barrier becomes less of a handicap, the barrier can
be recrossed. But transition state theory is intended to be useful at ordinary
temperatures when, due to the Boltzmann factor, there is not much excess energy
available for crossing the barrier. Even if the theory errs, note that it must always
provide an upper bound. Trajectories that start from the reactants and recross the
barrier may∗ fail to form products. But the theory counts them as reactive because
they crossed the barrier.

The term transition state is often applied to the configuration of no return.∗∗

This configuration is most certainly the divider (dividing surface) between reac-
tants and products, and so the name is appropriate.† We have already encountered
experimental techniques, and we will find more that initiate the dynamics in the

∗ Not will, but may. Trajectories that originate from the reactants and cross the barrier an odd number

of times will form products. The theory counts each such crossing as an independent trajectory

and also for this reason it overestimates the rate, i.e., it provides an upper bound.
∗∗ The transition state in the sense that we use it here is exactly the opposite of any intermediate

species between reactants and products. An intermediate complex exits over a well in the potential

energy and so the trajectory samples it many times, as in Figure 5.19. But for its excess energy, an

intermediate complex is a stable species and even with the extra energy it survives for a while. The

transition state is the least stable configuration. As an example, you can visualize it as a trajectory

moving periodically along the bisector of the H3 potential energy surface shown in Figure 5.2. It

is a trajectory tracking the bound symmetric stretch of H3. But the smallest change in the initial

conditions of such a trajectory will make it roll down either to the reactants’ or to the products’

region. With experimental ingenuity the transition state in our strict sense can be discerned, for

example Figure 8.3.
† We can be fanciful and think of the configuration of no return as the surface of a black hole. Any

trajectory that crosses the surface is assumed not to come back.
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region of the barrier but not necessarily on it. We shall then speak of the tran-
sition state region. It certainly makes quantum mechanical sense and even in
classical mechanics it surely takes at least a vibrational period to be sure that
having crossed the barrier the trajectory will proceed to form products.

6.1.2 The statistical condition

For chemical kinetics, transition state theory is most useful in the form that starts
from reactants in thermal equilibrium. For our purpose we want a more detailed
version, that of reactants with a total energy in the range E to E + dE. If we know
how to do that, we can and will average over a Boltzmann distribution in E to obtain
the thermal results. The first task at hand is to define what is meant by reactants
at equilibrium at a total energy within the range (and at given values of any other
conserved quantum numbers). It is the foundation of statistical mechanics that
equilibrium under such conditions means that all possible quantum states of the
reactants are equally probable.∗

Now comes a point that needs attention. In principle, the condition of the
reactants at equilibrium does not identify which states of the reactants will pro-
ceed to form products. But we are armed with a strong assumption: there is a
configuration of no return. Trajectories that originate at the reactants’ side of the
barrier either fail to reach this point or they do reach it and then they proceed
to form products, without turning back. Every trajectory that goes through to
products has originated in the reactant region. Therefore, all quantum states at
the transition state are equally probable because each such state can be traced
back to a state of the reactants2 and at equilibrium within a narrow energy range,
the states of the reactants are equally probable.

The physical meaning of the conclusion that all quantum states at the transition
state are equally probable is as follows. There are various ways of partitioning
a given total energy between the internal (bound ∗∗) degrees of freedom of the
transition state and the translational motion that corresponds to the formation of
the products, i.e., the motion along the reaction coordinate. Clearly if there is a
lot of translational energy in, and thus velocity along, the reaction coordinate,
the passage of that trajectory across the transition state configuration will be

∗ In the technical language of statistical mechanics, reactants in equilibrium within a narrow energy

range are said to have a microcanonical distribution. Reactants in thermal equilibrium have a

canonical distribution.
∗∗ The motion along the reaction coordinate is unbounded because we are crossing a barrier. But

the motion along other degrees of freedom is bound. For A + BC these other modes include the

symmetric stretch of ABC (this stretch is orthogonal to the reaction coordinate, which at the saddle

point is the unbound asymmetric stretch motion), the bending motion of ABC (the origin of the

steric factor), and the overall rotation of ABC. For more atoms there are more bound vibrations.

For a nonlinear molecule of n atoms there are a total of 3n − 6 vibrations (3n degrees of freedom

minus 3 to account for c.m. coordinates and 3 for rotations). Of these, one vibration is the motion

along the reaction coordinate, leaving 3n − 7 other vibrations.
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swift, whereas if most of the energy is elsewhere, the crossing will be slow. For
computing the reaction rate it is thus of importance to know how the total energy
is partitioned in the transition state configuration. From the above arguments we
conclude that all manners of partitioning are equally probable.

Trajectory computations can validate the assumption of no return. When the
available energy is only barely above the barrier, which is typically the case
for thermal reactants and chemical-sized barriers, a crossing trajectory seldom
returns. This is because the potential on the opposite side of the barrier falls quite
steeply so that the trajectory is accelerated toward the products. It is only at higher
energies that recrossing becomes more common.3

6.1.3 Computing the rate for direct reactions

Our purpose in this section is to obtain an expression for the rate of a direct
chemical reaction at a given total energy E.∗ We shall derive this result in two
distinct stages. The discussion is divided into separate parts in order to spell out
clearly the successive stages.

First, we must consider the energy balance at the transition state, Figure 6.1.
Let E0 be the minimal energy necessary to reach the transition state configuration
measured from ground-state reagents. ∗∗ At a given total energy E (measured also
from the zero level of the reactants) the translational energy for motion along the
reaction coordinate, εT, can be at most E – E0. In general, the available energy,
E – E0, will be distributed between εT and energy in the other degrees of freedom
of the transition state. These other degrees of freedom correspond to bound
motions as in an ordinary stable molecule. We shall refer to them as the internal
degrees of freedom of the transition state and assume that the energy E – E0 is
the sum of εT and that internal energy εI.

Our first task is to calculate the rate of passage across the point of no return
along the reaction coordinate q. Let us consider a subset of transition states,
namely, an ensemble of them, each with its translational energy (along the reaction

∗ Later we shall arrive at our other goals, the (direct) reaction rate at a given temperature T. Then

we discuss what to do for the case of complex-forming reactions, where there is more than one

barrier.
∗∗ E0 is not quite the height of the potential barrier to reaction. It is the energy of the ground state

of the transition state above the ground state of the reactants. The internal modes of the transition

state are bound and therefore discrete. The ground state is higher than the barrier top by the zero

point energy (zpe) of these discrete vibrations. Similarly, the ground state of the reactants is higher

than the barrier bottom by their zpe. These two corrections enter with different signs, but need

not cancel, E0 = barrier height plus zpe of the transition state minus zpe of the reactants. The

quantum chemist needs to provide us not only with the height of the barrier but also with the forces

at the barrier. From the forces we compute the frequencies for the vibrations at the transition state

and hence the zpe. We will need these frequencies in an essential way, so computing the zpe is a

necessary labor for quantum chemistry. As already mentioned, computing the forces for a given

configuration is nowadays possible.
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Figure 6.1 Energetics at the transition state: schematic energy profile along the
reaction coordinate for a potential with a barrier. E0 is the ground state energy of the
internal motions of the supermolecule at the transition state (measured from the
zero point internal state level of the reactants). E is the total energy; εI = E − E0 − εT

is the energy available for the internal states of the supermolecule at the transition
state [adapted from R. A. Marcus, J. Chem. Phys. 43, 2658 (1965)]. Note that because
these bound internal states are quantized, correctly speaking, E0 is not simply the
height of the barrier. Rather, E0 is the height of the potential barrier minus the zero
point energy of the reactants and plus the zero point energy of the internal modes at
the transition state. Because certain modes loosen up at the barrier and their
frequency goes down, the difference between the two zpes need not be small
compared with the net height of the barrier.

coordinate q) in the range εT to εT + dεT. To compute the rate of crossing for all
possible partitioning of the energy E we will later integrate over εT. For a given
εT, there is a corresponding linear speed and linear momentum along q, which we
denote by v+(= q̇) and p+ = m+v+ = (2m+εT)1/2. Here we use a superscript +
to denote properties at the transition state; m+ is a mass appropriate to the one-
dimensional (1D) translation of the system, along q. (It disappears from the final
result, however!) The range of εT can be written in terms of p+:

dεT = p+ dp+/m+ = v+ dp+ (6.1)

To calculate the reaction rate constant we first compute the rate of barrier cross-
ing. Then we extract the rate constant by dividing by the concentration of the
reactants. We determine that concentration by taking one pair of reactants in each
initial quantum state. We could take two or any other number. Because the initial
quantum states are equally populated, the rate will scale with the number that we
choose.

The rate of barrier crossing (the number of crossings per unit time) for transi-
tion states in the specified εT range is dr+ = v+ dN+, where dN+ is the number of
systems per unit length along q (i.e., a 1D number density). Because all available
states are assumed equiprobable and occupied, and because the system is in a
definite state (of energy εI) of the other degrees of freedom, what we need is the
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number of states for the one-dimensional motion, from left to right, along the
reaction coordinate.

The quantum mechanical result∗ for the number of such 1D translational
states in a length dq is dp dq/h, so the 1D number density per unit length is
dN+ = dp+/h. This gives for the rate of passage across the barrier

dr+ = v+ dp+

h
= dεT

h
(6.2)

Thus, the rate of passage through the point of no return along the reaction coor-
dinate is dεT/h, irrespective of the value of εT itself. This result is really most
remarkable. Irrespective of any details about the reactants, when the total energy
is in the range E, E + dE and the internal degrees of freedom are in a given
state, the rate of crossing is universal, namely 1/h per unit translational energy.
The only assumption made is that of a point of no return; all systems reaching it
proceed further on and ultimately become products.

A given total energy E may be partitioned in many ways between εI and εT, i.e.,
between the internal modes of the transition state and the motion along the reaction
coordinate. We now invoke the result that at equilibrium all these partitionings
are equally probable. Each internal state of the transition state contributes dεT/h
to the rate of passage. Therefore, when the total energy is in the range E to E +
dE, the rate of passage is the sum over internal states of all the rates of crossing:∑

internal
states

dr+ =
∑

internal
states

dεT

h
=

∑
internal
states

dE

h
= dE

h

∑
internal
states

1 ≡ dE

h
N ‡(E − E0) (6.3)

The sum is over all the internal states of the supermolecule whose energy εI is
in the allowed range from 0 to E − E0, where, for a given εI, we have dεT =
dE. Hence, for reactants having a total energy in the range E to E + dE the rate
of passage is determined by the number N‡ (E − E0) of internal states of the
supermolecule at the transition state whose energy εI is in the allowed range,
0 ≤ εI ≤ E − E0. The superscript ‡ is a reminder that N ‡(E − E0), defined by

∗ We require a quantal result because of an inherent flaw in the classical mechanical counting of

translational states, which was first realized in connection with black-body radiation density, and

which led to the introduction of Planck’s constant h. The same failing was subsequently realized

in connection with the contribution of the translational motion to the entropy (the Sackur–Tetrode

equation) and hence to the other thermodynamic properties of gases. We will need to use this result

again in Section 6.4, so here is a short proof using semiclassical considerations. Take an interval

of length L. Quantization means that an integral number of (de Broglie) wavelengths (λ = h/p) fit

into L. The nth quantum state is therefore defined by nλ = L. The same condition written in terms

of the momentum is p = nh/L. The number of states when the momentum is in the range p to p +

dp is dn = L dp/h, which, per unit length, is dp/h. If you apply this expression to a particle inside

an infinitely deep well you will get twice as many states. This doubling occurs because the states

in the well can be even or odd, so that linear combinations of them correspond to particles moving

from right to left or vice versa. In 3D the result for the density of translational states is dp/h3.

A short proof is to multiply the contributions of the three directions for a box of side L, (dpx/h)

(dpy/h)(dpz/h) = dp/h3.
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the sum in Eq. (6.3), represents only the bound internal states at the point of no
return, that is, those having a real as opposed to an imaginary frequency. Thus,
this sum excludes the unbound motion along the reaction coordinate.

Given a knowledge of the potential energy surface near the saddle point we
can calculate the energies of the allowed internal states and simply count up how
many are in the range 0 < εI ≤ E − E0.

With the result shown in Eq. (6.3) we have reduced computing the rate of
barrier crossing to a counting problem! Given the structure of the transition state
we simply need to count how many internal states are in the allowed energy range.
When we use thermal reactants the counting problem can be recast in even more
familiar terms and we do so shortly. In the meantime we can either be satisfied
by the cumulative rate (per unit energy) of crossing the barrier4

Y (E) = 1

h
N‡(E − E0) (6.4)

or we can get a reaction rate constant by dividing the rate of crossing by the
concentration of the reactants. Because we have one set of reactants per quantum
state, the desired concentration is the number of reactant states per unit volume
for energy in the range E to E + dE. This number can be written as ρ(E )dE,
where ρ(E) is defined as the density of states of the reactants, that is, how many
quantum states per unit energy. The concept of a density of states, a smooth
function for which energy is a continuous variable, serves to simplify the form
of several expressions that we derive and also helps in understanding the relation
between structure and reactivity. The concept comes from the quantum mechanics
of stationary states. By definition, a density of states is the number of quantum
states per unit energy interval, and it is discussed in Appendix 6.A..

Dividing the rate by the concentration we get the rate constant

k(E) = N‡(E − E0)

hρ(E)
(6.5)

The third, and final, stage, which goes from k(E) to k(T), is carried out in the next
section. It is useful however to note that the concept of a differential reaction
rate, k(E), does not require the approximation of a configuration of no return and
can be derived in complete generality. This follows from our discussion of the
reaction rate for state-selected reactants in Appendix 3.A. This allows us to write
the rate constant for thermal reactants as an average of the state-selected rates
over the internal states of the reactants. By examining this expression, Problem A
shows that if σ R(i) is the reaction cross-section for reactants in the initial internal
state i (internal energy Ei) then it is an exact result that

Y (E) = 1

h

∑
i

π−1k2
i σR(i) (6.6)

where (h2k2
i /2µ) = ET = E – Ei and k(E) = Y(E)/hρ(E). We can therefore

use a reaction cross-section from any source, even including a classical trajec-
tory computation, to compute k(E). Problem A also shows that both the exact
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expression Eq. (6.6), for the yield and also the transition state approximation
Eq. (6.4) satisfy microscopic reversibility. Note that the 1/h factor in Eq. (6.3)
remains in the final results. The origin of this factor is the failure of classical
mechanics to count translational states properly.

6.1.4 From k(E) to k(T)

Transition state theory for thermal reactants5 is readily derived from the results at
a given energy. First we note that when the reactants are in thermal equilibrium,6

the general expression for the thermal reaction rate can be written as7

k(T ) = Q−1

∞∫
0

Y (E) exp(−βE)dE = Q−1

∞∫
0

k(E)ρ(E) exp(−βE)dE (6.7)

where β = 1/(kBT) (kB is the Boltzmann constant) and Q is the partition function
of the reactants. As discussed in Appendix 6.A., Q is defined in terms of the
density of states such that the thermal average is over a normalized distribution:

Q ≡
∫ ∞

0
exp(−βE)ρ(E)dE (6.8)

From the definition Eq. (6.8) of the partition function Q of the reactants, the
thermal rate constant as given by Eq. (6.7) is the thermal average of k(E),
k(E) = Y(E)/hρ(E). In transition state theory, ∗

hY (E) = N ‡(E − E0) = N ‡(E ′) (6.9)

where E0 is the threshold energy and E′ = E − E0 (so that dE = dE′). We can
integrate Eq. (6.7) by parts, if we know the value of dY(E)/dE. Again we appeal
to the concept of a density of states, where what we need here is the density ρ‡(E′)
of internal states at the transition state

d[hY (E)]

dE
= d

dE ′ [N ‡(E ′)] ≡ ρ‡(E ′) (6.10)

Integrating by parts,

k(T ) = Q−1

∞∫
0

Y (E) exp(−βE)dE = −(βQ)−1

∞∫
0

Y (E)
d

dE
[exp(−βE)]dE

= −(βQ)−1


Y (E) exp(−βE)

∣∣∣∣∣∣
∞

0

−
∞∫

0

exp(−βE)
dY (E)

dE
dE




= kBT

hQ

∫ ∞

0
exp(−βE0) exp(−βE ′)

d

dE ′ [N ‡(E ′)]dE ′

= kBT

h

∫ ∞
0 exp(−βE ′)ρ‡(E ′)dE ′

Q
exp(−βE0) ≡ kBT

h

Q‡

Q
exp(−βE0) (6.11)

∗ Equation (6.7) is equally valid if we use Y(E) as determined by a dynamical computation Eq. (6.6).
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The final integral is the partition function Q ‡ for the internal states (the degrees of
freedom excluding the reaction coordinate) at the transition state configuration,

Q‡ ≡
∫ ∞

0
exp(−βE ′)ρ‡(E ′)dE ′ (6.12)

With Eq. (6.11) that we here reproduce

k(T ) = kBT

h

Q‡

Q
exp(−E0/kBT )

we have completed the line of reasoning that started in Section 6.1. The computa-
tion of the thermal rate constant has been reduced to the computation of partition
functions, which involves the structure of the transition state and requires no
dynamical knowledge whatsoever. It does require knowing the potential energy
surface in the immediate vicinity of the transition state. Fortunately, quantum
chemistry can provide this information even for many-atom reactants. When this
information is not available, it becomes necessary to assume a structure for the
transition state to calculate a value of Q‡. We do an example in Section 6.1.4.1.
When E0 and Q‡ are computed from a well-defined potential surface, transition
state theory in the form of Eq. (6.11) provides quite reasonable results when there
is a single barrier separating reactants and products. If such is not the case, more
work is needed, as will be addressed in the following discussion.

*6.1.4.1 Transition state theory and the steric factor
One of the immediate successes of transition state theory is that it both explains
and offers a quantitative estimate for the steric factor. In particular, it readily
shows why the steric factor is smaller when the reactants have a more complex
structure. Although our detailed demonstration is almost a caricature of the true
nature of the system, it captures the essence of the phenomenon, namely, that
the steric factor originates from modes of motion that are unconstrained in the
reactants and become hindered in the transition state.8

Statistical mechanics is that branch of physical chemistry dealing with par-
tition functions. We appeal to statistical mechanics for two results, discussed in
Appendix 6.A.. First, a partition function of a molecule can be expressed as a
product of the partition function for the motion of the center of mass and an
internal partition function. Second, the internal partition function can be approx-
imately represented as a product of contributions from each bound mode. To
apply the theory we need to compute partition functions (or to look them up in
the JANAF tables∗). In what follows, we are extremely cavalier and take all rota-
tional partition functions to be equal, and larger by an order of magnitude than all
vibrational partition functions that we also take to be equal to one another. This
provides a reasonable order of magnitude but is otherwise not a recommended
procedure.

∗ JANAF = Joint Army Navy Air Force, a useful tabulation of thermodynamic data published by the

(US) National Institute of Standards and Technology (see http://webbooks.nist.gov/chemistry).
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First, we inquire under what condition is the steric factor unity, meaning that
there are no steric requirements. We already know from Section 3.2 that this
condition is met when the two colliding particles are structureless. The partition
function for the reactants is then Q = Q3

T Q3
T, one translational partition function

(for a 3D motion) for each reactant. The point of no return has been identified in
Section 3.2.7: the two particles are at a distance d apart and the barrier height is
E0. The transition state is here a diatomic. It has six degrees of freedom. Three
are the motion of its center of mass. Of the other three, one is the vibrational
motion, which is the reaction coordinate. Therefore, it should not be counted as
an internal coordinate of the transition state. The other degrees of freedom are
the two planes of rotation of a diatomic molecule. Therefore Q‡ = Q3

T Q2
R. So

the transition theory result for the reaction rate constant, in the absence of any
steric effect, is

k(T ) = kBT

h

Q‡

Q
exp(−βE0) = kBT

h

Q2
R

Q3
T

exp(−βE0)
transition state theory,
no steric requirements

(6.13)

Next, consider a reaction between an atom and a diatomic molecule, A + BC.
Reactions can differ also in their energetic requirements, but to focus attention on
the steric requirements with the energetic effects being equal we take the barrier
height E0 to be the same as in the previous reaction. To have minimal steric
requirements let us take the transition state, ABC, to be bent. This choice allows A
to approach BC within a cone. Because BC has an internal structure, the partition
function for the reactants becomes Q = Q3

T Q3
T Qv Q2

R. The transition state is a
bent triatomic. It has three vibrations, one of which is the reaction coordinate.
(As we saw in Section 5.1, this is the asymmetric stretch vibration.) The bent
transition state has three planes of rotation, Q‡ = Q3

T Q2
v Q3

R. Accordingly, for
reasons that will become immediately apparent, we write k(T) as

k(T ) = kBT

h

Q2
v Q3

R

Q3
T Qv Q2

R

exp(−βE0)

=
(

Qv

QR

)
kBT

h

Q2
R

Q3
T

exp(−βE0)
A + BC

TST
bent ABC

(6.14)

Comparing Eq. (6.14) with Eq. (6.13), the steric factor for a bent ABC transition
state is Qv/QR, which results in a reduction of the rate compared with Eq. (6.13) by
an order of magnitude. Consider the A + BC reaction again but with a linear tran-
sition state. A linear triatomic has four vibrations (it can bend in two independent
planes) and two rotations. Therefore, for this, more constrained, transition state

k(T ) = kBT

h

Q3
v Q2

R

Q3
T Qv Q2

R

exp(−βE0)

=
(

Q2
v

Q2
R

)
kBT

h

Q2
R

Q3
T

exp(−βE0)
A + BC

TST
linear ABC

(6.15)
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The steric factor for a linear ABC transition state is (Qv/QR)2, which yields a
reduction of the rate by two orders of magnitude. Problem F shows that the reduc-
tion is determined by how many free motions in the reactants become vibrations
in the transition state. In the most general case of reaction between two nonlinear
polyatomics,∗ the steric factor is (Qv/QR)5, which is quite a reduction!

*6.1.4.2 Variational transition state theory
One possible improvement to transition state theory, as introduced by Wigner, is
to find the optimal location of the transition state along the reaction coordinate.
This approach is called variational transition state theory, and it offers a better
quantitative prediction of the reaction rate. Here, however, we are interested in the
reasoning behind the theory. At first blush, it may seem obvious that the transition
state must be located at the barrier in the potential energy surface. A moment’s
reflection shows that while this assumption is reasonable it is not necessarily the
optimal choice. The true transition state is the bottleneck to reaction. The rate
through the transition state is always equal to or larger than the true reaction rate.
Therefore, the transition state is most aptly located where the flux of trajectories
that cross it is minimal. The variational approach seeks to determine that least
upper bound to the reaction rate. The barrier height and the entropy∗∗ of the other
modes, Problem E, determine the flux. Generally, the barrier is more important,
but the entropy also matters, particularly at higher temperatures.

Variational transition state theory is particularly useful when the potential
energy surface itself has no barrier. In Section 3.2 we used the barrier of the
effective potential as the point of no return. Variational theory shows that this is
the optimal choice, excluding the role of entropy. Variational theory is also needed
when there can be transition state switching, by which we mean that a region of
the potential that was not a bottleneck at a low energy becomes rate-limiting at
a higher energy. It is then necessary to switch the location of the transition state,
which then becomes a function of energy.

∗ If the two reactants have nA and nB atoms, respectively, there are 3nA − 6 + 3nB − 6 vibrations

of the reactants. There are 3(nA + nB) − 6 vibrations of the transition state, one of which is the

reaction coordinate. Five vibrations are gained for the other degrees of freedom at the transition

state. This is at the expense of translations and rotations of the free reactants. See Problem F.
∗∗ How does entropy come in? Because there are the internal degrees of freedom of the transition

state. The more of these that can be populated, the higher is the reaction rate, as shown explicitly by

Eqs. (6.3) or (6.5). Entropy is a measure of the number of accessible states. If the potential energy

surface at the saddle is shallow, meaning that the mountain pass is wide, many internal states are

accessible. If the forces in the directions perpendicular to the reaction coordinate are strong, the

pass is narrow. For thermal reactants we show in Appendix 6.A. that the partition function counts

how many states are effectively accessible. A reaction is said to be entropy controlled when the rate

is unusually large (or small) because of the width of the bottleneck. How many states are accessible

is determined by the energy (or temperature), so it is possible for a reaction to be energy controlled

at low temperatures and entropy controlled at high temperatures, particularly so if the barrier

is low.
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6.A Appendix: Density of states and partition functions

We begin with the density of internal states. First, we need the number, NI(EI),
of internal states, whose energy is less than or equal to EI. If the reactants are an
atom in its ground electronic state and a diatomic molecule, then the only internal
energy is the rovibrational energy of the diatom. We need to count how many
states have a rovibrational energy less than or equal to EI. We can formally write
this counting as

NI(EI) =
∑
v, j

H (EI − Ev, j ) (A.6.1)

Here H(x) is a step function,∗ namely, a function H(E − E′) that is zero for
E < E′ and equals unity otherwise. So, strictly speaking, the number of states is
a staircase function of EI, increasing by unity any time we cross a new threshold.
When the system has more degrees of freedom, the summation in (A.6.1) is over
more quantum numbers, but the meaning remains the same: make a spectrum
of energies of the internal states that are arranged as a stick diagram in order of
increasing energy and count how many states fall below a cutoff at EI. Do not
forget that more than one internal state can have the same energy and so each
energy level must be counted with its correct degeneracy.

The density of internal states is defined such that ρI(EI)dEI is the number
of internal states in the narrow energy range EI to EI + dEI. For the systems of
interest to us, the number of states per energy interval is sufficiently high so that
the number of states is essentially a smooth function. Therefore the density of
states is also a continuous function and is to be understood as

ρI(EI) = (N (EI + �E) − N (EI − �E)) /2�E (A.6.2)

∗∗ For all values of E, the step function H (E − E ′) is a constant. Consequently, its derivative vanishes.

At E = E′ the step function suddenly changes value and we might imagine that its derivative does not

exist because it is infinite at that point and zero elsewhere. But we argue instead that the derivative is

an infinitely narrow sharp spike that has a unit area. We offer the following proof for this assertion:

integrate the derivative over a short interval in E. If E′ is within the interval, you get unity, otherwise

you get zero:

B∫
A

(dH (E − E ′)/dE) dE = H (B − E ′) − H (A − E ′) =
{

1, A < E ′ < B

0, otherwise

Following Dirac we call the derivative “the delta function”

dH (E − E ′)/dE = δ(E − E ′)

To practice handling delta functions see Problem C. Taking the derivative of (A.6.1) with respect

to energy, we get the formal definition of the density of states

ρI(EI) =
∑
v, j

δ(EI − Ev, j )

The practical definition is (A.6.2).
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where even though �E is a small energy interval there are many quantum states
in it.

The molecular partition function Q(T) is defined as the normalization factor
for the Boltzmann distribution at the temperature T. Specifically, the probability
pi of a single internal state with energy Ei is

pi = exp(−Ei/kBT )/Q(T ) (A.6.3)

where Q(T) is the function of temperature given by

Q(T ) =
∑

i

exp(−Ei/kBT ) (A.6.4)

Equation (A.6.4) readily explains the old name for Q as “the sum over states.” A
rough and ready estimate for Q is to divide all the states into those where Ei <

kBT, for which we may approximate exp(−Ei/kBT) as unity. For all other states
we take the exponent to be too small to contribute to the sum. Q thereby becomes
the number of states that are significantly populated at the temperature T.

In the text we used two properties of the partition function. One, Eq. (6.8), is
a rewriting of the definition Eq. (A.6.4) as an integral over the density of states.
For example, for the internal states, the density of states ρI(EI)dEI is the number
of internal states in the narrow energy range EI to EI + dEI, so that

QI =
∞∫

0

exp(−EI/kBT )ρI(EI)dEI (A.6.5)

If the spectrum of states is sparse, then the integral in Eq. (A.6.5) reduces to a
sum as in (A.6.4) because the density of states is a sum of delta functions. Often
the spectrum is so dense that ρI can be approximated as a continuous function
and an ordinary integration can be carried out.

The other important property of the partition function is its factorizability:
the partition function of disjoint degrees of freedom is a product of individual
partition functions. This factorization can be exact. For example, the energy of
a molecule is exactly the sum of its internal energy and the translational energy
of the center of mass. Then the partition function of the molecule is exactly
the product of a translational partition function and an internal one. Sometimes
we use factorization as an approximation. For example, the rovibrational energy
is not strictly the sum of vibrational and rotational terms because the vibra-
tion stretches the molecule so that its moment of inertia depends, albeit weakly,
on the vibrational state. Making the assumption of separability, we have from
Eqs. (A.6.4) and (A.6.1)

QI =
∑
v, j

exp(−Ev, j/kBT ) ∼=
∑
v, j

exp(−(Ev + E j )/kBT )

(A.6.6)

=
[∑

v

exp(−Ev/kBT )

][∑
j

exp(−E j/kBT )

]
= Qv QR
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In Section 3.1.2.4 we have implicitly used a result for the mean energy of the
system:

〈E〉 ≡
∑

i

Ei pi = −kB∂ ln Q/∂

(
1

T

)
= kBT 2∂ ln Q/∂T (A.6.7)

This result is needed to do Problem D and others.

6.2 RRKM theory and the rate of unimolecular reactions

In this section we discuss the rate of formation and dissociation of energy-rich
molecules. There are two key ingredients. One is transition state theory as dis-
cussed in Section 6.1. If there is a single barrier separating reactants and products,
transition state theory allows us to compute the rate of the chemical reaction. But
as discussed in Section 5.3.3, we are here interested in reactions where there
is more than one barrier along the reaction coordinate. Between any two such
barriers there must be a hollow in the potential. This may slow the passage. The
second ingredient that we need stems from an examination of the nature of the
complex dynamics over such potentials.

6.2.1 Unimolecular reactions: the Lindemann and
the RRKM hypotheses

Figure 5.20 showed schematically why a well along the reaction coordinate
enables a trajectory to spend some time seemingly as a stable molecule before
escaping out of the well region. For chemists, this is very old news. They have long
understood how to initiate a complex mode reaction in the interaction region, that
is, with the molecule whose total energy is on top of the well. Begin with a stable
molecule that is at the bottom of the well and drive its energy up. Ever since the
proposal by Lindemann, chemists also understood that energy-rich polyatomic
molecules survive for a while before they dissociate. Indeed, the very success
of the Lindemann mechanism allowed them to clock the dissociation and specif-
ically to show that the lifetime of an energy-rich polyatomic molecule can be
comparable to or longer than the time interval between collisions in the bulk.

Lindemann sought to explain why polyatomic molecules in the bulk gas phase
dissociate by a unimolecular rate law, that is, seemingly spontaneously. The ques-
tion was where the energy required for the bond breaking came from. In the
simplest form we assume collisional activation and deactivation of the energy-
rich species A∗ by molecules of the bath gas M, and a competing unimolecular
dissociation of A∗:

A�
k[M]

k′[M]
A∗, A∗ kd−→products

This is an approximate description because it overlooks the – as we show, quite
steep – energy dependence of the dissociation rate constant kd. In Problem G it is
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done better. Here we proceed with this simplified picture. The rate of formation
of products is kd[A∗]. Since the concentration [A∗] of the energy-rich molecule
is low, its rate of change is also low and can be approximately put equal to zero.
This is known as the steady-state approximation:

d[A∗]

dt
= k [M] [A] − k ′ [M] [A∗] − kd [A∗] =

steady-state
approximation

0

It yields an immediate solution for [A∗]:

[A∗] = k [M] [A] /(k ′ [M] + kd) →
{

[A] k/k ′, high pressure
k [M] [A] /kd, low pressure

d [products]

dt
= kd [A∗] −→

steady-state
approximation

{
kd [A] k/k ′, high pressure
k [M] [A] , low pressure

If the molecule lives longer than the time between deactivating collisions,
k′[M] � kd, most of the collisionally activated molecules will also be deacti-
vated by collisions. Then the concentration of energy-rich molecules and hence
the rate of formation of products is independent of the pressure of the bath gas.

This is known as the high pressure limit because the pressure is the measure
of the concentration, [M], of the bath gas. In this limit the rate of dissociation
is unimolecular. At low enough pressures, k′[M] 	 kd, the rate of reaction is
determined by the rate of activating collisions with an apparent rate constant,
k[M], that is proportional to the pressure.

It was Lindemann’s point that the more degrees of freedom there are in the
energy-rich polyatomic the longer it will stay bound in the well. The reason is that
it requires energy in that particular vibration that is the reaction path to cross the
saddle point to products. The other 3n − 7 vibrations of the molecule, which are
not the reaction path, provide a sink for the excess energy. Once the energy flows
into these many modes it takes a rare event for the required energy to localize in
the reaction path. By computing the probability for this event we will show that
the lifetime increases exponentially as the number of other modes increases.

The observed rate of dissociation does decline with pressure from high-
pressure unimolecular kinetics to a low-pressure bimolecular regime. The Linde-
mann mechanism interprets this behavior as being due to the long lifetime, low kd,
of energy-rich molecules, a lifetime that is long compared with the time interval
between collisions at higher pressures. To securely verify the implication from
chemical kinetics that the lifetime is long, it is necessary to directly demonstrate
the competition between dissociation and collisional deactivation.

One can prepare energy-rich molecules not only by collisional activation but
also by collisions of suitable precursors. Chemists know this as chemical activa-
tion because the energy is made available by the formation of a new chemical
bond. What can then be measured is the competition between dissociation and
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Figure 6.2 The measured (points) dissociation rate constant, logarithmic scale, vs.
the number, s = 3n − 6, of vibrational modes in a series of energy-rich alkyl radicals
of n atoms [data of E. A. Hardwidge, B. S. Rabinovitch, and R. C. Ireton, J. Chem.
Phys. 58, 340 (1973)]. The straight line is a fit. All these radicals have about the same
excess energy (measured with respect to the bottom of the well), namely the energy
of the newly formed primary C—H bond, roughly about 100 kcal mol−1. The
energy-rich adducts dissociate primarily by a radical loss, as shown, because the
bond that breaks is weaker. We shall indeed show that one signature of energy
partitioning is that it is the weak link that breaks, irrespective of which coordinate
was initially energy-rich.*

deactivation by collisions, where the rate of deactivation can be varied by varying
the pressure of the buffer gas. This allows clocking the dissociation. ∗∗ Figure 6.2
shows the measured dissociation rate constant in an experiment designed to
demonstrate the decrease in the rate in a series of chemically activated alkyl
radicals of increasing size:

H + CH2 = CHCH2R −→ CH3ĊHCH2R∗ kd−→ CH3CH = CH2 + Ṙ

The alkyl radical R is identified in the figure. The abscissa is the number,
s = 3n – 6, of vibrational modes in the energy-rich alkyl of n atoms.

* An energy-very-rich large polyatomic molecule has a quasi-continuum of vibrational states,

Section 6.2.2.2. Therefore its behavior is almost that of a macroscopic body. Remember that

the direction of spontaneous change in a bulk system is primarily governed by energy, but that

entropy is also relevant. The same ideas are also effective for a large isolated molecule. So here is

that mountain pass again. It is a rule of thumb that it is the weak bond that will break, but entropic

aspects must also be considered. If the mountain pass is narrow and constrained it will lower the

rate of dissociation, see Section 6.2.2.
∗∗ At atmospheric pressure the time interval between collisions is, Chapter 2, in the nanosecond

range. Decreasing the pressure increases this time. So clocking by collisions can be used to

measure times of the order of nanoseconds or longer. We will discuss clocking by fluorescence

and this has a similar range. To measure even shorter times we use the pump–probe technique as

already introduced in Section 1.2.5, where the delay between the pump and probe pulses can be

shorter or even much shorter than the time interval between collisions. See Chapter 8.
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Figure 6.2 also makes another key quantitative point: the lifetimes of energy-
rich larger polyatomics are exceedingly long compared with the time scale of
vibrational motion. As is consistent with the Lindemann hypothesis, the lifetimes
are also longer than the time between collisions at ordinary pressures. This raises
a question: for a molecule that lives for so many vibrational periods,9 will it
remember∗ how it was formed?

The assumption that quasi-bound energy-rich polyatomics have forgotten
where they came from is known as the RRKM hypothesis10 (Rice, Ramsperger,
Kassel, Marcus). One in a classic series of experiments by Rabinovitch designed
to test the RRKM hypothesis is the formation of a bicyclo compound

CF2—CF = CF2 + :CD2 → CF2—CF—CF—CF2

CH2 CH2 CD2

where we have styled the initially vibrationally excited bonds thicker than the
rest.

The bicyclic molecule decomposes preferentially by elimination of :CF2. If
the energy is rapidly redistributed over all degrees of freedom, elimination of
:CF2 can occur from either ring, as observed. This and other experiments have
provided the evidence that those molecules that are long-lived have sampled
the range of available states. The conclusion that, prior to dissociation, energy is
partitioned amongst all the degrees of freedom allows us to considerably simplify
the treatment of the dynamics. We do not need to run trajectories. However we
prepare the molecule, it forgets how it was formed. But in another sense this
vibrational energy redistribution presents a challenge because it implies that we
cannot control the outcome. The search is therefore on for ways of beating the
tendency of molecules to spread the energy over all available modes. Do we stand a
chance? One direction is to try and catch those molecules that dissociate early on.
The Lindemann mechanism suggests that these are the molecules that dissociate
even when the pressure is high. When the rate of collisional deactivation is high
enough, Figure 6.2 already showed that the lifetime can be comparable to the time
between collisions. The early experimental result11 was that at a high enough
pressure, :CF2 eliminates preferentially from the ring that was initially excited.
From that observation the search for non-RRKM behavior was on! We will have
more to say but the available evidence is that the onset of energy redistribution is

∗ Strictly speaking, a single classical trajectory does not forget. Indeed, a good test of the numerical

integration is to stop the trajectory, reverse the sign of all velocities, and check that the trajectory

integrates back to where it started from. But a real experiment is mimicked by an ensemble of

trajectories. As we saw in the discussion of the Monte Carlo method, averages computed for an

ensemble are not sensitive to the details of initial conditions if these are chosen in an unbiased

manner. The ensemble is said to “forget” if you can bias the selection of trajectories and still end

up with the same average values for observables of chemical interest.
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fairly prompt. So control of the dynamics requires a rather short-time excitation
or other means for depositing the energy in a manner that makes the molecule
move immediately in the direction of the exit valley.∗ One tool at our disposal
that we are yet to take advantage of, Chapter 7, is electronic excitation because,
so far, everything that we have discussed is taking place on the ground electronic
state.

6.2.2 The (RRKM) dissociation rate of an energy-rich
polyatomic molecule

Imagine an energy-rich polyatomic molecule that resides over a well in the poten-
tial energy surface. Typically, a barrier separates the well and the exit valley
leading to the dissociation products.∗∗ Transition state theory, with one further
assumption, allows us to compute the rate of dissociation. Transition state the-
ory assumes that the states to the reactant side of the barrier are in equilibrium
and it uses this assumption in an essential manner. If an energy-rich polyatomic
lives long enough that it forgets where it came from, then it is in equilibrium
and transition state theory can be used. This is the starting point for the RRKM
treatment.

What we want to compute is k(E), the rate constant for unimolecular disso-
ciation at the total energy E. The quickest route to this result is to use detailed
balance.12 We equate the rate of association of the products to the rate of disso-
ciation into products when both the energy-rich molecule and the products are
at equilibrium. Let

←
k(E) be the rate constant for crossing the barrier from the

products’ valley into the well.
←
k(E) is known to us from transition state theory,

Eq. (6.5),
←
k(E) = N ‡(E − E0)/hρp(E), where ρp(E) is the density of states of the

products. Detailed balance requires that13 ρp(E)
←
k(E) = ρ(E)k(E), where ρ(E)

is the density of states of the energy-rich polyatomic molecule. Hence we obtain
the celebrated RRKM result

k(E) = N ‡(E − E0)

hρ(E)
(6.16)

Equation (6.16) resembles the transition theory reaction rate, Eq. (6.5), and indeed
here too ρ(E) is the density of states on the reactant side of the barrier. But here
the reactant is the energy-rich polyatomic molecule, and we must assume (on the

∗ The non-selective behavior is due, at least in part, to the extensive averaging over initial conditions

when the energy-rich molecule is formed by chemical activation. In general we expect that the

tighter is the preparation of the ensemble of initial conditions, the longer will it retain its memory.
∗∗ An alternative fate for an energy-rich molecule is to isomerize. Then there is a barrier separating the

two wells, that of the molecule and that of the isomer. Barriers to isomerization can be significantly

lower than those for bond breaking. Since transition state theory does not ask what happens beyond

the barrier, the very same approach allows us to compute the reaction rate whether the molecule

dissociates or it isomerizes. But the rate of barrier crossing toward an isomer can be fast and care

must be exercised before the RRKM approximation is made.
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basis of experimental evidence and theoretical considerations) that the molecule
has reached equilibrium.

6.2.2.1 Reactions in the bulk
A limit where the equilibrium assumption for the energy-rich molecule is realistic
are reactions in the bulk at the limit of high pressure. This is the limit where energy
transfer collisions are far more frequent than dissociation. The concentration of
the energy-rich molecules is that at thermal equilibrium at the temperature of the
gas

[A∗(E)] = [A]
ρ(E) exp(−E/kBT )

Q

Here [A] is the total concentration of A molecules and the partition function Q
is that of A molecules. The same result is obtained if we form energy-rich A
molecules by chemical activation and then let them thermalize by collisions.

The rate of dissociation is, from Eq. (6.16), plus the rule, Appendix 3.A, of
averaging over initial states:

Reaction rate =
∫

[A∗(E)]k(E)dE

= [A]
1

hQ

∫
N ‡(E − E0) exp(−E/kBT )dE high pressure limit

= [A]
kBT

h

Q‡

Q
exp(−E0/kBT )

where the last line is by integration by parts as in Eq. (6.11). The reaction is uni-
molecular with a transition state theory expression for the reaction rate constant.
In Problem G the derivation above is extended to lower pressures. In Chapter 11
we ask what happens when collisions are so frequent that they can catch the
molecule during the very act of crossing the barrier.

*6.2.2.2 Vibrational state counting: a simplified treatment
The M (for Marcus) in RRKM is also to remind us to count states at the transition
state taking into account conservation of angular momentum. For the sake of
simplicity, we neglect this constraint. We further assume that all bound vibra-
tions are harmonic (which is manifestly not the case) and make a quasi-classical
approximation where the number of states is a continuous rather than a staircase
function of the energy, cf. Appendix 6.A.. Suppose we have just one harmonic
oscillator of frequency ν. Then the number of quantum states below the energy E
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    by conservation
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is E/hν. Of course, this overlooks the zero point energy of the oscillator, etc., but
if the energy is high enough, the order of magnitude is surely right. If there are
two oscillators, of frequencies ν1 and ν2, the number of quantum states below the
energy E is (E/hν1)(E/hν2)/2. This is the area of a right-angle triangle whose
two sides are (e/hν1) and (e/hν2) with e ≤ E. Each unit area corresponds to a
quantum state. The factor s! in Eq. (6.17) is a generalization of the factor 2, which
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is the ratio of the area of the triangle to that of a square. For a sphere, one octant is
1/8 in volume, etc. If there are s oscillators and the (geometric) mean frequency
is ν̄, then

N (E) = 1

s!

(
E

hν̄

)s

(6.17)

ρ(E) ≡ dN (E)

dE
= 1

(s − 1)!

(
E

hν

)s−1/
hν

Let the energy-rich molecule have n atoms. Then it has s = 3n − 6 vibrations.
In the transition state one of these vibrations becomes the reaction coordinate so
there are s − 1 = 3n − 7 other vibrations. The rate constant for dissociation is,
from Eq. (6.16),

k(E) = ν
(E − E0)s−1

Es−1
= ν

(
1 − E0

E

)s−1

(6.18)

Here ν = ν̄s/ν̄‡(s−1) is the mean vibrational frequency. Consequently, ν represents
the rate of a typical molecular vibration. If k(E) = ν the molecule will dissociate
in one vibrational period. But generally, k(E) 	 ν because of the second factor
in Eq. (6.18), which is typically much smaller than one because ((E − E0)/E) <

1 and s > 1. This factor is a simple quantitative statement of the physics that we
already know from Section 5.3.3.1. First of all, for the unimolecular rate to be
slow we need a deep well, cf. Figure 5.20, so that E is just slightly bigger than
E0 and (1 − E0/E) is significantly smaller than unity. Particularly so for larger
polyatomics for which s � 1. Indeed, the rate of unimolecular dissociation is
exponentially small in the number, s, of vibrational modes;

k(E) = ν (1 − E0/E)s−1 = ν exp (−(s − 1) ln(1 − E0/E))

≈ ν exp (−(s − 1)(E0/E))

See Figure 6.2. At high energies, when the energy per vibrational mode, E/s,
becomes comparable to the barrier height, E0, the system will no longer be
confined by the barriers and will exit after one or a few vibrations within the well.

For quantitative purposes one should count states properly; efficient computer
programs for doing so are available. The reason why one needs them is that a real
molecule is not a collection of s identical modes. The differences between low-
frequency bends and high-frequency stretch motions are large, and particularly
the C H stretch vibrations tend not to be significantly populated until fairly high
excitation energies.

*6.2.2.3 The vibrational quasi-continuum
At low vibrational excitations polyatomic molecules exhibit a well-defined vibra-
tional spectrum (particularly so if it is initially quite cold). We discuss in this sec-
tion at what energy a large molecule changes its behavior to become de facto its
own heat bath. This change involves a sudden increase in the density of vibrational
states as the energy of the molecule approaches the dissociation threshold. Even
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Figure 6.3 The number of vibrational states per mean vibrational spacing,
ρ(E )�E = (E/hν)s−1/(s − 1)!, �E = hν plotted vs. E/hν for s = 42, which is the
number of vibrational modes of the bicyclo species discussed in Section 6.2.1. At
about (E/hν)/(s − 1) = 1/e the density takes off and reaches millions of vibrational
states per mean spacing. At the energy (E/hν)/(s − 1) = 1/2 the number of such
states is in the trillions yet, on average, only 1/2 the vibrational levels are populated.
A more accurate counting of the states does not change the qualitative results. At
even higher excitation there are so many states available to store the excess energy
that it might seem amazing that states that have at least the energy E0 in the
reaction coordinate have any chance. Indeed, for a large molecule it requires a large
excess energy for the rate of dissociation to be measurable.

a bound polyatomic molecule can behave almost classically in that its density of
vibrational states is roughly continuous, hence the term quasi-continuum.

A short proof of this quasi-continuous density of states is based on
the Stirling approximation for the factorial function, s! ≈ ss+1/2 exp(−s) =√

s(s/e)s . Therefore,

ρ(E) = 1

(s − 1)!

(
E

hν

)s−1 /
hν

≈ 1

hν
√

(s − 1)

(
E

hν

/
s − 1

e

)s−1

(6.19)

We find two quite different regimes. When (E/hν)/((s − 1)/e) < 1, since s �
1 the density of states is exponentially small, yielding the familiar regime of
molecular spectroscopy. The number of quantum states per (mean) vibrational
spacing, hνρ(E), is limited. But when (E/hν)/((s − 1)/e) > 1, the density of
vibrational states is exponentially large. The transition between the two regimes
occurs when the number of vibrational quanta per vibrational mode, (E/hν)/
(s − 1), is larger than 1/e ≈ 1/3. In other words, when one in every three
vibrational modes is singly populated, the molecule is already at the threshold of
the quasi-continuum. This onset is quite sharp as a function of energy, which can
be seen in Figure 6.3.
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6.2.2.4 Do energy-rich polyatomic molecules behave statistically?
In one sense this is no longer an essential question. Why? Increasingly we are
able to create polyatomic molecules with a rather localized initial excitation, with
details introduced in Chapters 7 and 8. We are also able to probe the products
with considerable resolution. Current computational capabilities are such that
high-level simulations will accompany this type of experiment. If the dynamics
proceed mainly on one potential energy surface, these will be classical trajec-
tories. Very often the quantum chemical computations of the potential will be
done at each configuration reached by the trajectory. Density functional theory
is the favorite current quantum chemical method for doing so. When different
electronic states are involved,14 one can do quantum dynamics for many nuclear
degrees of freedom (Ben-Nun et al., 2000; Hammes-Schiffer, 2001) or one can
adopt the method of classical trajectories with an important modification, trajec-
tory surface hopping (Tully, 1998), that requires a classical trajectory to bifurcate
into two separate trajectories, each propagating on a separate potential. We will
have more to say when we discuss particular experiments in Chapters 7 and 8.
Here we just anticipate a very useful feature of quantum mechanics that is dis-
cussed later. It is that early time dynamics are dominated by a few vibrational
modes that are strongly coupled. The weaker coupling terms that eventually will
spread the energy do not come into play until later. Early time dynamics in general
and also smaller polyatomic molecules are therefore examples where selectiv-
ity can override statistics. In particular, the frequency mismatch between modes
tends to slow down the initial energy redistribution. In Section 7.2.4.1 we discuss
the dissociation of van der Waals adducts as an extreme example of such mis-
match (Jortner and Levine, 1990): the intramolecular chemical bonds have far
higher frequencies than the vibrations in the weak van der Waals wells. Energy
redistribution is then the rate-determining step.

In another more chemical sense, the RRKM approach is still very relevant.
There are many systems where the energy-rich molecules are not prepared in a
very selective manner. Collisional excitation, as in the Lindemann mechanism,
is an example where energy content is the dominant variable, as postulated in the
RRKM approach. As our discussion of chaos in Chapter 5 noted, the less selective
the preparation, the faster will details be erased. For the Lindemann mechanism,
in the high-pressure limit, the energy-rich molecules have that distribution in
energy that is expected at thermal equilibrium at the temperature of the buffer
gas. When the collisional up and down pumping are fast compared to the rate of
dissociation, the molecules have fully equilibrated. The dissociation rate constant
is then just the RRKM energy resolved rate averaged over a thermal distribution
of the excess energy as discussed in Section 6.2.2.1. Thinking about the high-
pressure limit also explains why long-living collision complexes that are formed in
bulk systems behave statistically. The initial complex may have been selectively
formed in an isolated binary collision, but then it suffered so many collisions
with the surrounding molecules that the complex is thermalized prior to its
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undergoing any dissociation or isomerization. The environment can very much
enhance a statistical behavior.

As we turn attention to ever larger molecules we enter a regime where, unless
the excess energy is high indeed, the RRKM rate of dissociation is exceedingly
slow (this is because the density of states of the bound energy-rich molecule
is so enormous). Under such circumstances other modes of dissociation, that
we otherwise overlook because they are of secondary importance, can become
dominant. One option that we have already mentioned is prompt dissociation. This
occurs when the molecule does not sample states where the energy is spread over
many modes. We discuss this aspect in the RRKM point of view where the states
of the molecule are divided into two sets. The majority, that do not have enough
energy in the reaction coordinate in order to dissociate, and the minority, that
do and hence dissociate promptly. The dissociation rate constant is νP where ν

is a mean vibrational frequency and P is the probability of being in a promptly
dissociating state. This assumes that energy redistribution over all possible states
is complete prior to any onset of dissociation. The assumption can fail if the initial
excitation also samples promptly dissociating states or states effectively coupled
to them.15 In a large molecule the fraction of promptly dissociating states is small,
but the absolute number of such states increases with the size of the molecule.
Prompt decay is thereby of increasing importance.

In Section 6.2.4 we discuss why understanding energy pathways in large
molecules is a key issue with implications that extend beyond the question we
discussed so far.

6.2.3 The reaction rate for a complex-forming collision

We are ready to compute the reaction rate for a reaction that proceeds via the
formation of a long-lived intermediate. This process requires two or more barrier
crossings. The trajectory needs to cross from the reactants’ valley into the well
and then it needs to cross from the well to the products’ valley. When the trajectory
rattles enough times between the two barriers, the reaction rate is simply the rate
of crossing from the reactants into the well multiplied by the probability that
the energy-rich molecule dissociates to products (because the first and second
crossings are uncorrelated). Let kp and kr be the RRKM rates for dissociation
of the complex to products and reactants, respectively. The rate of the initial
crossing is given by transition state theory, whereas the probability of dissociating
to products is the ratio of kp to the total rate of dissociation, kp + kr. Using
Eqs. (6.16) and (6.17),

k(E) = N ‡(E − E0i )

hρ(E)

N ‡(E − E0 f )(
N ‡(E − E0i ) + N ‡(E − E0 f )

) (6.20)

Here ρ(E) is the density of states of the reactants before the collision and the
entrance and exit barrier heights are designated i and f, respectively.
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Figure 6.4 Schematic of an energy profile along the reaction coordinate for an
exoergic ion–molecule reaction. �E0 is the exoergicity of the reaction. �Ew is the
well depth on the reactants’ side. When the wells on the reactants’ and products’
side are deep enough, transition state theory can be used to compute the rate of
crossing of the central barrier, as if it is an isomerization with an exoergicity �E 0

and a barrier height �E ∗.

6.2.3.1 A case study: ion–molecule reactions
Ions are extensively used as reagents and as catalysts because they are highly
reactive. In solution, ions have a strong interaction with the solvent and, as
we discuss in Chapter 11, this behavior leads to essential modifications of
the dynamics. Therefore, to study their intrinsic behavior we examine here
ion–molecule reactions in the gas phase, continuing from the discussion in
Section 3.2.6. Specifically, we consider nucleophilic displacement reactions16

of the type X− + RY → XR + Y−. Such gas-phase SN2 ion–molecule reactions
proceed with reaction rate constants that vary from almost capture-controlled to
so slow that they can barely be detected. Moreover, the rate constant exhibits an
inverse temperature dependence, that is, the rate of nucleophilic displacement
slows down with increasing temperature. This behavior is in marked contrast to
the predictions of the Arrhenius equation.

The potential energy profile for R CH3 is shown in Figure 6.4. It is a double-
well potential. The reactants are captured in a physical polarization well as dis-
cussed in Section 2.1.9. To chemically rearrange and reach the polarization well
of the products, the system needs to cross a barrier. Transition state theory can be
used to compute the rate constant for this crossing. The structure of the transition
state differs from that of the complex by the loss of rotation of the reactants with
respect to one another. We emphasize again the difference between the complex,
that is an entity that will be stable if it is drained of its excess energy,17 and
the transition state configuration that has but a fleeting existence. Because ion–
molecule reactions can have observed rate constants that are very fast – being
essentially determined by the rate of capture into the complex – the barrier height
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Figure 6.5 Modeling potential energy surfaces using RRKM rate theory, Eq. (6.20).
The lengths of the arrows are proportional to the density of states. As the energy
increases, the density of states in the direction of dissociation back to reactants
becomes higher than the density of states at the barrier separating the reactants’
and products’ wells.

can be below the energy of the reactants, as shown in Figure 6.4. In the general
case we expect that at a given energy above the entrance asymptote, the density
of energy levels at the entrance to the complex is lower than that of the barrier
region, see Figure 6.5. Because the complex becomes more loosely bound as the
energy increases, the densities of energy levels of the two ladders approach one
another. Dissociation of the complex to reactants is therefore increasingly more
likely than to products, and the rate of the displacement reaction decreases. This
behavior is often observed for thermal ion–molecule reactions.

For the asymmetric ion–molecule substitution reaction, Cl− + CH3Br →
ClCH3 + Br−, trajectory calculations18 show that the lifetime of the initially
formed ion-dipole stabilized adduct Cl−·CH3Br is too short to permit random-
ization of the internal energy so that the internal state distribution is not in equi-
librium. Consequently, this reaction is predicted to deviate from RRKM theory.
In the RRKM limit, one expects that the reaction rate depends only on the total
energy and hence is independent of the initial state of the reactants.19 The other
extreme is marked sensitivity to the state preparation of the reagents. Not sur-
prisingly, most reactions fall somewhere between these limits, with the tendency
for statistical behavior to increase markedly with the size of the system. Again
as expected, if the well depth of the adduct is deep in the entrance channel, then
statistical behavior is expected to ensue because the adduct lives long enough
for energy to be efficiently redistributed prior to crossing the transition state. But
reaction time scales on the order of a few tens of picoseconds or less are too short
to permit efficient energy transfer because they are comparable to or shorter than
periods of molecular motions. We can not then use RRKM theory. We shall also
see that solvation of the reactants reduces or altogether eliminates the well in
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front of the barrier so that transition state theory itself can be a suitable tool for
computing the rate of the reaction in solution.

6.2.4 Toward molecular machines

In a molecular machine the atomic length scale forces that act during a chemical
reaction are harnessed to deliver a motion at another region of the molecule. Two
examples from nature that we will just touch upon are the motor proteins and
the active and receptor sites of enzymes. We discuss it here because an essential
part of the problem is the very many, seemingly superfluous, degrees of free-
dom of biological molecules.20 The point of view of Section 6.2 is that in an
energy-rich large molecule energy is first equilibrated amongst many degrees of
freedom. Yet in biochemistry it is clearly possible for chemical energy produced
at one site to be channeled to another site. Distal kinetics, meaning the trans-
fer of localized potential and kinetic energy to a relevant distant functional site,
suggests that it is worthwhile to look for effective and selective pathways for
energy transduction.21,22 Proteins and other biopolymers differ, however, from
strongly bound and rigid molecules. Small conformational changes at one site
can affect the entire molecule. The coordinates that describe the deformation are
collective and not local and their potential energy landscape is replete with shal-
low minima. The energies that drive biological function (host–guest interactions)
are unusually low, often being non-covalent. The strongest are when charge is
involved and charge-directed action is sometimes used to explain why nature
chose phosphate.∗ Myosin,23 is a protein that walks in the familiar hand-over-

ATP ADP

hand fashion on actin with a step size of about 37 nm.∗∗ It does so for many
consecutive steps while carrying a cargo on its head. The distinction between
forward and backward is made possible because the feet of myosin and also the
actin are asymmetric. At low ATP (adenosine triphosphate) concentration both
feet are bound by ADP (adenosine diphosphate) to special sites on the actin fila-
ment. The front leg is strained. At higher concentrations of ATP, ADP is released
from the back leg and ATP binds. ATP cannot bind to the front leg because the
strain closes the binding site. When the ATP is bound to the rear leg it hydrolyzes
to ADP and this frees the back leg and the strain in the front leg makes the back
leg move forward to the next site on the actin. There the phosphate from ATP is
released.

To provide a caricature of a forward-moving process, Figure 6.6 is a sketch of
the ratchet potential model. It shows how a combination of thermal motion and
weak binding can generate a forward motion. The coordinate is the position of

∗ Which can exist in several charge states.
∗∗ The distance can be measured by putting a fluorescent probe high up on one of the legs of the

protein [A. Yildiz et al., Science 300, 2061 (2003)].
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direction of motion

Figure 6.6 The rachet potential model for forward motion (energy of the center of
mass of the protein vs. its lateral position). The protein moves up the barrier by
slowly gaining energy from the fluctuating thermal motion, shown as a random walk
in energy content. Once it reaches the peak the protein falls to the bottom of the
(shallow) well where it is weakly bound, shown in gray. The release of the binding
repeats the process. The methodology for determining a one-dimensional potential
in a system with very many degrees of freedom is discussed in Section 11.2.1.

ADP
+
P

ATP

ATP

Figure 6.7 The part of ATP synthase that is out of the membrane and rotates to
form ATP from ADP and free phosphate. Rotation is driven by a proton gradient in
the membrane-bound part of the enzyme [adapted from Boyer (1999)].

the center of mass of the protein. A force due to the environment is acting and its
net effect is to move the protein forward. The ordinate is the energy of the center
of mass.

Another well-studied molecular machine is the ATP synthase motor.24 It catal-
yses the formation of ATP from ADP and inorganic phosphate in a process that
uses energy from oxidation to create a gradient of protons across a membrane.
As the protons move across, protonation and deprotonation of a carboxyl group
results in conformational changes in the membrane-embedded part of the enzyme.
This drives a rotational motion. Figure 6.7 shows the part of the enzyme that is
out of the membrane, where the rotation of the motor in one direction catalyses
the formation of ATP while the rotation in the other direction hydrolyzes ATP.
A rotation of 120◦ changes the unit that binds ADP and P to a form that strongly
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Figure 6.8 The atomic force microscope (top) measures using the gold tip the force
necessary to move the dotted pattern wheel along the molecular axle and to extrude
(de-slip) it through the stopper at the upper end. The other end of the axle is
tethered to the solid support. The vertical and horizontal hatching regions of the axle
are used to control the motion of the axle through the wheel. The “axle” and the
“wheel” and its “arm” are shown at the bottom. [Figure courtesy of B. Northrop,
K. N. Houk, and J. F. Stoddart (2003).]

binds ATP. The unit with tightly bound ATP then changes to a form that releases
ATP and the third unit prepares to bind ADP and P.

Progress in understanding molecular machines owes much to the ability to
probe single molecules25 and the ability, Section 11.2.1, to construct suitable
potential energy profiles. An example of such a mechanical probing of the force
is shown in Figure 6.8. The molecule is a rotaxane∗ where a bipyridinium unit is
encircled by an oxyarene-based (charged) ring with an arm that can attach to the
gold tip. The point of the experiment is to probe two motions that are relevant.
First, to prepare the interlocked molecule, the temperature is raised so that the
ring dilates and it can slip over the “stopper” at the end of the backbone. Once

∗ Latin origin. Rota meaning wheel and axis meaning axle. The wheel is mechanically bound to the

axle because the stoppers prevent its extrusion. The wheel can shuttle between two positions along

the axle.
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mechanically bound, the ring can be made to slide along between different sta-
tions (shown in vertical hatching and dotted pattern in Figure 6.8) along the chain.
The molecule is a machine because this linear motion can be activated by chem-
ical, electrical, or photochemical means.26 Computations27 show the hindrance
to sliding is primarily through π–π interactions with a barrier height of about
17 kcal mol−1. Extrusion through a stopper has a far higher barrier, of the order of
70 kcal mol−1. The computations also reproduce the force on the ring as measured
by the atomic force microscope (AFM) shown schematically in Figure 6.8.

With the understanding of the forces, simulations of the motion of molecular
machines are beginning. These suggest that distant conformational changes are
gradually driving the active site through a series of local shallow minima.28 Much
more is forthcoming.29

6.3 Resolving final states and populations

Our purpose is to characterize the population distribution of the final states after
the collision. We begin with a highly-resolved distribution, the so-called flux–
velocity contour map, which corresponds to identifying the outcome of the colli-
sion both by the state of the relative translation of the products and by the internal
energy state.30 We use the conservation of energy to show that the velocity vector
of the separating products specifies this final outcome. The magnitude of the exit
velocity reflects how the total energy is partitioned between the internal energy of
the products and their translational motion, while the direction of the exit velocity
tells us the scattering angle. In Chapter 7 we resolve final states not by measuring
the relative velocity vector but by spectroscopic means. The same ideas remain
applicable because given sufficient spectral resolution it is possible to determine
not only the state of the molecule but also the direction of motion of its center of
mass with respect to the laser beam in the laboratory frame. In this section we
use the concept of resolving the outcomes in terms of final velocity vectors to
characterize the reaction in the context of the products’ structure.

6.3.1 Scattering in velocity space: the Newton sphere

Scattering is the correlation of the velocity after the collision v′ with the initial
velocity v. For elastic scattering the magnitude of the velocity does not change,
only its direction does. Not so for molecular scattering where, as a result of the
collision, the internal energy of the molecule(s) can change.

First and foremost, we need to know the total energy. We define the zero for
the energy scale by measuring the energy from the ground state of the reactants.
Suppose that we know the initial internal energy of the reactants, EI, and the initial
relative translational energy, ET. Suppose also that the reaction is endoergic with
a known standard reaction energy change �E0, i.e., the usual zero-point to zero-
point energy change of reaction (cf. Figure 1.1). Conservation of the total energy
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E dictates the energy of the products and thereby imposes a relation between the
products’ internal energy E ′

I and their relative translational energy E ′
T:

E = E ′
I + E ′

T = EI + ET − �E0 (6.21)

Thus, if we can measure the products’ relative velocity we know the final relative
translational energy and therefore their internal energy E ′

I. The total energy is
equally known in a photodissociation experiment starting from a molecule in
a given internal state of energy EI. In the equation for conservation of energy,
the energy hν brought in by the photon replaces the initial translational energy
and �E0, the bond-breaking energy, is the energy difference between the ground
states of the dissociation products and the parent molecule:

E = E ′
I + E ′

T = EI + hν − �E0 (6.22)

To each internal state of the products there corresponds a velocity whose mag-
nitude is determined from conservation of energy and whose direction is to be
measured. Both experiment and theory can provide such resolution, as shown
in Figure 5.12. But this requires a separate plot for each final quantum state.
Instead, we represent this information on a single plot in such a way that the
major dynamical features of the reaction are immediately evident. We do so in
the form of a product flux contour map, a map showing the distribution of the
final velocity vectors. We develop the concept of a Newton sphere by means of
an example. Consider the elementary reaction

K + I2 → KI(v′, j ′) + I

Each particular rovibrational state of KI has its own internal energy E ′
I and hence

corresponds to a different final relative translational energy E ′
T. But E ′

T = E −
E ′

I and the final relative velocity corresponding to a particular final internal state
is therefore known,∗ v′ = (2E ′

T/µ′)1/2. Here µ′ = mKImI/M is the reduced mass
of the products where M = mK + mI + mI is the total mass (Figure 6.9).

Next we consider the product distribution in velocity space. A sphere of radius
u′

KI with the center of mass as the origin is the locus of the “tips” of the velocity
vectors of all those KI molecules formed in a particular internal state (and hence
given E ′

I), for all possible angles of scattering. Different KI internal states would
each correspond to a sphere of different radius in velocity space. The one with the

∗ Because measurements are done in the laboratory, we must relate the measured velocity of, say,

the KI molecule in the lab system, v′
KI, with the desired final relative velocity in the center-of-mass

system, v′, see Figure 6.9. This follows our discussion in Section ∗2.2.7, Eq. (2.39′) in particular.

To repeat the essence, first of all note that the c.m. final relative velocity is the difference v′ =
u′

KI − u′
I. Conservation of momentum requires that the velocities in the c.m. system are related by

mKIu′
KI + mIu′

I = 0. Therefore, only one final product needs to be detected and u′
KI = v′(mI/M)

and nu′
I = v′(mKI/M). The laboratory velocity of the KI is its velocity with respect to the c.m. plus

the velocity of the c.m. itself (that is known from the initial velocities mKvK + mI2 vI2 = Mvc.m.) :

v′
KI = u′

KI + vc.m.
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Figure 6.9 Velocity vector diagram (Newton diagram, Section 2.2.7.2) showing the
relation between the lab velocity of the product KI, v′

KI, and its recoil velocity with
respect to the center of mass, u′

KI. The initial relative velocity v = vK − vI2 = uK − uI2
forms the hypotenuse of the Newton triangle. The center of mass is as indicated. u′

KI
is the recoil velocity of the KI scattered (shown here in the plane defined by the initial
velocities) at a center-of-mass (c.m.) angle θ with a given E′

T. The cone of isointensity
(given θ and variable φ), see Figures 4.6 and 6.10, is indicated by the dotted circle. All
lab velocities v are solid lines, center-of-mass velocities u are dashed.

largest radius represents those KI molecules with the maximum recoil velocity
allowed by energy conservation, i.e., (E ′

T)max = E, so those would be ground-
state KI molecules. All other spheres represent internally excited KI products.
The smaller the radius the larger is the internal energy.

We can regard the spheres as providing a spherical polar coordinate represen-
tation of the final-state angular distribution. The radius (fixed for given E′

T) is the
recoil velocity and the polar angle θ is the angle of scattering (with respect to v)
in the c.m. system. This is the Newton sphere. In the absence of external fields the
scattering is cylindrically symmetrical about v, so that there is no φ-dependence
and a given θ gives rise to a cone of isointense scattering.

Taking advantage of the cylindrical symmetry in the absence of fields (i.e.,
for randomly oriented reactants) allows the representation of the scattering in the
plane defined by the velocities of the reactants in the center of mass, Figure 6.9.
The origin is taken as the c.m. with the positive x axis along the direction of the
velocity uK of the K atom. All product KI scattered at a given θ in the c.m. will
appear on a given “ray” from the origin while all those with a given E′

T (and thus
a given E′

I) would be on a given circle.
For most diatomics, the rotational energy spacings are so small (compared to

the energy resolution), i.e., levels so closely spaced, that the final translational
energy (and thus u′

KI) can be treated as a continuous variable. The circles cor-
responding to all the possible E′

I and thus E′
T are so very closely spaced they

are practically a continuum. Thus, instead of trying to determine the differential
solid angle cross-section into a definite internal energy state E′

I, we are satisfied
to work with a continuous distribution of product energy states.
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6.3.1.1 Flux–velocity maps: qualitative aspects
Figure 6.10 shows a contour map for KI from the K + I2 reaction. The zero of θ

is taken in the direction of the initial relative velocity uK of the atomic reactant.
It is seen from the contours that the KI molecules are scattered predominantly in
the forward direction and that the most probable recoil velocity is about 0.5 of

θuK

uI2
u'KI

c.m.

Figure 6.10 Sphere corresponding to locus of recoil velocities u′
KI of scattered KI

from the K + I2 reaction for a given translational energy release (constant E ′
T and

thus u′
KI). The vectors uK and ul2 are the initial relative velocities of the reactants with

respect to the center of mass (c.m.). The cone corresponds to KI products that recoil
at an angle θ with respect to the incident relative velocity of K. The recoiling partner,
I, which in the c.m. is always directed opposite to the KI, is not shown. Below we
show the projection of the sphere onto a plane, taking advantage of the cylindrical
symmetry about the relative velocity axis:

c.m.

uK

uI2

u'KI

2.5

10

40

E' = 0.5

E'M
AX =44

q

(u'KI)MAX

The maximal available energy for the KI + I, at a collision energy of 2.7 kcal mol−1, is
44 kcal mol−1 and this determines the radius of the outer circle. The upper panel
corresponds to a final translational energy of 10 kcal mol−1. The experimental
results, qualitatively shown in Figure 4.12, are quantitatively summarized in the next
panel:
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Figure 6.10 (cont.) Contour map: the flux (velocity–angle) distribution for the KI
product of the K + I2 reaction. The initial velocities are shown in the center-of-mass
system where the velocity of the heavy I2 is necessarily small compared to that of K.
All KI molecules with the same final velocity u′

KI will lie on a circle centered at the
c.m. (•). The dashed circle corresponds to the highest recoil velocity allowed by
conservation of energy, and hence to internally cold KI molecules. The closer the
point is to the c.m., the higher is the internal energy of the KI product. KI scattered at
a given direction θ with respect to the direction of the incident K atom will appear on
a given ray (from the c.m.). The maximal scattering is into the contour (arbitrarily)
labeled 10. Contrast with the location of the same contour in Figure 6.11. [Adapted
from K. T. Gillen, A. M. Rulis, and R. B. Bernstein, J. Chem. Phys. 54, 2831 (1971).]

its maximal value. The recoil translational energy is thus about 0.25 of the total
energy. Hence most of the product KI molecules must be significantly internally
excited. These findings are in accord with our expectations based on the harpoon
mechanism, Section 3.2.4.

We examine another KI-forming reaction:

K + ICH3 → KI + CH3

Figure 6.11 displays the contour map, which shows predominantly backward
scattering of the KI (a rebound reaction, Section 4.4.3, with a repulsive, or late,
energy release).

Figure 6.12 is a map for DI from the reaction

D + I2 → DI + I
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Figure 6.11 Contours of the flux (velocity–angle) distribution for the KI product of
the K + CH3I reaction. Compare with Figure 6.9 where the KI is primarily forward
scattered but with a much lower recoil velocity. [Adapted from A. M. Rulis and R. B.
Bernstein, J. Chem. Phys. 57, 5497 (1972).]

showing side-scattering of the DI product. Qualitatively similar results are
obtained when I2 is replaced by IBr or ICl. Such a distribution is to be expected on
the basis of the electronic considerations of Section 5.1.5. During the approach of
the light atom the two heavy atoms hardly move.∗ We can thus regard the D + IX
reaction as a direct photodissociation of IX (with the light atom playing the role
of the photon), in which case the heavy atoms will recede along the direction of
their bond axis.31 Owing to the small mass of the D atom, the DI behaves like an
I atom and takes off in the direction of the axis of IX at the moment of the bond
rupture. The direction of recoil of the DI product with respect to the direction of
the incident atom tells us the angle of approach of the D atom for those collisions
that favor reaction. Thus Figure 6.12 supports a preferentially “sideways” attack
of the D atom on the IX molecule, as discussed in Section 5.1.5.1.

Crossed-beam experiments naturally produce flux velocity–angle contour
maps, which can be measured with considerable detail. Applications32 include a
variety of atom–diatom reactions, ion–molecule reactions, complex mode reac-
tions, diatom–diatom reactions, etc. Examples are to be found throughout the
text. For the special case when the reaction is photoinitiated we return to this

∗ Quantitatively, this follows from the use of mass-scaled coordinates, Appendix 5.B. For a light

atom attack the entrance valley is quite compressed compared with the products’ valley.



236 Structural considerations

uD

uI2

c.m.

10 9 8 6 4 2 1
2×104 cm s−1

DI

Figure 6.12 Flux (velocity–angle) contour map (upper half only) for the DI product
of the D + I2 reaction, for ET ∼= 9 kcal mol−1. See also Problem P. The extensive
“sideward” scattering has been interpreted in terms of a preferred bent geometry for
the transition state. This behavior is consistent with molecular orbital considerations
(Section 5.1.5.1). [Adapted from J. D. McDonald et al., J. Chem. Phys. 56, 769
(1972).]

topic in Chapter 7. The maps can also be used to display the results of inelastic
(non-reactive) scattering experiments. For example the contour of the observed
maximum intensity of NO+ scattered by He:

NO+ + He → NO+(v′) + He

In the forward direction the contour coalesces with the “elastic” Q = E′
T –

ET = 0 circle (i.e., elastic scattering of NO+). However, there is a significant
energy transfer for backward scattering.33 In Chapter 9 we will have more to say
on why this behavior is to be expected.

6.B Appendix: The quantitative representation
of flux contour maps

Returning to our KI example, consider the total number of molecules scattered
per unit time into a solid angle d2ω with final translational energy in the range
E ′

T to E ′
T + dE ′

T:

dṅKI(θ, E ′
T) = d3σ (θ, E ′

T)

d2ω dE ′
T

d2ωIKnI2 (B.6.1)

As previously, e.g., Eq. (3.5), we define the cross-section through the rate. Here,
as in Eq. (4.48), it is the rate of reactive collisions with products scattered into a
narrow range in both energy and direction. IK is the flux of K atoms and nI2 is the
number of I2 molecules. We write the element of a solid angle d2ω as a reminder
that it is a double differential, d2ω = d cos θ dφ.
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The differential cross-section defined by (B.6.1) is related to the state-resolved
differential cross-section as follows. First we go over from discrete final internal
state indices to a continuous translational energy variable

d3σ (θ, E ′
T)

d2ω dE ′
T

=
∑
v′, j ′

d2σ (v j → v′ j ′; θ )

d2ω
δ(E − E ′

T − E ′
I) (B.6.2)

The summation is over all those final states that correspond to a final kinetic
energy E′

T in the range E′
T, E′

T + dE′
T. Of course, dE′

T needs to be a small but finite
interval for the equation to make physical sense: unless the total energy is defined
more precisely than the spacing of rotational states, the discrete quantal nature
of the function is smeared out. The velocity analysis experiment itself is usually
reported in terms of the scattering with recoil velocity in the corresponding range
u′ to u′ + du′ (where E ′

T ∝ u′2 ). The corresponding cross-section is

d3σ (θ, u′)
d2ω du′ = d3σ (θ, E ′

T)

d2ω dE ′
T

(
dE ′

T

du′

)
(B.6.3)

The usual flux velocity–angle contour map is of this quantity in a (θ , u′) polar
coordinate system. Experimentally, it is easier to determine the relative values
of the cross-section for different velocities. The results are then presented as a
distribution P(θ , u′) ∝ σ (θ , u′) that can be normalized by integration over all
scattering angles and velocities,

∫
du′∫ d2ω′ P(θ , u′) = 1.

Cartesian contour maps represent the velocity-space distribution, d3σ (θ , w′)/
du′, where du′ = (u′)2 du′d2ω. Cartesian maps are invariant under a transformation
to the laboratory system of coordinates

d3σ (θ, u′)/du′ = d3σ (θ, v′)/dv′ (B.6.4)

This invariance is invoked in the transformation between the laboratory and the
c.m. system. The invariance of the velocity-space distribution to a change in
coordinate system is also one of the arguments for the use of this flux map in
Section 6.4.

*6.B.1 Reduced distributions: translational energy release
and angular distribution

There is a wealth of information in the full flux map. Reduced descriptions
are obtained by summing over either the scattering angle or the velocity of the
products. For example, integration over all angles yields the cross-section for
scattering into a given narrow range of final translational energy,

dσ

dE ′
T

=
∫ ∫

d3σ (θ, E ′
T)

d2ω dE ′
T

d2ω =
∫ ∫

d3σ

d2ω dE ′
T

sin θ d θ dϕ

= 2π

π∫
0

d2σ

dθ dE ′
T

dθ (B.6.5)
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This is the “continuum” analog of the state-to-state total cross-section,

dσ

dE ′
T

=
∑
v′j ′

σ (v j → v′j ′)δ(E − E ′
T − E ′

I) (B.6.6)

The final integration, over E ′
T, yields the reaction cross-section for given

reactants,

σR =
E∫

0

dσ

dE ′
T

dE ′
T ≡

∑
v′j ′

σ (v j → v′j ′) (B.6.7)

When measurements are made from different initial conditions, one can determine
the dependence of σ R on the states of the reactants and the energy requirements
of the reaction.

When we can determine only the relative values of the cross-section the result
of integration over all scattering angles is the distribution of final translational
energy P(E ′

T) ∝ dσ/dE ′
T. This is the continuum analog of the cross-section into

final internal states whose energy matches E ′
T, E ′

I = E − E ′
T. It is normalized to

unity by integrating over all final energies,

P(E ′
T) =

∫
d2ωP(ω, E ′

T),

E∫
0

dE ′
T P(E ′

T) = 1 (B.6.8)

This is often known as KERD (kinetic energy release distribution).
An alternative route to the cross-section is to integrate first over the distribution

of E ′
T

d2σ

d2ω
=

E∫
0

dE ′
T

d3σ

d2ω dE ′
T

≡
∑
v′j ′

d2σ (v j → v′ j ′)
d2ω

(B.6.9)

Equation (B.6.9) can be converted to the differential polar form, i.e., integrating
over the azimuthal angle φ to take into account all the “out-of-plane” scattering,
at given θ ,

dσ

dθ
= sin θ

∫
dϕ

d2σ

d2ω
(B.6.10)

such that

σR =
π∫

0

dσ

dθ
dθ ′ (B.6.11)

The differential polar form, dσ/dθ , is the fractional contribution to σ R from any
final polar angle θ . It differs from d2σ/d2ω by the integration over the azimuthal
angle φ as in (B.6.10) and by the factor sin θ . The different character of the
reactions of the halogens and the alkyl halides with the alkali metals is also
evident in the shape of the polar differential cross-section, Figure 4.14.
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6.4 Characterization of energy disposal and energy
requirements of chemical reactions

Our purpose is to characterize the population distribution of the final states after
the collision. We begin with the prior distribution, a method where simplicity
is achieved by failing to properly conserve angular momentum. Next, the very
same considerations are applied but with conservation followed by a refinement
of the description, where the rotational angular momentum of the reactants (or
products) is explicitly treated, which brings us to the level of the phase-space
theory.

The prior distribution does not seek to match experimental results. Rather, it
provides a reference against which to compare. The (logarithmic) deviation of
the actual (observed or computed) distribution from the prior one is known as the
surprisal. Then, armed with detailed balance, we will also seek to characterize
the energy requirements of chemical reactions. Consistent with the arguments
already presented, the measure of specificity of energy disposal in the forward
reaction turns out to be equal to the measure of selectivity of energy requirement
in the reverse reaction.

6.4.1 The prior distribution

Reactions differ in the distribution of final states because of different dynamics. If
there are no dynamical constraints we take it that the flux into any final quantum
state is the same. In other words, in the absence of a dynamical bias and at a given
energy all final quantum states are formed with the same rate. This assumption
provides an immediate relation between the rate of formation and the structure of
the products. To compare the rate into different possible groups of final states what
we need to do is to count how many final quantum states are in each group. The
relative rates are the ratio of the two numbers. In a perfectly resolved experiment
there is no grouping of quantum states. Experiments seldom fully resolve the
quantum states of the products. Consequently, as a practical matter, it is useful
to have working results for the more common ways of grouping together final
states.

We begin with a vibrational state distribution of the reaction product as mea-
sured by the chemiluminescence experiment of Section 1.2.1. This is an atom–
diatom reaction at a total energy E and all final quantum states where the product
diatomic molecule is in a given vibrational state v are grouped together. We show
below that the number of products’ quantum states that belong to a particular
group is proportional to (E − Ev)3/2, where Ev is the vibrational energy of the
diatomic in the given vibrational state. This distribution is not uniform in the final
vibrational energy Ev. Rather, this distribution strongly decreases as Ev → E, as
seen in Figure 6.13 for the HF product of the exoergic F + H2 → HF + H reaction.
The prior distribution is not uniform because different groups can have a different
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number of quantum states as members. In the case of the group specified by a
product diatomic in a given vibrational state, we can easily visualize why. At a
given total energy, the more energy is in the vibration the less energy remains
for the other degrees of freedom. So fewer other (e.g., rotation of the diatomic
product) quantum states are energetically accessible.

Because the prior distribution is not uniform, the characterization of a dynam-
ical bias is a distribution of final states that is deviant from the prior distribution.
This, by itself, is already an insightful point. Because the total energy is con-
served, when we specify, say, the vibrational state of the product we at the same
time implicitly specify limitations on what other states are accessible. This is
particularly the case for the vibration because it can take up large chunks of the
total energy, but it is equally true if we were to specify, say, a rotation. There are
2j + 1 quantum states of a given j, but in the absence of a dynamical bias the
rotational state distribution will not quite go as 2j + 1 because of the implications
of the conservation of energy.

For reasons discussed in Section 6.4.2 the deviation from the prior distribu-
tion is best represented in a logarithmic form as shown in the right panel of
Figure 6.13. This logarithmic measure of deviation is known as the surprisal.
The experimentally observed population distribution is due to the combined role
of the dynamics and the statistics. The surprisal factors out the role of the statis-
tics from the observed result. What is shown in Figure 6.13 is that the surprisal
monotonically, in fact, linearly, varies as we go up in energy. Why the surprisal
can have such a simple form, a linear dependence on Ev, is briefly discussed
in Section 6.4.2. In this section the key concept is that of the prior distribution.
The point is to examine the role of grouping of quantum states that is the result
of an experiment that provides only a partial resolution. Even when the role of
the dynamics is fully averaged out, such an experiment does not yield a uniform
population distribution. The population of a group can be higher simply because
the group has more final quantum states assigned to it. The prior distribution is
the distribution when all energetically allowed final quantum states are populated
with the same rate. Computing the prior distribution is then the counting of quan-
tum states at a given total energy and grouping them according to the resolution
implied by the experiment.

In Section 6.4.1.1 we count the quantum states so as to derive the prior dis-
tribution for flux contour maps. Measurement of a flux map provides a relatively
high resolution but it too implies grouping of final states: all internal states of
the products with energies in a narrow interval are counted together. The com-
plementary experiment is to measure the internal state population of the nascent
products. The prior distribution for this case is obtained in Section 6.4.1.2.

*6.4.1.1 The prior flux distribution
The essential technical tool is the result, from Chapter 5, that the density of trans-
lational quantum states in the three-dimensional space of the experiment is dp/h3,
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F+H2 H+HF(v) population surprisal HF(v)
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reaction path P(v) −ln(P(v)/P0(v))

lv = −8.5

v=3

v=2
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Figure 6.13 Surprisal analysis of HF vibrational excitation in the F + H2 → H + HF
reaction. The ordinate in this figure is energy. The energies of HF vibrational states
are shown on the right. Because of anharmonicity they are not quite equally spaced.
Left panel: energetics. Shown is the energy release along the reaction coordinate.
The exoergic reaction can populate up to the v = 3 state of HF. Middle panel: the
observed distribution of HF vibrations, P (v), solid bars [adapted from M. J. Berry,
J. Chem. Phys. 59, 6229 (1973)], and the normalized prior distribution, P 0(v) = (E −
Ev)3/2/

∑
v(E − Ev)3/2, open circles. On prior grounds it is preferable to populate the

v = 0 state of HF because this choice leaves so much energy that can be distributed
over the rotation of HF and the relative translation of HF and H, which means that
many final quantum states can be energetically accessed. Experimentally, this
behavior is not what is observed. The dynamics strongly favors channeling energy
into HF vibration. Even so, the highest HF vibration is not the most populated. Right
panel: the surprisal, the logarithmic measure of deviation, plotted vs. energy. It is
seen to be linear in the HF vibrational energy [with a slope of −8.5 when plotted vs.
Ev/E, see Eq. (6.35)]. In words, the observed HF vibrational state distribution is a
compromise between the dynamics that favors channeling as much energy as
possible into the HF vibration and the statistics (as determined by the structure) that
discriminates against higher vibrational states because fewer quantum states are
then possible.

where h is Planck’s constant and p is the momentum vector. The density dp/h3

means that different intervals in momentum p, p + dp contain the same number
of translational quantum states. As a result of the scattering the momentum of the
relative motion of the products can vary in both magnitude and in direction, so
that dp = p2dp sin θ dθ dφ; θ and φ are the direction of the scattering and the flux
map, Section 6.3, is the intensity of scattering into a given momentum interval.
Still, measuring such a map should not, on prior grounds, yield a constant. The
reason is that, by conservation of the total energy, different values of the relative
momentum imply that the products have different internal energies. There can
be different numbers of products’ internal states in different energy intervals. The
density of the internal state ρI(EI) was defined in Appendix 6.A. to measure this
variation. Because energy must be conserved, the number of products’ internal
quantum states in the interval where the translational energy is in the range ET
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to ET + dET is ρI(E − ET)dET. All the states in that energy range have the same
momentum so the (prior) flux into products’ final states is (p/µ)ρI(E − ET)dET.
But since ET = p2/2µ, p dET ∝ p2 dp the flux into internal states of the products
when the momentum is in the range p, p + dp is proportional to ρI(E − ET)dp.
Using a superscript 0 to denote the distribution in the absence of any constraints
apart from the conservation of energy,

(d3σ/dp)0 ∝ ρI(E − ET) (6.23)

Note that all final internal states with the same energy have, according to (6.23),
the same flux. In Section 6.4.5 we also impose the conservation of angular momen-
tum. This will restrict the range of final rotational states that need to be counted.

The density of translational states (per unit volume) is defined so as to enable
us to go from a momentum to an energy scale. The definitions

ρT(ET) dET d2ω ≡ dp/h3 (6.24)

and dp = p2 dp d2ω = µp dET d2ω give ρT(ET) = µp/h3. Using this conversion
we can rewrite (6.23) in an alternative form,

(d3σ/dET d2ω)0 = (d3σ/dp)0(dp/dET d2ω)

∝ ρT(ET)ρI(E − ET) ∝ E1/2
T ρI(E − ET) (6.25)

This gives us the prior distribution for the usual way of expressing the flux map.
The densities of states that appear on the right of Eq. (6.25) originate from

our choice of using an energy scale to display the distribution of the products.
Consider an experiment that resolves the products’ internal quantum states and
determines their angular distribution as well (e.g., using a Doppler-based detec-
tion of the final states or another imaging technique, see Chapter 7; Figure 5.12
is an example). Under such circumstances, the flux from reactants in the energy
range of E to E + dE into products in a particular final quantum state is constant.

The prior distribution is not chosen to agree with experiment. It is instead a ref-
erence against which experimental (or computational) results are to be evaluated.
We discuss such applications in Section 6.4.2. Then we go to measures of selec-
tivity of energy requirements. In Section 6.4.5 we modify the prior distribution by
taking into consideration that not only energy but also angular momentum need to
be conserved. Explicit results for prior distributions are given in Section ∗6.4.1.2.

*6.4.1.2 Products’ internal state distribution in the prior limit
The prior distribution populates any group of energetically allowed final states
according to the number of quantum states in the group, each state with the same
weight. To compare the (observed or computed) products’ state distribution to
the prior one it is necessary to count how many quantum states are in the group.34

We do so here for the simple case of an atom–diatom reaction at a given total
energy for the more common manners of grouping states. Detailed results at a



6.4 Energy disposal and energy requirements 243

given temperature and/or for products with more degrees of freedom are available
elsewhere (Kinsey and Levine, 1979).

The most common grouping is one that integrates over all directions of the
final velocity leading to populations of different (groups of) states. As already
discussed this approach brings in the density (per unit volume) of translational
states

ρT(ET) = AT E1/2
T = AT(E − EI)

1/2 (6.26)

where AT is a collection of constants that cancels out when we normalize the prior
distribution to unity. Often, one also does not resolve the 2j + 1 degeneracy of
the rotational states of the diatom. So the number of final states when the diatom
is in the (v, j) rovibrational state is

ρ(v, j ; E) = (2 j + 1)ρT(ET) = AT(2 j + 1)(E − Ev, j )
1/2 (6.27)

The total density of states at the energy E is the sum over all (v, j) rovibrational
states that are allowed by conservation of energy∗

ρ(E) =
vmax∑
v=0

jmax(v)∑
j=0

ρ(v, j ; E) = AT

vmax∑
v=0

jmax(v)∑
j=0

(2 j + 1)(E − Ev, j )
1/2 (6.28)

For convenience the summation is written first over all states j that are energeti-
cally allowed for a given v and then over all v. The partial sum over j only is the
density ρ(v; E) of vibrational states.

The (normalized) prior distributions are therefore

P0(v, j) = ρ(v, j ; E)/ρ(E)

P0(v) = ρ(v; E)/ρ(E) =
jmax(v)∑

j=0

P0(v, j) (6.29)

P0(ET) = ρ(ET; E)/ρ(E)

Explicit expressions for the prior distributions require the expressions for the
energies of the rovibrational states. For most diatomics, it is sufficient to use
the rigid rotor approximation Ev,j = Ev + Bvj(j + 1), where Bv is the rotational
constant in the vibrational manifold v. It is however necessary to recognize the
anharmonicity of the vibrational levels because near the energy cutoff, the trans-
lational density of states ∝ (E − Ev, j)1/2 varies quite rapidly.

∗ Another route to ρ(E) is to sum first over all internal states that lead to products in a narrow

translational energy range,

ρ(ET; E) =
vmax∑
v=0

jmax(v)∑
j=0

ρ(v, j ; E)δ(E − ET − Ev, j )

and then to integrate over ET.
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For many purposes it is useful to use reduced energy variables, which are
defined by

fv ≡ Ev/E, gR ≡ E j/(E − Ev) (6.30)

Note that fv and gR classically span the range 0 to 1. Then, normalizing by
integration over the reduced variables,35,36

P0( fv, gR) = 15

4
(1 − fv)

1/2(1 − gR)1/2

P0( fv) = 5

2
(1 − fv)

3/2

(6.31)

P0(gR| fv) ≡ P0( fv, gR)

P0( fv)
= 3

2
(1 − gR)1/2/(1 − fv)

P0( fT) = 15

4
( fT)1/2(1 − fT)

One feature emphasized by these results is that, on prior grounds, there is no
isotope effect when the final state distribution is represented on an energy scale.
For example, the DF product from the F + D2 reaction has, on prior grounds, the
very same vibrational energy distribution as HF. The experimental result is that
this behavior is essentially so. The vibrational population distribution for HF and
DF looks quite different when examined as a function of the vibrational quantum
number. This is necessarily so because at a given total energy the range of the
accessible final vibrational states is different. But the two distributions are very
similar when the observed distribution is considered as a function of fv. This is
shown for the Cl + H(D)I reaction in Figure 6.14. The reason is, as shown in
Eq. (6.31), P0(fv) = (5/2) (1 − fv)3/2, that equal intervals of fv contain the same
number of final quantum states. There can be isotope effects due to the dynamics,
e.g., an H atom will tunnel far more readily than a D atom. But in the example
above as well as in many other cases the isotope effect largely disappears when
you compare on an equal basis.

6.4.2 Surprisal analysis

The technical concept of surprisal arises when we try to put a quantitative measure
on how surprised we are when a particular event occurs.37 We begin by asking
what would we expect such a measure to look like. An obvious requirement
is that the more certain is the outcome, the less surprised we are by the event
actually taking place. Hence, the surprisal I should be a monotonically decreasing
function of the probability P of the outcome. To make the relation between I and
P unique we add one more condition: for two independent and unrelated events
a and b, if both are observed to occur, and provided that neither event changes
our opinion about the other, the surprisal at observing both events should be
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Figure 6.14 Surprisal of
energy requirements of
the endoergic I + HCl(v) →
HI + Cl reaction and the
corresponding results for
I + DCl(v) as determined,
using detailed balance,
from the measured
energy disposal in the
reversed HI + Cl → I +
HCl(v) exoergic reaction.
Bottom panel: the
observed (points) and the
prior distribution for the
vibrational energy
disposal in the exoergic
direction. Upper panel:
the surprisal. For the
energy disposal, left
ordinate, the surprisal is
–ln(P(v)/P 0(v)). For the
energy requirement, right
ordinate, the surprisal is
the [relative, see Eq.
(6.40)] rate constant for I +
H(D)Cl(v) → H(D)I + Cl
when the fraction fv = Ev

/E of the total energy is in
the reactant vibration.

additive, I(a&b) = I(a) + I(b). The probability P(a&b) of the combined event is
P(a&b) = P(a)P(b). These two conditions together suffice to prove that there is
only one choice:

I = − ln(P)
0

0

 I
  s

ur
pr

is
al

P   probability 1

It is easier to verify the converse result: that our choice satisfies the two conditions.
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To proceed we must be careful because our events are not elementary outcomes
but instead are groups of outcomes. For example, when you toss two coins you
are not surprised if the outcome one head, one tail is more probable than when
both coins show heads. This is because the outcome one head, one tail can be
realized in two ways, first coin head, second coin tail, or the other way around,
whereas there is only one elementary event in the outcome both heads.38 To apply
this idea we need to specify what we consider to be the elementary outcomes of
the collision. This we have already done. We take it that at a given total energy, all
other things being equal, the flux into all final quantum states that are accessible
is the same. So we need to divide the observed probability of a group of events
by the number of events in the group. The normalized number of events is the
probability when all elementary events are equally probable, and is given by the
prior distribution. Hence:39

I ( f ) = − ln(P( f )
/

P0( f )) (6.32)

where P0(f) is the prior probability of the final outcome f. If what is observed is
the prior distribution, the surprisal is zero. Please note again the technical sense
in which we are using the concept of being surprised. Whereas you might be
astonished that the actual distribution contained no effects from the dynamics
that led from the reactants to the products, technically you are not surprised in
the least bit.

Figure 6.13 showed an example of applying Eq. (6.32) to the final vibrational
state distribution in the F + H2 reaction. The observed distribution is qualitatively
different from the prior, as is only to be expected for a direct reaction. Yet the
surprisal has a simple (linear) dependence on the fraction of the available energy
that is in the vibration. The simplicity of a linear surprisal is not caused by the
semilogarithmic nature of the plot. Figure 1.3 showed the actual rotational state
populations of HD in several vibrational manifolds from the H + D2 reaction.
The fit to a linear surprisal is close.

This raises the question of why should the surprisal be a simple function. One
answer is the following. For a statistical distribution of final states we take it
that all final quantum states are equally probable. The practical version of this
expectation is the prior distribution. Because of the dynamics the final quantum
states may not be equally probable. What one then needs is a quantitative way to
impose the inequality of states as enforced by the dynamics. How to do it?

If all quantum states are equally probable, then one can say that the distribution
of final states has a maximal entropy. So far, the maximal value of the entropy is
just a restatement of the result that the distribution is as uniform as possible. If
the final states are not equally probable, we ask that the entropy of the distribution
of states be as large as is allowed by the dynamical constraints. In other words,
the working hypothesis is that all states are as probable as possible under the
constraints imposed by the dynamics.
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*6.4.2.1 The distribution of maximal entropy
The details of determining a distribution of maximal entropy are spelled out
in a number of reviews.40 Here we just give an example: suppose the dynamic
constraint is the final vibrational energy. This means that the dynamics imposes
on the distribution of final states a mean value of the final vibrational energy∑

f

Ev( f )P( f ) = 〈Ev〉 (6.33)

where Ev(f) is the value of the vibrational energy in the final state f. Then the
surprisal of the final state f has the functional form

I ( f ) = λ0 + λv Ev( f ) or P( f ) = exp (−λ0 − λv Ev( f )) (6.34)

This means that all final states that have a given value of the vibrational energy
are equally probable.

Subject to the constraint Eq. (6.33), the surprisal is a linear function with two
coefficients, λ0 and λv. There are two coefficients because there are actually two
constraints: the dynamical one, Eq. (6.33), and the condition that the distribution
of final states is normalized

∑
fP(f) = 1. The coefficient λ0 insures the normal-

ization and when normalization is enforced it becomes a function41 of λv. So a
linear surprisal plot is specified by one coefficient. It can be determined from the
data by plotting the surprisal, what is known as a surprisal analysis, or it can be
determined theoretically, if the value of 〈Ev〉 is given, by regarding Eq. (6.33) as
an implicit equation for λv.

If we group together those states that have the same energy for the diatomic
product we obtain the distribution of vibrational states. Using Eq. (6.34)

P(v) =
∑

all states f such that
Ev( f )=Ev

P( f ) = P0(v) exp(−λ′
0 − λv Ev) (6.35)

The surprisal is the same for all the states in the sum. So the sum is the number of
such states. The prior distribution is just this number, divided by a normalization
(the total number of states) to render the number into a probability. If there is
no dynamic constraint the numerical value of λv is zero and the distribution
is the prior one. We reiterate that the prior distribution is not the same as a
uniform distribution. Rather, it depends on how many products’ quantum states
fall into the group of states of interest. For example, in Figure 6.13 the prior
vibrational distribution falls rapidly with increasing vibrational excitation and so
looks thermal-like. Problem H shows that in the limit where the products have
many atoms so that the fraction of energy in any particular vibrational mode is
likely to be small, the prior distribution is exactly thermal.42 But in an A + BC
reaction there is only one vibrational mode in the products and so the correct
form of the prior distribution is required.
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It is not necessarily the case that there is only one constraint imposed by
the dynamics. If there is more than one constraint, then the surprisal is a linear
combination of terms.43

6.4.3 Measure of selectivity in energy requirements
of chemical reactions

We have just discussed a measure of specificity of energy disposal of chem-
ical reactions. Already in Chapter 1 we drew attention to the implication of
microscopic reversibility that energy disposal in a forward reaction and energy
requirements of the reversed reaction are one and the same. Here we show that
both are characterized by the same surprisal.

For the pair of reactions

(A + B)state i
k(i→ f )−→ (C + D)state f

(A + B)state i
k( f →i)←− (C + D)state f

detailed balance is the statement that

[reactants(i)]eq k(i → f ) = [products( f )]eq k( f → i) (6.36)

The square brackets denote concentrations and the subscript eq refers to the
concentrations at equilibrium. The indices i and f are states or groups of states.
For the special case where the initial and final translational energies are sharply
defined we prove that detailed balance in the form of Eq. (6.36) is equivalent to
the version that can be found in books on scattering theory, namely

gi

(
k2

i /π
)
σ (i → f ) = g f

(
k2

f /π
)
σ ( f → i) (6.37)

The most important point about this equation is that both sides are to be evaluated
at the same total energy E. To insure a sharp value of the translational energy, i and
f are indices of quantum levels and g is the degeneracy of the level. At a given total
energy, the equilibrium condition is that all quantum states are equally probable.
So the equilibrium concentrations are proportional to the number of quantum
states. There are giρT(ET), ET = E – Ei, states of the reactants and similarly
for the products. The reaction rate constants are related to the cross-section as
k(i → f) = viσ (i → f), where vi is the relative velocity of the reactants and similarly
for the products. Since dET = vi dpi we have that viρT(ET) = h−1k2

i /(2π )2 where,
as usual,ρ =�k. For our immediate purpose, it is more convenient to write detailed
balance in its chemical form, Eq. (6.36). At a given total energy we have from
(6.37)

giρT(E − Ei )k(i → f ) = g f ρT(E − E f )k( f → i) (6.38)

The probability P( f ) of the final states is defined as the relative rate into that level

P( f ) ≡ k(i → f )/k(i →), k(i →) ≡
∑

f

′k(i → f ) (6.39)
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where the prime on the sum is to remind us that summation is only over the states
of the products. Therefore44 we can write that

P( f )

P0( f )
= k( f → i)∑

f

′ P0( f )k( f → i)
(6.40)

The left-hand side is the surprisal of the specificity of the energy disposal (for
reactants in state i). The right-hand side is the relative rate of reaction (to products
in state i) from state f. It is the relative rate because it is the rate constant out of
state f normalized by the rate constant averaged over all states (of the reactants
of the reversed reaction) at the energy E. In other words, the prior distribution
for energy requirement is that, at a given energy E, all initial states react with
the same rate. This need not be the observed behavior and Figure 6.12 shows the
selectivity of energy requirements of the endoergic reaction

I + HCl(v) → HI + Cl

determined from the observed energy disposal in the exoergic reversed reaction.
Because the surprisal is linear in Ev, vibrational excitation of HI(v) or DI(v) leads,
at the same total energy, to an exponential enhancement of the reaction rate.

6.4.4 There are deviations from statistics

Much of the material in this section has concerned expected outcomes if the
reaction system behaves statistically. If maximal entropy without constraints is
really the case, the situation is actually quite dull – all angular distributions
are isotropic and featureless, all internal-state distributions approach the form
of temperatures, although for molecules with a limited number of degrees of
freedom the differences from thermal distributrions can be marked, Problem I,
and all the reaction rates are readily calculated. Reality is far stranger and more
interesting. It is by comparing observations and calculations against prior expec-
tations that we realize how important or unimportant the dynamics of the process
is in altering the outcome. Often there will be even qualitative deviations and
we expressed them in terms of constraints. What we next need is the ability to
identify the constraints imposed by the dynamics and not only determine them
by an analysis of measured (or computed) final-state distributions.

6.4.5 Phase space theory

Here we examine what modifications are required in the definition of the prior
distribution when we explicitly take into account the conservation of angular
momentum in addition to the conservation of energy. These modifications are
required when, say, high final rotational states are being populated, which requires
conversion of much angular momentum of initial relative motion to internal
angular momentum of the products. As discussed in Section 10.2.2, when an
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attacking or departing atom is light, one also needs to pay attention to this point.
With this modification in hand it is possible to derive phase space theory.45 This
is a theory that provides an actual prediction for the distribution of products
for reactions where all memory of the initial conditions is lost except for the
conservation laws. This is the limit where the trajectories rattle many times across
the transition state region before exiting as reactants or products.

To introduce the conservation of angular momentum, consider first the simple
case where the particles carry no internal angular momentum. Then the orbital
angular momentum L is conserved and the collision takes place in a plane. For the
flux distribution in this plane we use the same assumption as for the discussion
of the prior: the flux into any final quantum state is the same. The quantitative
change is that now the final velocity is confined to the plane and so the volume
element is dv′ = v′ dθ dv′ rather than that in three dimensions, dv′ = v′2 sin θ dθ

dφ dv′. We see two differences. The density of translational states is different in
two and three dimensions and the angular distribution is different. In the plane
all scattering angles are equally probable. This is the picture that in Section 4.4.1
we called the sprinkler model. Next come two points. First, the orientation of
L often is neither selected nor constrained by the dynamics. Therefore, to get
the observable scattered flux we need to rotate the direction of L, which means
rotating the scattering plane about the b = 0 axis. The flux into a given solid
angle d2ω = sin θ dθ dφ will therefore not be constant but will scale as 1/sin θ .
Also, if the orientation of L is not selected it has the weight of 2l + 1 where L =
�l. Equation (6.25) is therefore to be replaced by

(d3σ/dET d2ω)0 ∝ 1

sin θ

lm∑
l=0

(2l + 1)ρI(E − ET) (6.40)

where lm is the highest angular momentum for which the two particles can form
a complex.

Phase space theory does not assume that the particles are structureless and so
it is the total angular momentum J, J = j + L, that is conserved. The angular
factor is no longer a simple 1/ sin θ but retains the essential characteristic that it
has forward–backward symmetry. This is further discussed in Chapter 10. The
counting of states also needs some additional attention because the need to con-
serve J means that L and j are now correlated. So the density of internal states is
L-dependent and the summation in Eq. (6.40) is not trivial but easily program-
mable. Figure 6.15 shows the principle of counting states under the restriction
that J is conserved.

Phase space theory seeks to determine the actual cross-section in the limit
where the trajectories spend much time in the transition state region before exiting
as reactants or products. We therefore factor the cross-section from reactants to
products as two contributions, the cross-section starting from reactants to form
the collision complex multiplied by the probability that the complex dissociates
to products. The statistical assumption enters into the approximation that the
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J

J

j
jmax

l

Figure 6.15 The
correlation between the
rotational and orbital
angular momentum
quantum numbers at a
given total J. Here J can
assume all values from
|l − j | to l + j. This
restriction determines the
three sides that bound the
region of allowed values
of l and j, which is shown
shaded. The upper range
is determined by
conservation of energy,
j ≤ jmax.

only characteristic of the complex is the energy and the total angular momentum
J and its (integer valued) projection M , −J ≤ M ≤ J . Therefore using i and f
for initial and final states,

σ (i → f ) =
∑
J,M

σ (i → J, M)P( f |J, M) (6.41)

Here σ (i → J, M) is the cross-section for complex formation starting from reac-
tants in state i (and total energy E). P(f |J, M) is the probability that the complex,
of given J and M, dissociates to the products in final state f. Note how Eq. (6.41)
allows only J and M (and the total energy) to correlate between reactants and
products. Section ∗6.4.5.1 provides the explicit results for computing the cross-
section.

*6.4.5.1 Phase space theory: quantitative formulation
We consider an atom–diatom collision where j is the rotational quantum number
of the diatom and there are 2j + 1 (degenerate, in the absence of a field) states
of given j. Because J and M are conserved, detailed balance in the form of
Eq. (6.37) can be applied to each term in the sum Eq. (6.41). By separating the
terms that depend only on i or on f it follows that

σ (i → J, M) = (
π/gi k

2
i

)
N (J, M)P( f |J, M) (6.42)

where N(J, M) depends only on J and M (and the total energy) but not on the
initial state. It is specified by our assumption that the flux into all states (of given
J, M, and total energy) should be the same:

P( f |J, M) = N ( f |J, M)/N (J, M) (6.43)
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where N ( f |J, M) is the number of states of the complex (of given J, M, and
total energy) that dissociate to the final state f. By normalization, N (J, M) ≡∑

f N ( f |J, M) is the total number of states of the complex and the summation
is over states of the reactants as well as those of the products. The final expression
for the cross-section is

σ (i → f ) = (
π/gi k

2
i

) ∑
J,M

N (i |J, M)N ( f |J, M)

N (J, M)
(6.44)

and it manifestly satisfies detailed balance.
The counting that is required in phase space theory is that of N (i |J, M), the

number of states of the complex that are possible starting from the reactants (or
products) in a given state. Figure 6.13 showed what is involved. First we specify
not only the internal state i and its degeneracy gi ( = 2j + 1 if it is an atom–diatom
collision where j is the rotational quantum number of the diatom) but also the
orbital angular momentum l. There are 2l + 1 states of given l so, all together,
there are (2 j + 1)(2l + 1) quantum states under consideration. Out of these we
form N (i, l|J, M) quantum states of given J and M. (No states are lost because
there are 2J + 1 states of given J, and J ranges in value from |l − j | to l + j .) The
number of states that we need for use in (6.44) is obtained by summing over all
values of l that can form a complex, N (i |J, M) = ∑lm

l=0 N (i, l|J, M). As before,
we need to determine the upper limit lm on the sum.46

*6.4.5.2 Locating the bottleneck: variational transition state
theory and the statistical adiabatic channel model
When a polyatomic molecule dissociates, most vibrational modes correlate with
modes of vibrational character in the products while other modes “disappear,”
meaning that they correlate with rotation or translation of the separated fragments.
As we have seen in Section 6.1.4.1 (and in Problems F and G), the transitory
modes are those that determine the shape of the barrier. Taking as an example the
dissociation of C2H6 to two CH3 radicals, there are 18 vibrations of the parent. One
vibration, the C–C stretch, becomes the reaction coordinate. Five other vibrations
correlate to free rotations of the CH3 radicals, see Problem F. These are the torsion
mode of C2H6 and the CH3 rocking modes. Twelve vibrations are “conserved,”
meaning that they correlate to the vibrations of CH3.

The frequencies of the conserved vibrations do change as we move along the
reaction coordinate from the molecule to the fragments. We know the frequencies
at the two ends. From quantum chemistry or from structural considerations let
us interpolate the frequencies. We can use the frequencies given as a function
of the position along the reaction coordinate in several ways. One is to compute
where the flux of dissociating trajectories will be least. This gives a variational
transition state formulation, which is particularly important for flexible transition
states.47 The more detailed option is to determine the barrier along the reaction
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coordinate q for each quantum state of the conserved vibrational modes. As we
move along q this means adding the (q-dependent) energy of these modes. It is an
adiabatic model in the sense that the state of the “conserved” modes is taken to
be conserved as we cross the barrier. Otherwise, it is a statistical theory because
we must allow energy redistribution in the energy-rich molecule and for the
transitory modes. Augmented by an interpolation scheme for the frequencies of
the conserved modes, this is the Statistical Adiabatic Channel Model48 (SACM).
If the available energy exceeds the height of the barrier, that particular state can
dissociate. The end result looks like the RRKM expression, Eq. (6.16),

k(E, J ) = N0J (E − E0)

hρ(E, J )

Here however N0J(E − E0) is the number of states that can energetically correlate
to the products. It is the number of open channels. The J is to remind us to
conserve the total angular momentum.

6.4.6 Up, up and away

For too long we have stayed on the ground potential energy surface. Beginning
with Chapter 7 we explore what can be learned and what can be done by taking
advantage of electronically excited states. Experimentally this is made possible
by the introduction of lasers. Theoretically this opens up new possibilities for the
dynamics, including the option of the control of the collision.

Problems

∗A. (a) Detailed balance in transition state theory at a given energy. Given that the
forward and reversed reactions proceed via the same transition state, show that
the yield function, Eq. (6.4), is the same for the forward and reversed reactions.
Next, based on the derivation of Eq. (6.5), show that the rate constant at energy
E, computed by transition state theory, satisfies detailed balance. It is easier to
derive the condition of detailed balance between the rates k(E) of the forward and
reversed reactions starting from the equality of the yield function. (b) Detailed
balance in transition state theory at a given temperature. Given that the forward
and reversed reactions proceed via the same transition state, show that the rates
k(T) of the forward and reversed reactions satisfy detailed balance, meaning that
their ratio is the equilibrium constant for the reaction. If you are not familiar
with the statistical mechanics result for the equilibrium constant K(T), reverse
the question. Derive an expression for K(T) starting with the transition theory
expressions for the rates k(T) of the forward and reversed reactions.

∗B. Microscopic reversibility is the statement that when i and f are individual
quantum states of the reactants and the products then, at a given total energy
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E, k2
i σR(i → f ) = k2

f σR( f → i). The ks are the wave numbers. Show that the
yield function as defined by Eq. (6.6) is the same for the forward and reversed
reactions.

C. The expression for the thermal rate constant. Equation (3.8) is the thermal
rate constant for reactants in a particular state. Equation (A.3.3) shows how to
average over the internal states of the reactants. Using the definitions of partition
functions from Appendix 6.A., derive Eq. (6.7). This involves a fair amount of
changing the variable in integrations.

D. Energy of activation. (a) Compute the energy of activation as given by
transition state theory. (b) Show that the energy of activation is not numerically
equal to the height of the barrier. (c) Show where the point about the role of the
zero-point energy of the reactants and the transition state arises. (d) Compare
your result for the energy of activation in TST with the general result of Tolman,
Eq. (3.9). (e) Identify the reactive reactants as specified by TST.

∗E. Entropy of activation. (a) Compute ∗ the entropy of activation as given by
transition state theory. (b) Show how the qualitative idea of a tight or broad pass
at the transition state is reflected in your quantitative result.

F. Steric factor. Make a table with the following format, where n is the number
of degrees of freedom:

Species
n Reactant A Reactant B Transition state

Translation
Rotation
Vibration

If reactant A has NA atoms, and reactant B has NB atoms, then the col-
umn sums should be 3NA, 3NB, and ?. Consider various choices for the species A
and B, e.g., atom, diatom, linear triatom, polyatom, and thereby demonstrate how
formation of the transition state in a bimolecular A + B reaction is accompanied
by loss of freedom of motion and thereby in a steric factor that is below unity.

G. Transition state theory for unimolecular reactions. In the high-pressure
limit one can assume that the energy-rich species A∗ has reached thermal equi-
librium. (a) Verify the TST result for the rate of unimolecular dissociation
k(T ) = (kBT/h)(Q‡/Q) exp(−βE0) where Q is the partition function for A and
Q‡ is the partition function for the transition state. (b) This result looks just like
the TST expression for the bimolecular thermal reaction rate constant. But this
cannot be. A unimolecular reaction rate constant has different dimensions from
a bimolecular one. Resolve this dilemma. (c) The thermal dissociation of ethane,

∗ You will need to prove that S = R ln Q + 〈E〉/T and, as you have shown in (A.6.7), 〈E〉 =
RT2 ∂ ln Q/∂T.
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CH3CH3 → 2CH3, has, of course, a very high value for the activation energy. But
it also has an unusually high value for the measured Arrhenius A factor, roughly
A = 1017.4 s−1. Suggest a possible explanation. Your explanation should take into
consideration that many other bond-breaking unimolecular reactions have high A
factors. (d) On the other hand, the thermal dissociation C2H5 O CH CH2 →
C2H4 + CH3CHO has a rather low A factor, roughly A = 1011.4 s−1. It is suggested
that the reason is that the structure of the transition state is a six-member ring,
which enables an H atom to move from one end of the molecule to the other with
a more modest barrier. Discuss if this can explain the low A value. (e) Now gen-
eralize the TST result for the dissociation rate constant to lower pressures. You
may use the steady-state approximation but you must generalize the discussion in
Section 6.2.1 because we have shown in Section 6.2.2 that the rate of dissociation
is a strongly increasing function of the energy of the molecule.

H. Newton diagram. The K + HBr reaction, exoergic by about 13 kJ mol−1, has
a most probable products’ kinetic energy that is about equal to the initial kinetic
energy. (a) Draw, to scale, the velocity vector (Newton diagram) for reactant
beams that cross at a right angle. Assume that the speed of the reactants is the
most probable velocity at 500 K. (b) Show the locus corresponding to the maximal
speed of the KBr product and also the locus for the most probable final velocity.
(c) In what angular range in the laboratory will you look for the KBr product?

I. The thermal-like prior distribution. The prior distribution for energy dis-
posal into a degree of freedom, say X, contains the factor (1 − EX/Eav)m where
Eav is the energy available for distribution and the power m depends on how
many atoms are involved. The origin of this factor is the density of translational
states. What this factor does is describe the shrinking volume in phase space as
more and more of the available energy is being put into the particular degree of
freedom, X. There are many situations, e.g., the distribution of rotational states
of a particular vibrational manifold, where EX/Eav < 1. For this range show that
(1 − EX/Eav)m ∼= exp (−EX/(Eav/m)) is a good approximation. The distribu-
tion is then “thermal-like” but note that the “temperature” depends on the available
energy. So the distribution of rotational states in different vibrational manifolds
will have a different “temperature!”

J. Compute the mean energy in the vibration for a distribution with a linear
surprisal, Eq. (6.35), and plot it vs. λv, both positive and negative. To do so you
will need, as an intermediate step, to compute λ0 as a function of λv. By using a
prior distribution from Eq. (6.31) all of this can be done analytically.

K. Quality of fit. Let PT(v) be a trial form for the distribution of the products’
vibration, say of the form Eq. (6.35). Then the quality of the fit to the measured
distribution P(v) is DST ≡ ∑

v P(v) ln(P(v)/PT(v)). (a) Using the inequality
ln(1/x) ≥ 1 − (1/x), where equality is obtained if and only if x = 1, show that DST

is non-negative and vanishes only for a perfect fit. (b) On the basis of (a) conclude
that the best value of λv is when DST is minimal. Compute DST as a function of λv,
determine the stationary point, and show that it is indeed a minimum. (c) Show



256 Structural considerations

that this is the same value of λv as determined in the text, that is, by regarding
Eq. (6.33) as an implicit equation for λv. ∗(d) Show that DST is the difference
between the entropy of the distribution PT(v) and the entropy of the experimental
distribution. This is the sense in which the entropy of the distribution PT(v) is
said to be maximal.

L. The table below lists the nascent product vibrational state distributions and
the available energy for the three highly exoergic reactions

I. F + HBr → Br + HF(v)
II. F + DBr → Br + DF(v)
III. CH3 + CF3 → CH2 CH2 + HF(v)

Useful input: the vibrational frequency and anharmonicity of HF are 4138.5 cm−1

and 90.07 cm−1 respectively. The anharmonicity of DF is 45.71 cm−1.

Reaction E/kJ mol−1 v = 1 v = 2 v = 3 v = 4 v = 5

I 213.5 0.09 0.22 0.34 0.35 ≈0
II 215.6 0.06 0.13 0.17 0.22 0.24
III 301.4 0.49 0.32 0.14 0.04 0.01

(a) Reactions I and II should be rather similar yet the results show a significant
isotope effect. Suggest how to represent the data so that the effect is largely
eliminated. (b) Suggest a way to understand why reaction III, a reaction that
is very exoergic, has a qualitatively different vibrational disposal from the first
two reactions. If you try you may be able to argue that one can represent the
data such that all three reactions are similarly characterized. (c) Can you suggest
reasonable entries for the missing v = 0 column? And can you extend the results
for reaction II to higher vs? (d) The vibrational energy disposal in the H + CH2CF3

→ CH2 CH2 + HF(v) reaction has a surprisal plot with almost the same slope
λv as for reaction III (Ben-Shaul et al., 1981). Discuss. (e) Quantum scattering
computations have been carried out for the F + H2 reactive collision. Discuss
why such computations for F + HBr will be much more prohibitive. (f) For the
Br + HF(v) collision, the vibrational excitation of HF can significantly enhance
the reaction cross-section. But in the collision of CH2 CH2 with HF(v) it is
not necessarily clear that vibrational excitation of HF will efficiently result in an
addition to the double bond. Why?

M. The ion–molecule reaction CH2 CH+
2 + CH2 CH2 → C3H+

5 + CH3 was
studied in a crossed-beam arrangement. (a) At low collision energies the prod-
uct ion was observed to have an angular distribution with a forward–backward
symmetry. Why does that make chemical sense? (b) As the collision energy was
increased, the angular distribution became increasingly asymmetric and eventu-
ally became predominantly forward. Why? And can you suggest at what energy
this will happen? (c) Will you use transition state theory to compute the reaction
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rate at low energies? If not, what will you use? (d) If we use the CD2 CD+
2

instead of the CH2 CH+
2 ion, do we expect the ion CD2 CH+

2 as a possible
product? Does the answer depend on the collision energy?

N. Toward biological applications mass spectrometry is increasingly con-
cerned with ions of ever larger mass.∗ Apart from the technical problem of
detection of heavy ions there is the question of a time window. An ion has to dis-
sociate within at most a few microseconds if its fragmentation is to be detected
by a conventional mass spectrometer. Assume that ionization is by impact of
70 eV electrons, e + P → e + e + P+. (a) Make a reasoned guess for the excess
energy of the parent ion and do not forget about the Franck–Condon principle,
Section 7.0.1. (b) What is the range of the maximal molecular weight for the
parent in order that the fragmentation of the ion can still be detected? Assume
that biological molecules are made of atoms of a mean atomic weight of 7.6 and
that a mean vibrational frequency is 1000 cm−1. Ionization weakens bonds so
take a dissociation energy of 2 eV. (c) Suggest ways for extending the range of
application of analytical mass spectrometry toward higher masses. If necessary,
make a literature search.

O. Termolecular processes and sticky collisions. Third-atom-assisted pro-
cesses are often assumed in chemical kinetics. A notable example is in recom-
bination processes, e.g., O + O2 + M → O3 + M, where the function of the
third body, M in the example, is to take away energy and thereby stabilize the
new ozone molecule. It is reasonable to conjecture that the reaction proceeds
by a two-step process where, in the first step, O + O2 (or O2 + M) under-
goes a collision where a long-living complex is formed and it lives for long
enough to collide with M (or with O). (a) Use RRKM theory to estimate the
lifetime of the unrelaxed O3 complexes formed from thermal O + O2. (Go for,
or estimate, the data that you need.) (b) The complex needs to collide with M
before it dissociates. Is the estimated lifetime sufficient if the pressure is, say, an
atmosphere?

P. Newton diagram. Draw the Newton diagram for the reaction shown in
Figure 6.12 and hence explain why certain angular ranges of the products are not
easily seen in the experiment.

Notes
1 For the derivation below, the restriction to reactants at equilibrium seems to be essential. It

will be interesting to develop a derivation that allows for a generalization.

2 This statement is predicated on the Liouville theorem that allows us to connect from the

transition state back to the reactants. Our mental image is that we start with an ensemble of

∗ Such ions need not be formed by electron impact. There are other options. For a very successful

method see Fenn and Mann (1989). See Nohmi and Fenn (1992) for an example of molecular

weights up to 5 million.
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trajectories with different initial conditions, but at the same total energy, such that we

mimic a uniform distribution of initial states of the reactants. Each such trajectory will

either cross the transition state or will fail to reach it. In the transition-state approximation a

trajectory that reaches the point of no return will proceed to products. So the set of states of

the reactants that is identified by the trajectories reaching the transition state is the reactive

reactants of Chapter 3.

3 In addition, special features of the potential can facilitate recrossing. For example, an early

release of the reaction exoergicity, as shown in Figure 5.15, drives the trajectory up the

repulsive wall and can thereby redirect it toward the reactants’ valley. The masses also

matter. An exchange of a light atom means that the skewing angle β, Appendix 5.B, is quite

small. So there is a sharp bend connecting the reactants’ and products’ valleys. The result is

that the light atom can chatter a few times between the heavy partners. Some, but not all, of

these limitations can be overcome by looking for an alternative configuration of no return,

one that is not necessarily at the barrier, as discussed in Section 6.4.5.2.

4 Called “the yield” in Levine (1969). See also Miller (1998).

5 Proposed in the form of Eq. (6.11) for the thermal rate constant by Eyring in the 1930s, on

the basis of earlier work by Pelzer and Wigner. Transition state theory had a profound

influence on the development of chemical kinetics and is discussed in all textbooks. Critical

reviews include Pechukas (1976, 1981), Truhlar and Garrett (1984), Truhlar et al.

(1996).

6 We emphasize again that this is a condition on the system for which the theory is

applicable. It is not a trivial condition, and can be violated for a number of reasons. Thus,

endoergic reactions will often proceed preferentially from reactants that are vibrationally

excited. The reaction thus serves to deplete such states: only if the population of these

states by energy-transferring collisions is faster than the reaction rate will the reagents

remain in thermal equilibrium. Similarly, the specific release of reaction exoergicity tends

to displace the system from thermal equilibrium. Hence, the required condition is obtained

only when the mechanisms that restore equilibrium occur on a time scale shorter than that

of reaction. The act of crossing of the barrier has to be the rate-determining bottleneck.

Because this condition cannot always be insured (particularly for fast reactions) or can be

made to “fail” (by keeping the system in thermal disequilibrium), molecular reaction

dynamics is relevant to reactions in bulk, in particular in such cases (e.g. combustion

reactions) where thermal equilibrium is not maintained.

7 See Problem C. Mathematically, Eq. (6.7) says that Qk(T) is the Laplace transform of

ρ(E)k(E). It is natural to want to use an inverse Laplace transform to get k(E) from a

measured k(T). Computationally this is not a safe route because taking an inverse Laplace

transform is numerically rather unstable and is very sensitive to errors in the measured k(T).

What is more satisfactory is to evaluate the Laplace transform by the saddle-point method

as introduced in Chapter 3. See Problem P.

8 This idea has been fruitfully generalized, particularly so by the physical organic chemists.

One can also apply it to enzymatic reactions (Jencks, 1986; Villa et al., 2000). A partition

function can be written in terms of the free energy A as Q‡ = exp(−A‡/kBT ) =
exp(−E‡/kBT ) exp(S‡/kB). Here S‡ is the entropy of the other degrees of freedom at the

barrier. If the passage is a narrow one, the structure is highly constrained and its entropy is

small. Hence the rate is determined by more than simply the height of the barrier. We also

encounter the opposite effect: if the transition state is less constrained than the reactants,
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its entropy is large and so is the rate constant. See Problem E in Chapter 12 for a concrete

example.

9 The vibrational period is a natural time scale for molecular dynamics. Take a day as a

natural unit for a person. By comparison, the molecules in Figure 6.2 live longer than a

human lifespan. Take a year as a natural period for the solar system. The molecules in

Figure 6.2 live much longer than recorded history. Of course, such long-living energy-rich

species can find other modes of relaxation. Sooner or later they will collide with the wall.

Given time they can also emit some of the excess energy as IR radiation. It requires

special experimental care to keep a molecule isolated for a long time. Under many

circumstances, e.g., combustion, energy-rich molecules that can eventually dissociate are

formed in the bulk where many collisions can occur. Then we have a similar situation to

that considered by Lindemann: the initially energy-rich molecules are deactivated (and

also activated) by collisions prior to their dissociation.

10 Bunker (1966), Oref and Rabinovitch (1979), Beynon and Gilbert (1984), Gilbert and

Smith (1990), Baer and Hase (1996), Holbrook et al. (1996).

11 J. D. Rynbrandt and B. S. Rabinovitch, J. Phys. Chem. 75, 2164 (1971).

12 The original proof by Rice, Ramsperger and Kassel is longer but it had one point that is

hidden by our derivation. This is that certain states, N‡(E – E0) in number, will dissociate

promptly. Physically this is for the reason that these states already have enough energy

for crossing the barrier localized in the reaction coordinate. In Section 7.2.2 we will make

the point that the RRKM rate, Eq. (6.6), is the mean rate of dissociation and that

state-specific rates can differ considerably from the mean. We also suggest that these

promptly dissociating states can lead to an ultrafast component in the unimolecular

decay.

13 A proof is as follows. The total energy is in the range E to E + dE. At equilibrium, all

quantum states are equally probable. On the products’ side there are ρp(E)dE quantum

states. At equilibrium the rate of association of reactants to form a complex is

ρp(E)
←
k(E)dE . There are ρ(E)dE quantum states of the complex. At equilibrium the rate

of dissociation of the complex is ρ(E)k(E)dE.

14 The extreme is when there is a forest of electronically excited states, as is the case when

the energy is just below or even above the threshold of ionization (Schlag and Levine,

1997; Campbell and Levine, 2000). Then dissociation and ionization can compete and

statistical ideas applied also to the electronic degrees of freedom become useful.

15 An example where such selectivity can be manifest is when the initial state is electronically

excited. A conical intersection, if it exists, can funnel the system to restricted regions

of the ground potential energy surface and dissociation can then be prompt. See

Figure 8.8.

16 See Chabinyc et al. (1998) for a review of ion–molecule displacement reactions.

17 For ion–molecule collision complexes this has been experimentally implemented by

cooling the complex through a supersonic expansion (Levy, 1981, 1984). Even further,

one can reactivate these stable complexes either by collisions or by IR multiphoton

absorption, as discussed in Chapter 7. The non-covalent bonding in the complex is shown

for example by the inequivalence of the two Cl atoms in a 37ClCH3
35Cl− complex, that

dissociates very preferentially to the attacking Cl isotopomer.

18 See Hase (2001) and references therein. Experimental support for these conclusions is

provided by studies of the temperature dependence of the rate constant, particularly so if
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we can independently vary the internal state of the reactants. See, e.g., A. A. Viggiano

et al., J. Am. Chem. Soc. 114, 10477 (1992).

19 Mass spectrometry measures the mass of fragment ions formed in a unimolecular

dissociation of an energy-rich parent ion. To apply a transition state theory approach to the

determination of the branching into different products requires the assumption that after

ionization there is a sufficient delay for the ion to distribute the excess energy over all the

available modes. Mass spectrometrists refer to this assumption as the quasi-equilibrium

hypothesis, and they are actively concerned about its validity. See Lifshitz (1989), Lorquet

(1994, 2000).

20 One can also speculate that the many similar modes are the very reason why biological

machines operate so determinedly. This is possible when modes act in a coordinated or

cooperative manner. A phase change such as the melting of an atomic solid is the familiar

example of cooperative behavior, where a single atom of the solid seeking more freedom

of motion will be hindered by its neighbors if these remain rigidly localized. But when the

neighbors too start moving then the entire system can change its state. In a molecular solid

there can be more than one transition because the molecule can remain translationally

localized but acquire the freedom to rotate. The contraction of skeletal muscles can be

understood as a collective motion where individual fiber proteins move with respect to one

another [H. E. Huxley, Science 164, 1355 (1969)].

21 One such possibility, already mentioned in Section 6.2.2.4 and discussed further in

Chapter 7, is the preference of modes to resonantly transfer their energy, meaning that any

frequency mismatch between modes tends to slow down energy redistribution. Another

possibility may be operative in activated chemical reactions in solution, discussed further

in Chapter 11. In solution we start with solvent and separated reactants in thermal

equilibrium. How then do the reactants, when they come together, collect enough energy

to localize enough energy so as to surmount the barrier to a chemical reaction? The

internal states of a large molecule form a quasi-continuum. So one possibility, a favorite

of many, is to think of the energy as solvent-induced diffusing amongst the quasi-

continuum of energy states. Diffusion means taking small steps in every possible direction

but doing so often. If we center attention on the localized mode where the energy is

needed, diffusion means that this mode goes up and down in its energy, by small amounts

but with a net drift upwards. There is however an alternative. This is that a large amount of

energy is supplied in one go by a rare event. Mechanical trajectory simulations of

reactions in solution do support this alternative as a viable route, [K. R. Wilson and

R. D. Levine, Chem. Phys. Lett., 152, 435 (1988)]. Similarly, a large rare fluctuation can

be how the energy is provided in a machine.

22 For the kinetics of energy transduction see Hill (1989).

23 There are several types of myosin. For a detailed discussion of the physics of motor

proteins, see Howard (2001) and Nelson (2003). For a review of the mechanochemistry,

see Spudich (2001) and Vale (2003).

24 A short introduction by the person who unraveled the mechanism is Boyer (1999). The

fuller story is in Boyer (1997). By attaching a fluorescent labeled actin filament to the axis

the rotation can be demonstrated as the enzyme cleaves ATP.

25 For an introduction to the probing response of single biomolecules see T. Strick et al.,

Phys. Today 54 (10), 46 (2001).

26 For the control of molecular machines, see Balzani et al. (2000) and also Balzani et al.

(2003). See also the special issue on molecular machines, Acc. Chem. Res. 34 (6) (2001).
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27 F. M. Raymo, K. N. Houk, and J. F. Stoddart, JACS 120, 9318 (1998), B. Northrup, K. N.

Houk, and J. F. Stoddart (private communication).

28 Enzyme catalysis can also be regarded as an example of reactions in organized

media. Other examples include reactions at interfaces, Section 11.3 and on surfaces,

Chapter 12.

29 The problem is to compute long time trajectories for a system with many shallow minima.

Special sampling methods are therefore needed, see Elber et al. (2003), Bolhuis et al.

(2002), Dellago et al. (2002). See also note 20 in Chapter 5.

30 This section is about the flux of products in the center-of-mass system. It is more

concerned with issues of principle rather than the important experimental aspects of

specific techniques. At the same time we must recognize that there is a very real problem

of how to determine this flux in an experiment. Consider first the simpler case where we

use a detector that measures flux in the laboratory system of coordinates. As we discussed

in Section ∗2.2.7 and more below, depending on the mass combinations the scattering in

the center of mass may span a wider or narrower range of angles (and velocities) in the

laboratory. Even with a flux detector, certain mass combinations are more favorable for

experimental study. But not all detectors measure flux. The most common other case, and

the one most familiar to chemists, is a detector that measures a number density, i.e., a

concentration. Using such a detector requires that the measured number density is

converted into flux. Laser detection methods, in particular some of the techniques

introduced in Chapter 7, require a careful analysis of what is the observable that is being

measured.

31 This is known as DIP, distributed (as) in photodissociation (Herschbach, 1973).

32 Overviews of how it began: Herschbach (1987), Lee (1987), Bernstein (1988). For

representative reviews, see Casavecchia et al. (1999), Casavecchia (2000), Green and

Anderson (2001), Liu (2001). Experimental beam techniques are discussed in detail in

Scoles (1988) and Pauly (2000). A survey of different applications is Campargue (2001).

33 Adapted from B. H. Mahan, Acc. Chem. Res. 3, 393 (1970).

34 We reiterate that we count states in the semiclassical limit, treating the final translational

energy as a continuous variable, as discussed in Section 6.3. Therefore, the translational

energy is not sharply defined but is in the range of ET to ET + dET.

35 These compact results are useful but are not sufficient for an accurate fit to vibrational

distributions where there are few levels so that the spacings are too wide for a continuous

approximation to be valid. It is then better to integrate only over gR, while using a discrete

vibrational quantum number so that P0(v) = B−1
v (1 − fv)3/2/

∑vmax
v=0 B−1

v (1 − fv)3/2.

36 The dynamics literature has reports of a “thermal-like” final state distribution. This is

particularly so if one examines a distribution that has only a smaller fraction of the total

energy in it, most typically, a rotational distribution or a distribution in one vibration out

of many. The essential difference between the prior and the Boltzmann distribution is that

the prior has a sharp energy cutoff due to the conservation of the total energy. A

Boltzmann distribution has an unbounded tail. Therefore the difference between the prior

and a thermal distribution becomes most noticeable for states whose energies are close to

the total energy limit.

37 Surprisal is, technically, the amount of information provided by an observation. Wiener’s

1948 book Cybernetics, MIT Press, is the reference to the point of view that we use. The

earlier parts of Wiener’s book are much more accessible than you might think from the

title. Applications to our subject are reviewed in Levine and Bernstein (1976).
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38 Failure to recognize that a given outcome can occur as a consequence of many elementary

events arises in many misapplications of the ideas of information theory. In chemical

physics, it was only when Planck introduced the notions that led to the result that it is the

quantum states of the same energy that are equally probable, that statistical physics gave

correct results, e.g., for the specific heat.

39 In some circles the approach that we follow, that of looking for a distribution of maximal

entropy, Section 6.4.2.1, is questioned. This occurs because people sometimes overlook

the need to include a prior distribution in Eq. (6.32). In this case it follows that in the

absence of constraints all groups of outcomes are equally probable. Very often this is

manifestly not reasonable and correctly so because different groups can differ in how

many mutually exclusive outcomes are members of the group.

40 For applications to molecular collisions see Levine and Bernstein (1976) or Kinsey and

Levine (1979). For the general case see Levine and Tribus (1979).

41 Explicitly, exp(λ0) = ∑
f exp( − λvEv(f )). This should remind you of the partition

function.

42 This is one possible way to derive the Boltzmann distribution. Given is an isolated large

system at equilibrium. It then has a microcanonical distribution, meaning that all quantum

states of the large system are equally probable. Now consider a small subsystem. Its

energy does not have a sharp value because it is a part of the large system. One can show,

e.g., that the subsystem has a Boltzmann (or canonical) distribution of its energy. The

prior distribution is not necessarily Boltzmann-like because the group of states of interest

need have but a small fraction of the total available energy.

43 Why must it be linear? Physically, because if we increase the number of independent

collisions we want the frequency of different outcomes to remain the same.

Mathematically, we imposed this condition when we required that the surprisal should be

additive.

44 Summing both sides of Eq. (6.38) over f leads to

giρT(E − Ei )k(i →) =
∑

f

′g f ρT(E − E f )k( f → i) ≡ kE(→ i)

Therefore

k(i → f )/k(i →)

g f ρT(E − E f )
= k( f → i)

giρT(E − Ei )

/
kE(→ i)

giρT(E − Ei )
= k( f → i)

kE(→ i)

= k( f → i)∑
f

′g f ρT(E − E f )k( f → i)

The substitution

P0( f ) = g f ρT(E − E f )/ρ(E)

ρ(E) =
∑

f

′
g f ρT(E − E f )

and the definition of P(f), Eq. (6.39), completes the derivation.

45 For the foundations of phase space theory, see Nikitin (1974), Pechukas (1976), Light

(1979).

46 Not so simple to implement in a rigorous fashion. Fortunately, the results are not overly

sensitive to the choice made. The cutoffs imposed by the centrifugal barrier, as introduced

in Section 3.2.6, are sufficient for many applications but fail to allow for any steric
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requirements on the formation of a complex. For example, a collision such as Na + KBr

will proceed through the well of the stable salt (NaK)+Br−. But the formation of the stable

cation (NaK)+ requires Na to attack preferentially from the K end. For reactions with an

activation energy, delineating the conditions for formation of the complex is even harder.

In principle (Pechukas, 1976; Pollak, 1985) one knows how to define a strong coupling

regime but the implementation of rigorous criteria is only computationally tractable for

collinear collisions.

47 See Wardlaw and Marcus (1988), Baer and Hase (1996).

48 On the SACM model and its applications, see Troe (1992, 1997).



Chapter 7
Photoselective chemistry: access to
the transition state region

So far, the energy necessary for a change to take place had to be brought in by
the reactants. In this chapter the required energy is provided by light. Often, light
allows us to promote the system to an electronically excited state where the poten-
tial and hence the dynamics are different from those of the ground electronic state.
But light-induced chemistry or “photochemistry” is not only a new way of driving
chemical reactions. Photochemistry offers a degree of control – a selectivity – that
is unique in its potential and variety. Our ability to tailor light toward specific
applications is part of the secret. This control ranges from a simple requirement
such as wavelength or polarization selection that allows us to access a particular
excited state to more complex tasks such as manipulations that produce short light
pulses that can freeze the motion and to pulse shaping in frequency and time for
the purpose of guiding nuclear motions.∗ Another important aspect is the inge-
nuity of scientists in matching up light and matter. In particular we have learned
to take advantage of the changing character of the intramolecular dynamics of
molecules as the energy increases. At low levels of excitation polyatomic mole-
cules offer us a great individuality through their spectroscopic fingerprints,
whereas at higher levels of excitation they have a quasi-continuum of vibrational
states and can be made to take up lots of energy like a good heat sink. This saga
is nowhere near to a closed chapter. The future seems ever brighter, just like new
laser sources.

This chapter is called “access to the transition state region” because we want to
either access it directly or to control the motion toward it in a manner designed to
allow us to determine the outcome. This is achieved because light allows us
to access localized regions of the potential energy surface. Another advantage of
this selectivity is that we can avoid the averagings (say over impact parameter,
approach angle, etc.) that are inherent when we start two reactants, that are far
apart, on their way toward a bimolecular collision. We begin this chapter with

∗ As the wavelength of lasers gets shorter and shorter we can also envisage approaching the limit

where the light will be used in a diffraction mode, similar to the current uses of X-rays. Combined

with ultrashort pulses, Chapter 8, this will allow tracking the structure of molecules during chemical,

biochemical, and material (e.g., fracture) processes.

264
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selectivity achieved by using light of a tightly defined frequency and because of
the time–energy uncertainty principle these light pulses need to be long in time.
Later we examine the complementary situation of pulses of very short duration.
The ultimate is the situation of a “shaped pulse,” meaning that the light pulse has
a controlled spread in both time and frequency.1

7.0.1 The Franck–Condon principle

The Franck–Condon principle plays such a key role in allowing us to localize the
excitation that it is necessary to review it. We begin with what is “the sudden limit.”
A favorite trick is for a magician to astound the audience by quickly whisking
away a tablecloth upon which is set dinnerware. If done rapidly enough, the
dinnerware appears undisturbed by the process. The trick is to be quick enough.
The same thing happens for molecules that absorb light and are excited to a higher
electronic state. The electronic rearrangement during the absorption process is so
quick that the nuclei make the transition from the ground-state potential energy
surface to the excited-state potential energy surface as if they did not move.
Loosely speaking, the transition is probable when it is possible for the nuclei to
remain in the same position. This limiting behavior is called the Franck–Condon
principle in honor of early investigators who first realized the propensity for
the nuclei to retain their momenta during the fast electron jump caused by the
absorption of light. In the terminology of Chapter 1, the nuclei act as spectators.

The above description is classical and depends on the separation of electronic
and nuclear motions, which is at the heart of the Born–Oppenheimer approxima-
tion. A quantum mechanical description is necessary because we cannot specify
at the same time the positions and momenta of the nuclei. The quantum mechani-
cal stationary vibrational state is described by a wave function whose square gives
the probability of finding the nuclei at some position. This nuclear wave function
is oscillatory in those classically allowed regions of the potential for which the
kinetic energy of the nuclei is positive and rapidly decays (exponentially so) for
those classically forbidden regions of the potential for which the kinetic energy
of the nuclei is negative because the total energy is less than the potential energy.∗

This behavior is shown in Figure 7.1 for several different total energies. More-
over, as first suggested by de Broglie, the wavelength is shortest and so the wave
function wiggles most when the nuclei move the fastest but the amplitude of the
wave function is greatest for those positions for which the classical motion is
slowest (near the turning points of the motion,2 see Problem A).

The quantum analog of the classical Franck–Condon principle is that the prob-
ability of the nuclei making a transition from one potential surface to another is

∗ In quantal scattering theory, Chapter 4, we saw that this is equally true for the motion in the unbound

part of the potential. Indeed, the shape of the vibrational wave function changes smoothly as we

go to higher energies and even as the energy is higher than the threshold for dissociation, see

Figure 7.1.
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Figure 7.1 Three wave functions at increasing energy for the Morse potential
(heavy line, drawn in reduced units). The ground state has no nodes between the
two classical turning points. The state with a vibrational quantum number v has v
nodes and so it is smaller everywhere except near the classical turning points. Note
that the probability is largest to locate the system near the turning point on the right.
The wave function uppermost in energy is for a dissociating state. It has a classical
turning point only on the left, where it is larger. Otherwise it is highly oscillatory,
meaning that it has many nodes. (How else can these different wave functions be
orthogonal to one another if they do not differ in the number of nodes?∗) Consult
Figure 7.2 to conclude that also a dissociating state can be reached by an electronic
transition from a bound vibrational state of a lower potential.

greatest for those places in which the square of the overlap between the vibra-
tional wave functions of the initial and final states, qv ′v ′′ ≡ |〈ψv ′ (R)|ψv ′′ (R)〉|2,
called∗ the Franck–Condon factor, is the greatest.3 This is the quantal version of
the classical description of a vertical transition.∗∗ Consequently, if two potential
curves are nearly identical in shape and the nuclei in the ground electronic state
are also in the ground vibrational state (see Figure 7.2), an electronic transition
favors a nuclear transition to the ground vibrational level of the excited state. All
the vibrational wave functions (of a given potential) are orthogonal to each other,
which means that their overlap is unity among themselves but zero otherwise.

∗ Conclude that the number of nodes of a dissociating state of zero energy is the number + 1 of the

bound states supported by the potential.
∗∗ Since each one of the two wave functions has the largest amplitude near its classical turning point,

the simplest estimate of the Franck–Condon factor is that it is largest when, for the two vibrational

states, their classical turning points are vertically above one another.



Photoselective chemistry 267

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

R/Rm R/Rm

V
(R

),
 th

e 
po

te
nt

ia
l e

ne
rg

y 
fu

nc
tio

n

Figure 7.2 Franck–Condon propensities for vibrational change of state upon an
electronic transition. Left: the lower and upper potentials are exactly the same. Only
�v = 0 transitions are allowed and the transition shown is from the ground
vibrational state. Right: the upper potential has a significantly higher equilibrium
distance (see Figure 7.5 for ICl as an example). The most probable transition is then
to a fairly vibrationally excited state, but transitions to nearby vibrational levels are
also likely. The absorption will therefore be broad and its peak occurs at a higher
frequency than the separation between the two potential minima. Note that the
transition from the ground vibrational state is shown not from the classical turning
point but from its midpoint. This is because the wave function for the ground state
has its largest amplitude at the equilibrium distance Rm as shown in Figure 7.1. For
higher vibrational states the amplitude is maximal near the turning points, as
expected for a classical-like motion.

Thus, for identical potential curves in the ground and excited states, the vibra-
tional selection rule �v = 0 is strictly obeyed for whatever vibrational level v in
which the nuclei start. We refer to such a limiting situation as having diagonal
Franck–Condon factors.

Suppose that the two potential surfaces are dissimilar. Then the Franck–
Condon factors are less than unity and you get different probabilities for making
transitions to final v′′ vibrational levels depending on the vibrational overlap.4 We
shall make repeated use of the Franck–Condon principle in understanding which
vibrational levels are populated in various dynamical processes. In Section 9.2
we will generalize the principle so that it also applies to excitation as a result of
a collision (where we need not be in the sudden limit).

7.0.2 Beyond the Born–Oppenheimer approximation

We have just discussed a light-induced transition between two different electronic
states. But such transitions can take place also in the absence of light. What we
need is that the transition is between isoenergetic states. This is possible even for
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diatomic molecules in their excited electronic states but is much more common for
polyatomic molecules. Why? Because in polyatomics we can have the favorable
situation that we already encountered through the Franck–Condon principle: in
polyatomic molecules the potential energy surfaces can cross (see the discussion
of the conical intersection in Section 5.1), and therefore the electronic state change
can take place without a change in the kinetic energy of the nuclei.

A key point is that a change in electronic state is probable only in the localized
regions of space about the crossing of the two potentials.∗ This obviously invites
controlling the access to these regions. For example, a very rough rule of thumb is
that, in polyatomics, bending and torsion facilitate electronically non-adiabatic∗∗

transitions. Hence photoexcitation accompanied by excitation of the bend favors
accessing a conical intersection.5 We will return to the idea that failure of the
Born–Oppenheimer approximation occurs in a localized region in configuration
space in Section 9.3.

In the context of accessing the transition state it is important to point out
why electronically non-adiabatic behavior may be particularly important near a
transition state. The transition state is a single point only in a limited description,
often used to make maps as in Section 5.1, where all degrees of freedom except
two are frozen. But for three independent nuclear displacements the transition
state is a two-dimensional object, namely a line. In general, it is a surface in
N−1 dimensions. The serious failure of the adiabatic behavior is often confined
to a manifold of even fewer dimensions,6 and so it is not all over the place.
That is good news because it allows scope for our intervention. But why is the
transition state region particularly suspect and when and where is the failure
serious?

As shown in Figure 5.9, a chemical reaction involves a change from an elec-
tronic state representing the bound reactants to a state representing the bound
products.† The potential energy surface corresponding, say, to the electronic state
representing the bound reactants looks just like the entrance valley of the potential
energy surface of the reaction. But in the region that is physically the products’
valley, such a surface is purely repulsive because the old bond is broken and the
new bond is not allowed to form. It is the other way round for the potential energy
surface corresponding to the electronic state representing the bound products. It
behaves correctly in the products’ valley but is repulsive in the reactants’ region.

∗ But even improbable transitions are possible if we wait long enough. See Problem M.
∗∗ Technically, an adiabatic behavior means that quantum numbers are conserved. Grammatically, it

means that they are not changing. So if quantum numbers are changing the behavior is, properly

speaking, diabatic. Even so, non-adiabatic is also used. Physically, “an adiabatic behavior” can be

used in reference to any quantum number. Exoergic reactions, for example, can be electronically

adiabatic but vibrationally very much non-adiabatic. Often, which quantum number is meant is

implied by context and not spelled out.
† A point of view known as the Evans–Polanyi or valence bond model, Section 5.1.4. See also

Problem G of Chapter 5. The LEP(S) potential energy surface originates from this point of view.
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Figure 5.9 showed the energy profile along the reaction coordinate for two such
surfaces.

A realistic potential energy surface does not quite look like Figure 5.9. The
reactants’ and products’ valleys do look the same but in the middle, instead of a
seam showing a crossing between two surfaces, it looks smooth but has a small
barrier where the seam was. Why? Because the electronic state of the system is
neither that of H + H H nor that of H H + H. Rather, it is a linear superposition
of the two.∗ When the Hamiltonian is diagonalized, Problem G of Chapter 5, you
obtain the Born–Oppenheimer description: two (adiabatic) states where each is
a superposition of the two states that we started with and two eigenvalues. The
lowest of the two eigenvalues is the potential energy surface that describes the
exchange reaction and has a (relatively) low barrier. What is the physics of
the other eigenvalue? It is an excited electronic state that asymptotically cor-
relates to an antibonding state. But close-in, that upper eigenvalue has a well and
it has a well just where the lower state has a barrier. For a collinear configuration
of the three atoms, the gap between the top of the barrier and the bottom of the
well is large. But for a bent configuration of the three atoms, that well can be
deep enough and the barrier can be high enough that the two potentials get quite
near to one another. At the equilateral configuration of the three identical atoms,
there is, see Figure 5.8, a conical intersection between the two potentials!

Electronically non-adiabatic transitions are significantly more likely when the
two potentials are close to one another. This is why there is so much emphasis
on the region about a conical intersection and why, in general, such transitions
are confined to limited regions in configuration space. We will have several occa-
sions to discuss why proximity of the two potentials is so very important. For
the moment we think of it as a kind of Franck–Condon principle.∗∗ There are
two implications: (i) near the barrier is also where electronically non-adiabatic
transitions are likely; (ii) electronically non-adiabatic transitions will take place
if the two Born–Oppenheimer surfaces are near enough. But how “near” is “near
enough”?

Why do electronically non-adiabatic transitions take place near the barrier?
Because above it is the well of the higher electronic state. Is there another way
to phrase this? Yes there is: near the barrier the character of the electronic wave

∗ Quantum chemists will correctly point out that, quantitatively, many additional configurations such

as ionic ones, like H−H+H, etc., will also contribute. Our discussion aims at getting the essence

but it is not quantitatively accurate.
∗∗ Explicitly: large changes in the kinetic energy of the nuclei are unlikely. The quantitative statement

in Section 9.2.2 is that the probability of such changes is exponentially small. The total energy is

the same whichever is the electronic state. Change of state means a change in the potential energy

and hence a change in the kinetic energy. A cautionary note: if the motion is bound, the system can

return again and again to the region where the required change in the kinetic energy is minimal.

So it has an improved chance of making the transition as in the predissociation of O2 or of Na2 as

discussed below. See also Problem M.
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function changes from that of the reactants to that of the products. The change
can be gradual. This reflects a strong coupling between the two electronic states.
It means that there will be a wide gap between the top of the barrier and the
bottom of the well. The system will proceed adiabatically across the barrier
region. Physically, the gradual change of the electronic wave function means that
the electrons have the time to rearrange and adjust while the nuclei are moving.
But the change of the electronic wave function can be more abrupt. This indicates
a weaker coupling between the two electronic states and a narrow gap between
the top of the barrier and the bottom of the well. There is a finite chance that
upon approach to the barrier region the system makes a transition to the upper
electronic state. Physically, the electrons do not have the time to rearrange and
adjust while the nuclei are moving and so their state is maintained as what it was
to the left of the barrier. But this means that to the right of the barrier it is the
upper state, cf. Figure 5.9.

To conclude: the barrier is one region where electronically non-adiabatic
effects are potentially important.∗ It is actually important if the coupling between
the two electronic states is weak enough that the gap between the energies of the
two electronic states is not large.

How large is a large gap? It is determined by two factors. One is the velocity
with which the nuclei move. Other things being equal, the faster the nuclei trans-
verse a region, the harder it is for the electrons to “instantaneously” adjust. The
second consideration is how quickly the electrons need to adjust. This factor is
governed by the change of their wave function with the displacement of the nuclei.
Problem A of Chapter 5 proves that the smaller the gap between the energies of
the two different states, the more adjustment is necessary. Quantitatively〈

ψ f

∣∣∣∣ ∂

∂R
ψi

〉
=

〈
ψ f

∣∣∣∣ ∂H

∂R

∣∣∣∣ψi

〉/
(Ei (R) − E f (R)) (7.1)

Here i and f are indices of the two electronic states, R is a nuclear coordinate
along which the motion occurs, and the denominator is the gap in the electronic
energies at the position R. The strength of the coupling is Eq. (7.1) times the
velocity of the nuclei.∗∗

Figure 7.16 is an illustration of such a consideration. The experiment
is the competition between C Cl and C Br bond fission in the photodis-
sociation of bromoacetylchloride (BrCH2COCl) and bromopropionylchloride

∗ We have seen that a barrier can also separate the reactants from a central well. The change

in character of the electronic wave function equally applies to such a barrier because the well

signifies a bound species. If there are several inner wells along the reaction coordinate, in going

from reactants to products the wave function will change character several times, once at each

barrier.
∗∗ This product is 〈ψ f |(∂ψi /∂t)〉 where the time dependence of the electronic state is due to its

change of character as the nuclei move. If the wave function changes rapidly, the scalar product

will be large. The large coupling is because in the Born–Oppenheimer approximation electrons

need to track the change in configuration and this fails if the change is fast.
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Figure 7.3 Schematics of the energy profiles along the reaction coordinate for C Cl
and C Br bond fission. The upper panel is the adiabatic point of view. The excitation
is to the upper electronic state that correlates to the same products as the ground
state. The lower panel shows the avoided crossings at the two barriers to
dissociation on the upper electronic state (the coupling is to a bound higher excited
state). The hindrance of the dissociation of the C Br bond is shown schematically as
a trajectory that makes a transition to a higher electronic state and is thereby
reflected. The gap between the two adiabatic states, whose magnitude is the
coupling between the diabatic states, is higher for the C Cl bond fission [adapted
from M. D. Person, P. W. Kash, and L. J. Butler, J. Chem. Phys. 97, 355 (1992);
see also Waschewsky et al. (1994), Butler and Neumark (1996), Butler (1998), Conroy
et al. (2001)].

(BrCH2CH2COCl) at 248 nm. On the excited surface accessed by the photon,
it is the C O bond that is weakened by a transfer of a non-bonding electron
into an antibonding π orbital located primarily on CO. Dissociation requires an
antibonding character of the C Br or C Cl bonds. This is achieved by the elec-
tronic wave function in the well region changing character on its way out. For the
Cl exit it needs to be mixed with a σ antibonding character on C Cl. For the
Br exit it needs to be mixed with a σ antibonding character on C Br. The top
panel in Figure 7.3 shows this electronically adiabatic view of the process. The
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prediction: the C Br bond will break preferentially because it has the lower bar-
rier. The experiment:∗ C Cl bond fission is much more probable. The possible
explanation: above each barrier a well exists owing to a higher electronic state.
The computed gap at the barrier configuration for C Br is not large and is smaller
than that at the C Cl barrier on the other side. (Figure 7.3 is not to scale; if it
were, the narrow gap would not be visible.) Upon stretching of the C Br bond,
exit may be frustrated by trapping in the well and reflection from the excited state
that is higher up, as schematically sketched in the figure.

7.0.3 Radiationless transitions

If the potential energies of two different electronic states can cross or can get near
to one another then the transition between them will be efficient. In this section
we discuss a special but important case when the non-adiabatic coupling is weak
because we are not near a conical intersection. A weak coupling can still have
dramatic implications when we deal with excited but bound states, states that live
for far longer than a duration of a direct collision.

An excited electronic state of an isolated atom will fluoresce. It will do so on a
nanosecond time scale for an allowed transition. A radiationless transition of an
excited molecule means the absence of this fluorescence or its observation with
a quantum yield (photons out/photons in) below unity. If the excited molecule
eventually dissociates, then it is clear where the missing energy is. It went into
bond breaking. But larger polyatomic molecules exhibit low to negligible fluo-
rescence quantum yields even below the threshold energy for dissociation and at
very low pressures, so that quenching by collisions is negligible.

Single UV photon transitions from the ground state of a molecule to a highly
vibrationally excited level of the same electronic state are very Franck–Condon
disfavored. The absorption of light in the near UV is therefore to the lower
vibrational levels of the first (singlet) higher electronic state, S1, a state that for a
large molecule is typically bound and whose minimum is below the dissociation
threshold of the ground electronic state. We shall refer to the state that is accessed
by the light as the bright state. We need a special name because at the same
total energy as that of the bright state there is a quasi-continuum of vibrational
levels on the ground electronic state S0. This is the first encounter with an idea
that will occur again and again in this chapter. Because of the selectivity of the
optical excitation, the state that is initially accessed is not necessarily a quantum
mechanical stationary state, meaning that there are other, about isoenergetic,
states that the bright state can interact with.

∗ M. D. Person, P. W. Kash, and L. J. Butler, J. Chem. Phys. 97, 355 (1992). The C Br/C Cl bond disso-

ciation branching ratio is 0.04 in bromoacetylchloride and at most 0.05 for bromopropionylchloride.

The computed gap at the C Br barrier for bromopropionylchloride is only about 20 cm−1.
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Figure 7.4 The lifetime for non-radiative decay of different low vibrational states in
the first excited singlet state of benzene (S1 = 1B2u) plotted against the vibrational
energy. The vibrational states of S1 are identified by the number of quanta, shown
as superscripts, in the C C bend, mode 6, symmetric stretch, mode 1, and
out-of-plane bend, mode 16. The rates are measured from the rate of disappearance
of the bright state (which determines the sum of radiative and non-radiative rates)
and the quantum yield of fluorescence [adapted from K. G. Spears and S. A. Rice,
J. Chem. Phys. 55, 5561 (1971); for a review see Jortner and Levine (1981)]. Seen in
the figure is that not all vibrational states affect the rate only to the extent of their
energy. In particular note the selective enhancement of the non-radiative decay
upon excitation of the out-of-plane bend, which is therefore referred to as the
“promoting mode.” Such state-selective effects are observed also for low energies
above the barrier to dissociation and even in the selective population of final states,
e.g., in the dissociation of the benzene. For the van der Waals cluster following
electronic excitation of benzene, see T. A. Stephenson and S. A. Rice, J. Chem. Phys.
81, 1083 (1984).

The coupling between the bright state that is on S1 and the quasi-continuum
of vibrational states of S0 is small for two reasons. First, it requires a breakdown
of the Born–Oppenheimer approximation and furthermore it is disfavored by the
Franck–Condon principle because of the poor vibrational overlap between the two
manifolds. The overlap of vibrational states is small because for an isoenergetic
transition it requires that the vibrational states of S0 have a rather high vibrational
energy, see Problem M. But on the nanosecond time scale of fluorescence the
initially excited bright state can vibrate for very many periods. So even if
the transition probability per vibration is low, the decay of the bright state in S1

to the quasi-continuum of S0 can still compete with the rate of its radiative decay
(= fluorescence). As the excitation energy is increased, Figure 7.4, the lifetime
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for non-radiative decay becomes shorter because of the increasing density of
states in the quasi-continuum.

The bright state on S1 decays into the quasi-continuum of vibrational states
of S0. By microscopic reversibility this process should also be possible in the
reversed direction: the molecule makes an isoenergetic transition from S0 back to
S1. We call this a revival of the bright state. If we could keep the molecule isolated
for a very long time then the initial bright state will revive and the quantum yield
for emission will increase, but such an experiment requires keeping a molecule
isolated for a very long time.∗ We are not in doubt about the revival of the initial
state starting with a system in the vibrational quasi-continuum because there is the
option of directly observing it starting with vibrationally very hot molecules in the
electronic ground state. Such molecules can be prepared, e.g., by the multiphoton
IR excitation method discussed in Section 7.2.5. At sufficiently high vibrational
energies such molecules should therefore fluoresce from an excited electronic
state.7 In Appendix 7.A. we discuss the revival time and show that it is indeed
long, of the order of h/D where D is the spacing in energy between states of the
quasi-continuum of vibrational states of S0. This is why we need a polyatomic
molecule to observe the radiationless decay: the density of vibrational states of
S0 needs to be high enough that the revival time will be long.

For many molecules pumped to the electronically excited S1 there is another
option because typically below the origin of S1 is the lowest excited state T1,
a triplet. Except for elements down the periodic table, where coupling of spin
and orbit is strong, spin is a relatively good quantum number∗∗ and it will be
conserved during the optical excitation. But on a much longer time scale the
system may cross from S1 to a higher vibrational state of T1. This so-called
intersystem crossing mode of decay will be less Franck–Condon disfavored
than an internal conversion to S0 because less energy needs to go into vibra-
tion. The first excited triplet state is long-living because its radiative emission

∗ Not an easy experiment because there are other decay channels such as very weak IR emission

from the vibrational quasi-continuum. Such radiative emission from very hot molecules in the

electronic ground state has been suggested as a cooling mechanism for large molecules excited

somewhat above the threshold for fragmentation. The very high number of atoms (e.g., C60) means

that just above threshold the rate for unimolecular dissociation is rather low. Yet the hot molecules

are monitored to decay. The possible reason: cooling by IR emission. This is a molecular analog

of blackbody emission.
∗∗ Quantum numbers go with eigenstates and these are stationary. Should not a quantum number be

conserved? Yes and no. A quantum number is constant at a level of an approximation that is defined

by the neglect of weaker coupling terms. The role of the weak coupling is only felt after a long

time. In addition to intramolecular weak-coupling terms, it is almost impossible, and some will

say strictly impossible, to completely isolate a molecule. There are always external perturbations

and any excited state will, sooner or later, decay by light emission. A quantum number is good

for a finite time interval, until processes that have been neglected begin to be important. This time

may be long enough for our needs, or not.
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down to S0 is “forbidden,” which means in reality that it has an unusually slow
rate. It is known as phosphorescence and is often used technically to design
paints that reflect incident UV light with a delay and at a lower (hence, visible)
frequency.

Above the energy barrier to dissociation of S0, radiationless decay from an
excited electronic state results in photofragments from the ground electronic
state. Below this barrier, radiationless decay from S1 is an effective way to pre-
pare ground-state molecules with chemically significant amounts of vibrational
energy, and we will discuss it further in Section 9.1.3.

7.A Appendix: The picket-fence model

This is a simple model for radiationless transitions,8 unimolecular dissociation,9

and vibrational energy redistribution.10 The starting point for our purpose is the
concept of the optically prepared state. This is defined operationally: it is that state
that carries transition dipole strength from the ground state. Such a state need
not be stationary and it typically is not stationary because of Franck–Condon
and other propensities that limit what state can be optically accessed. Nearly
isoenergetic with the optically prepared state are other states that are “dark,”
meaning that they cannot be seen by optical absorption from the ground state.
By contrast, the optically prepared state is “bright” and to make life simple we
take it that there are no other bright states nearby in energy.

Neither the bright nor the dark states are stationary in the sense that they are
not sharp energy eigenstates of the Hamiltonian. To determine the eigenstates we
need to allow for the weak residual coupling between the bright and dark states.
We take the coupling to be weak because if it were not we would not be able to
prepare the optically prepared state as it would couple to other states while our
laser pulse was still on.

The coupling assumed in the model is between the bright state and manifold of
equispaced (hence, picket fence) dark states. The coupling is weak but it cannot
be treated by perturbation theory. The reason is that it is not necessarily weak by
the criterion that matters: the dark states have a sufficiently high density that the
coupling, while weak, can exceed the mean spacing D between the dark states.
This requires an exact diagonalization of the Hamiltonian. Problem G does so
analytically. From this analytical solution one can show that if one treats the dark
states as a real continuum then the decay rate of the bright state is (2π/h̄)|V |2ρ.
Here V is the mean strength of the coupling and ρ = 1/D is the density of the
dark states.

The picket fence model as carried out in Problem F requires that the coupling
between the bright and dark states does not vary too much between one dark
state and another nearby so that the actual coupling can be replaced by its mean
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Figure A7.1 Tiers of
increasingly dense
manifolds of dark states.
The simple picket fence
model assumes only one
tier of dark states. Only
the zero-order bright
state, ZOBS, is optically
accessible. But it is spread
by intramolecular
coupling over the dark
states. The shading of
each dark state indicates
how much it contributes
to the mixing.

value. Physically one can argue to the contrary, that certain subsets of dark states
will be in better resonance with the bright state than others. The refined model,
supported by experiment, is to divide the dark states into tiers, Figure A7.1, where
the bright state is coupled to the members of the first tier. These dark states are
coupled to the (denser) second tier, etc.11

Experimental spectra12 at increasing frequency resolution support the idea of
successive tiers of states revealed as the resolution is improved. At relatively low
resolution the spectrum is a broad feature centered about the energy of the bright
state. At a higher resolution the broad feature splits into a number of narrower
features. These correspond to a longer “preparation” time that can therefore
discern a set of states that are a superposition of the bright states and states of
the first tier. An even higher frequency resolution will show each such narrow
feature to be a set of distinct denser lines, Figure A7.2.

The observable spectral tier structure forces on us the recognition that “what”
is excited by the optical pulse depends on the experiment. The longer is the
pulse, the narrower is the energy width of the optically prepared state. Ultrashort
pulses can even fail to excite a vibrational eigenstate in a diatomic molecule if
the pulse duration in time is shorter than a vibrational period, recall Figure 1.7.
It is, of course, always possible to think of the optically prepared state as a
superposition of eigenstates. This is useful because no eigenstate is coupled to
the others and it evolves in time in a rather simple manner, namely by acquiring
a phase, exp(− iEt/h̄), where E is the eigenenergy of that stationary component.
But a superposition of eigenstates of somewhat different energies can exhibit all
manners of time dependence because it is like a Fourier series (except that the
energies are not necessarily equally spaced). If we excite a superposition of just
two eigenstates, at a distance D apart in energy, the time evolution will exhibit
quantum beats with h̄/D as the revival time, Problem F and Figure 7.17. The more
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Figure A7.2 The spectrum of acetylene at increasing
resolution in a relatively high-energy regime [adapted
from J. P. Pique et al., Phys. Rev. Lett. 58, 347 (1987) and
J. P. Pique et al., J. Chem. Phys. 88, 5972 (1988)]. The
experimental technique used to access such
high-energy states is stimulated emission pumping
(SEP) (Hamilton et al., 1986; Silva et al., 2001). This
technique allows the preparation of states even at
energies above the barrier to isomerization and/or
dissociation. The initial state is pumped to an
electronically excited state whose equilbrium geometry
(trans-bent in the case of HCCH) is different from that of
the ground state. Rather than being allowed to
spontaneously emit, the down fluorescence is
stimulated, sometimes described as “dumping” the
state down. The dumping allows us to reach vibrational
states of the ground electronic state that otherwise
have very low Franck–Condon factors. An identification
of the nature of the states excited is aided by what one
knows about vibrational spacings. The lowest
resolution is the excitation of the C H chromophores.
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eigenstates are coherently∗ excited, the more complex can the time evolution be.
In a real molecule at higher levels there can be many eigenstates even within a
quite high resolution energy window.

7.1 Laser photoexcitation and photodetection of
diatomic molecules

Laser excitation is not only a means for providing the necessary energy for chem-
istry to take place. We begin the discussion of the selectivity achievable by the
excitation and the specificity of the detection for the special case of diatomic
molecules. Then the spectrum is simpler in that there is only one vibrational
mode as well as only one rotational constant. But once the molecule is elec-
tronically excited we will find it necessary to allow for the breakdown of the
Born–Oppenheimer separation.

7.1.1 The discrete vibrational energy levels of
diatomic molecules

A quantum of vibration of a diatomic molecule is often a sizeable amount
of energy on the chemical scale. Vibrational excitation of a reactant diatomic
molecule will therefore significantly decrease the activation energy, recall the
Tolman interpretation, Section 3.1. As already discussed in Chapter 1, reactant
vibrational excitation can have a selective role with the enhancement of the rate
being more than when the same additional energy is put into the relative transla-
tion. We can do more because the molecular dipole of a heteroatomic molecule
is along the bond. Hence, using a polarized light beam we can start with a ran-
domly oriented sample and preferentially excite those molecules whose bond
axis is aligned with respect to the polarization vector of the light; as discussed in
Section 10.1.2 this will allow us to probe the preferred orientation for reaction.

7.1.2 Electronic excitation

Transitions of diatomic molecules to upper electronic states have been thoroughly
studied in spectroscopy. Bound electronically excited states of diatomic molecules
can have rather different dynamics from that of the ground state. The propensity
of O2 in its lowest electronically excited state, ∗∗ shown in Figure 7.7 below, to

∗ This is the operative technical term. It is equivalent to our earlier condition that there is a definite

initial state and not an ensemble. The optically prepared state is then a pure state in the quantum

mechanical sense, namely, it can be expressed as a superposition of states, each with its own phase,

hence “coherent.”
∗∗ a1�g, it is a singlet where the two valence electrons, unpaired in the ground state, each being in a

different π orbital, are paired and placed in the same orbital.
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Figure 7.5 A portion of the low-resolution visible electronic spectrum of ICl in the
region of maximum absorption. The vibrational quantum numbers of the upper and
lower states are shown for the two isotopomers [adapted from D. M. Brenner,
S. Datta, and R. N. Zare, JACS 99, 4554 (1977)]. ICl in the A3�1 electronic state has a
significantly longer equilibrium bond distance, as shown in the insert. Therefore the
Franck–Condon region for the absorption is to fairly high vibrational states (v′′=17 to
19 is shown). ICl in the A3�1 electronic state dissociates to ground state atoms so it
has a weaker bond than the ground electronic state. The correlation of bond
length–bond strength seen here is a fairly general one.

add to organic double bonds, e.g.,

is well known and is of practical importance. ∗ Diatomic halogen molecules also
add to double bonds in an electrophylic mechanism. But in the gas phase ICl will
not, for example, add to acetylene. It will add when it is excited to its A3�1 state

ICl(A3�1) + HC CH → IHC CHCl

We next want to use this reaction to separate the two isotopes of Cl. Despite the
heavy masses, the electronic absorption spectrum of ICl, Figure 7.5, exhibits a
clear isotopic shift between the peaks due to the two isotopomers I35Cl and I37Cl.

∗ Photodynamic therapy is based on the in situ excitation of O2(a1�g) by electronic energy transfer

from photoexcited organic molecules.
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Even a broad laser can selectively excite one species and not the other. In the
presence of a scavenger for the electronically excited ICl, such as acetylene, one
can separate the two chlorine isotopes.

7.1.2.1 Angular distribution in photodissociation
Electronic excitation can lead to dissociation of the diatomic molecule. We ask
“what is the angular distribution of the products?” The atoms recoil along the
direction of the bond but in a sample in the gas phase all orientations of the
molecules are possible. We can select the orientation of those molecules that
absorbed the photon because the interaction with the photon depends on the
direction of the transition dipole with respect to the electric field of the light.
What this means is that under the action of light the electrons in the bond can be
set in motion either along the bond or perpendicular to it (other options are ruled
out by symmetry). Say that excitation is to the repulsive range of the excited state
potential and that the two fragments instantly recoil, then the direction of their
velocity directly reveals the direction of the transition dipole, as shown graphically
in Figure 7.6. If θ is the angle between the electric light vector and the direction
of recoil of the fragments, the angular distribution of the photofragments will be
proportional to cos2 θ for a transition where the electrons are excited parallel to
the bond and to sin2 θ for a perpendicular case. Since both possibilities may arise
we show in Chapter 10, Eq. (10.31), that one can write for the angular distribution
of the photofragments

I (θ ) = [1 + βP2(cos θ )]/4π (7.2)

where P2(cos θ ) = (3 cos2 θ − 1)/2 is the Legendre polynomial of second order
and the parameter β characterizes the anisotropy of the distribution. The cases
we discussed are β = 2 for a parallel transition, I(θ ) ∝ cos2 θ , and β = −1 for a
perpendicular one, I(θ ) ∝ sin2 θ . Experimentally, β can fall short of these limiting
values because of some rotation of the molecular axis while the products separate
from one another.

The direction of the transition dipole with respect to the molecular axis is
determined by the symmetry of the lower and upper electronic states. � is the
projection of the angular momentum of the electrons on the internuclear axis. A
parallel transition excites from � = 0 of the ground state to an upper state with
�′ = 0.∗ A perpendicular transition will lead to a state with �′ = 1. Figures 7.5
and 7.8 show the ground and low excited states of ICl. From the symmetry of
the states, transitions in the longer visible wavelengths (say about 560 nm) are

∗ When the transition dipole moment is along the internuclear axis no torque is exercised on that

component of the electronic angular momentum that is parallel to the axis. When the transition

dipole moment is perpendicular, the angular momentum of the photon (one h̄ unit) adds to the

electronic angular momentum.
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Figure 7.6 Angular distribution of the dissociation products following the
absorption of a linearly polarized light by a diatomic molecule. Shown are the two
extreme cases of a very fast dissociation for a parallel and a perpendicular
transition. ε is the electric field of the light, β is the anisotropy parameter defined by
Eq. (7.1), and � is the quantum number discussed above and in Chapter 10. The
intensity of scattering into a given angular range is indicated by the shading
[adapted from A. J. Alexander and R. N. Zare, Acc. Chem. Res. 33, 199 (2000)]. See
Section 10.3.1.2 for a more extended discussion. Here we just comment that this is a
simple example of a vector correlation where we correlate the direction of the
products’ velocity with the direction ε̂ of the photolysis light.

almost purely perpendicular, β ≈ −1. At shorter wavelengths the transition is to a
mixture of symmetry types, β ≈−0, and it becomes purely parallel, β ≈ 2, at even
shorter wavelengths (490 nm). In Section *7.1.2.3 we explore further what really
happens at intermediate wavelengths and conclude that the transition there is not
to a classical mixture but to a coherent superposition of the two symmetry types.
Either of the states leads to the same products. Measuring the energy dependence
of the quantum mechanical interference between the two alternatives provides
information on the repulsive forces that send the two halogen atoms apart.

7.1.2.2 The photochemistry of molecular oxygen in
the atmosphere
Like ICl, molecular oxygen also has more weakly bound excited electronic
states that upon dissociation correlate to ground-state atoms. These are shown in



282 Photoselective chemistry

− log σ
17 19 21 23 25

150

175

200

250

300

400

600

1.0 1.5 2.0 2.5

Internuclear distance (Å)

Potential energy (eV
)

2

4

6

8

b)a)

B3Σu
−

b
1Σ+

g

A
3∑+

u

X
3Σ−

g

a1 ∇

g

Schumann–Runge
   continuum

bands

bands

Herzberg continuum

A′3

∇

u

C
1∑−

u

O(3P)+O(1D)

O(3P)+O(3P)

O2

O2

A
bs

or
pt

io
n 

w
av

el
en

gt
h 

(n
m

)

Figure 7.7 (a) Absorption spectrum (logarithmic scale) for O2 in the near and deep
UV. The figure is drawn to correlate the absorption with the potential energy curves.
(b) The peak of the absorption (λ ≈ 135 nm, where the cross-section is about 0.1 Å2)
corresponds to the optimal Franck–Condon overlap with the vibrational ground state
of the ground X3� electronic state. The energy thresholds for dissociation into
ground and electronically excited O atoms are shown as dashed lines [adapted from
D. H. Parker, Acc. Chem. Res. 33, 563 (2000)].

Figure 7.7 and are seen to have longer equilibrium bond lengths. At the UV
region where the absorption begins, say from 300 nm to 250 nm, the Franck–
Condon overlap from the ground electronic state is so poor that the absorption
cross-section, as shown in the left panel of Figure 7.7, is lower by several orders
of magnitude from what it can be for a Franck–Condon favored transition (to
the Schumann–Runge continuum, around 150 nm). At wavelengths below about
242 nm the absorption is not structured, but because the energy is above the dis-
sociation threshold, the transition is to the continuum, named after Herzberg. It
is an example of a photodisscoiation from an excited electronic state. The very
weak UV continuum absorption is the first step in the formation of the ozone
layer (at 25 to 50 km above the surface of the Earth):

O2
hν (from 242 nm down to about 176 nm)−→ O(3P) + O(3P) Herzberg continuum

The next step in the sequence is a recombination assisted by the presence of a
third body that we designate by M

O(3P) + O2 + M → O3 + M

The location of the ozone layer is determined primarily by two competing
factors. As we go up from the surface of the Earth, the density of oxygen
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molecules decreases exponentially while the density of the UV radiation increases
exponentially.∗ At a height of roughly 25 km the rate of the photodissociation of
O2 into the Herzberg continuum is maximal. Even then, due to the low absorption
cross-section, the rate is so slow that it takes days to restore a depletion in the
equilibrium concentration of ozone.

At shorter wavelengths the photodissociation of O2 produces electronically
excited atoms:

O2
hν (from 176 nm down)−→ O(1D) + O(3P) Schumann–Runge continuum

This absorption blocks the short-wavelength UV solar radiation from penetrating
the atmosphere below 120 km or so. The longer-wavelength radiation does pen-
etrate further because the absorption in the Herzberg continuum is so weak. It is
only blocked when the concentration of O2 becomes high enough that formation
of the ozone layer, as discussed above, is possible. The reactive O(1D) atom∗∗ is
quenched by collisions with N2 or O2, but given the chance it inserts into H2 as
in Figure 1.6 and it also reacts readily with other hydrogen-containing species,
mainly water and methane:†

O(1D) + H2O → OH + OH

*7.1.2.3 Interference of exit channels
Two open-shell ground-state atoms can combine to form a diatomic molecule
in a large number of different electronic states.13 Quite a number of these states
are purely repulsive, but the ground state is typically chemically bound and there
can be some excited states with a chemical well. All of these states correlate
to atoms in their ground state. We have seen this for both ICl and O2, and the
plurality of states is the rule rather than the exception. What it also means is that
optical excitation is typically not to a single state and one purpose of translational
spectroscopy is to identify the states that participate in the transition, as a function
of wavelength. In this section we point out that it is the wave function of the
molecule that is perturbed by the light and the wave function of the excited state
can be a superposition of two (or more) different electronic states. For each such
excited state we can imagine a trajectory describing the relative motion of the

∗ In the laboratory, lasers can provide a much higher flux of photons. Still, because the cross-section

is about seven orders of magnitude below what it can be at maximum, the required laser intensity

is such that other, unintended, higher-order processes, as discussed in Section 7.2.5.2, can also

contribute.
∗∗ Formed also in the photodissociation of ozone in the strongly absorbing Hartley band, λ < 310 nm.

This occurs in the stratosphere. At lower altitudes (the troposphere) it is the weaker absorption of

ozone at longer wavelengths, the so-called Higgins band, that is the main filter of the UV radiation.
† OH, “nature’s atmospheric detergent” (Ravishankara et al., 1998), is the daytime oxidizer that

removes pollutants from the atmosphere.
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Figure 7.8 (a) Observed orientation of the electronic angular momentum of a Cl
atom as determined by ionizing the atom with a circularly polarized light vs. the
wavelength of the light used to photolyze ICl. Results are shown for two different
isotopomers. (b) Computations that allow for interference between two different
histories – excitation to either the A or the B state, either one of which correlates to
ground state I and Cl atoms. The relevant states are identified in the panel on the
right [adapted from A. J. Alexander and R. N. Zare, Acc. Chem. Res. 33, 199 (2000)].

two atoms out of the Franck–Condon region and into two separated atoms. The
two excited electronic states have different potentials and so two such trajectories
will not, in general, be identical. Each such trajectory will be associated with
a different phase, a phase that is determined by the shape of the potential and
the excess energy. Our simple but useful guideline is that when there are two
classical ways of reaching a detectable outcome (here, a product atom in its
ground electronic state), the corresponding wave functions can interfere and the
interference is an oscillatory function of the phase difference.

In the case of ICl, the orientation of the electronic angular momentum of
the Cl atom can be determined by ionizing the photofragment with a circularly
polarized light. Figure 7.8 shows the measured orientation vs. wavelength as well
as the results of computation of the interference term, as determined by the phase
difference for motion on the A and B excited states of ICl. As a further check,
both experimental and computational results are shown for dissociation of either
I37Cl or I35Cl. Because the phase shift varies with the reduced mass and, for
ICl, this is the mass of Cl, there is a significant isotope effect. Problem D uses
our rough estimate for the energy dependence of the phase shift, −ap/h, where
a is the range of the repulsive potential and p the momentum, to account for
the qualitative features of Figure 7.8. The agreement between experiments and
computations based on interference between the C and B states of ICl is poor
because the computed phase difference is too small. Figure 7.8 thus serves not
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only to identify the states involved but also to check our quantitative knowledge
of the potential energy curves.

7.1.3 Photodetection

Lasers have allowed detection of products in entirely new ways and opened up
many new avenues of exploration. This section outlines the essential ideas behind
some of the more important methods, but it must be supplemented by reading
the more specialized literature for a proper understanding of the experimental
implementation.

7.1.3.1 Imaging and translational spectroscopy
Imaging is the term used for a direct mapping of the velocity (vector) of the
products.14 It captures the Newton sphere, Section 6.3.1, and projects it for view-
ing in a number of ways, as shown in Figure 7.7. The figure shows the technique
applied to photodissociation but it is equally useful and important for bimolecular
collisions and in other instances where an energy-rich species blows up and one
wants to monitor the distribution of fragments in velocity space.

To “see” the nascent fragments it is most convenient to ionize them. This can
be done by a UV laser and, in common with other spectroscopic techniques, it
can be done in a state-selective manner. In Section 7.1.2.3 we adopted this feature
by using a (right or left) circularly polarized laser ionization beam to discern the
orientation of the electronic angular momentum of the Cl fragment formed in the
dissociation of ICl.

Ionization has the important advantage that it hardly perturbs the velocity of
the fragment. By applying an electrical field, the just formed ions are collected,
if need be, mass selectively, and recorded (say, on a charge-sensitive plate), as
shown in Figure 7.9. The practical success of the method depends of course on
the abilities of the ion optics used to guide the ions. Resolution comparable or
better than vibrational spacings is possible.

We have already seen applications of imaging. When the dissociation of O2 in
the Herzberg continuum is examined, the results are complicated by there being
more than one excited state of O2 in the energy range of interest, see Figure 7.7.
Most of the absorption is to the A state but transitions to the A′ and the C states
do contribute. The value β ≈ 0.6 extracted from the data is due to a mixture of
parallel and perpendicular transitions.

7.1.3.2 Doppler spectroscopy
In translational spectroscopy the energy distribution of the photofragments is
determined by the distribution of the “times of flight” (TOF) to the detector. An
important alternative is Doppler spectroscopy,15 where the velocity (in both mag-
nitude and direction) is determined through the Doppler shift in the absorption.
Consider a fragment moving at an angle �θ with respect to the electrical field
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Figure 7.9 Experimental observation of the entire Newton sphere, Section 6.3.1.
The sphere of products can be generated by using a linearly polarized light for
photodissociation, see Figure 7.6, or from a crossed-beam experiment as in
Section 6.3. A second laser ionizes the fragments and this has the advantage that it
can be done selectively for different internal states of the products. An electric field
allows collection of the ions and produces a 2D image. The cylindrical symmetry of
the original sphere allows this collapsed image to be transformed into a 3D contour
plot of the intensity of the products [adapted from D. H. Parker, Acc. Chem. Res. 33,
563 (2000)].

of the dissociation laser, the velocity of the fragment along the direction of the
propagating light is v cos �θ . Therefore the fragment absorbs at the frequency

ν = ν0(1 + (v/c) cos �θ ) (7.3)

where c is the velocity of light, ν0 is the absorption frequency of the stationary
species, and be careful to distinguish frequency ν and velocity v. The detuning
from the unshifted frequency ν0 is not large, often being in the GHz range, but
modern lasers can be made stable enough to detect the shift.

In Eq. (7.2) the angle θ is the velocity of the product with respect to the elec-
trical field of the dissociation laser. By using the addition theorem for Legendre
polynomials, Eq. (7.2), one can write for the pump–probe Doppler profile of the
angular distribution

P(�θ ) = [1 + βP2(cos θ )P2(cos �θ )]/4π (7.4)

We can solve Eq. (7.2) for cos �θ and insert the result in the explicit formula for
the second Legendre polynomial. This expresses the angular distribution in terms
of the shift, called the detuning, between the nominal absorption frequency ν0
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and the actual frequency ν:

P(�θ ) = [1 + βP2(cos θ ){3 [(ν − ν0)/ν0] 2(c/v)2 − 1}/2]/4π (7.5)

The absorption frequency of the photofragment is dependent on its internal state
and so a Doppler profile can be determined for each internal state of, say, the
diatomic fragment when the dissociating molecule is triatomic. This is not an
idle thought because different internal states may well have different angular dis-
tributions. For the photodissociation of a diatomic, the absorption of the fragment
atom can be simpler and Figure 7.10 shows an early example for the predissocia-
tion of Na2 following a photoselective preparation of an initial level. Despite the
long lifetime of the quasi-bound initial state, the fragment angular distribution
retains a memory of the preparation because the plane of rotation of the molecule
has also been selected.∗

7.1.3.3 Laser-induced fluorescence
Spectroscopic detection of the photofragment can usually be done in a manner
that is sensitive to its internal state and can therefore determine the state distri-
bution of the product. When the Doppler detuning of the spectroscopic transition
can be determined, the angular distribution of products in different states can
be extracted. For, say, the diatomic product from the dissociation of a triatomic
molecule this can provide a wealth of information. Nor is there excessive redun-
dancy. Different vibrational final states and even different rotational states of the
same vibrational ladder can have interestingly different angular distributions.

Laser-induced fluorescence,16 LIF, is the technique used for generating the
data shown in Figure 7.10. The electronically excited Na(32P1/2) atom formed
in the dissociation of Na2(B1�u) is pumped to the higher Na(42D5/2) state that
can then fluoresce. When applied to molecules, the technique requires knowing
the relevant Franck–Condon factors so that the intensity of fluorescence from the
upper level can be converted to population in the lower level.

7.2 Photodissociation dynamics

Photodissociation,17 the extension of spectroscopy into the continuum, is a source
of reactive species such as H, F, or Cl atoms or OH and other radicals that can be
used to initiate bimolecular reactions. Photodissociation processes are important
not only in the laboratory but also in the atmosphere∗∗ as well as the regions of

∗ It is a Q branch transition with a transition dipole perpendicular to the molecular axis. Therefore the

molecule rotates in a plane perpendicular to the transition dipole. The solid curve in the Doppler

profile in Figure 7.10 is a fit to β = −1.
∗∗ Nature does not like to only break bonds, it is a waste. But photoisomerization processes, where

bonds break and others reform, in concert, are very common in larger molecules, particularly

biologically relevant ones, such as rhodopsin, which plays an essential role in vision. More on this

in Section 9.3.7.
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space between stars (the interstellar medium). There are further reasons why we
devote a separate section to it. One is conceptual. The initial state for photodisso-
ciation is in the transition state region. We refer to it as a “half collision” because
we start the process where the fragments that will evolve into the products are
close together and interacting. We have no better general methodology for access-
ing the transition state region and, as we have already seen and we shall further
see, different methods sample different regions of configuration space. The other
reason is technical: using lasers and supersonic beams we can be very selective
in choosing the initial state. A simple but powerful aspect is that by cooling18 the
rotational states of molecules by supersonic expansion, they can mostly popu-
late states of rather low angular momentum. The photon adds (or subtracts) one
additional unit. So the optically accessed state has a low angular momentum, a
starting condition that is not so easy to probe in collision experiments that tend to
favor states of higher angular momentum.∗ Photodissociation offers an ultimate
testing ground for our understanding.

7.2.1 Direct and indirect processes

The excitation may elevate the system to a repulsive region of the potential,
pointing toward the exit valley. The products then promptly separate, in a time
that is short compared to a rotational period. Much of the available energy will
be released in translation, Figure 7.11.

Indirect photodissociation can be the result of more than one type of delay.
First, the energy may not be made directly available for the motion along the
reaction coordinate. If there is time for energy scrambling then the dissociation
will be à la RRKM, as will be discussed further in Sections 7.2.2–7.2.4. There is
however another type of delay. It is when electronic energy is made available as
vibrational energy of a lower-lying electronic state.

Molecules such as CH3I or ICN, whose photodissociation dynamics in the gas
phase is well studied and analyzed,19 and which, like H2O, can form products
in more than one electronic state, are being increasingly studied in solution20 to
explore the solvent effects that we discuss in Chapter 11.

7.2.2 Unimolecular dissociation

Energy-rich polyatomic molecules can be photoprepared in a variety of ways.
If the barrier to dissociation is not large then even overtone excitation may be

∗ There are other advantages to having a total angular momentum J, J = I′ + j′, close to zero. In

the photodissociation process ABC→A + BC(j′), the rotational angular momentum of BC must

then be about equal in magnitude and directed in the opposite direction to the angular momentum

l′ of the relative motion. So the measured distribution of the states of BC tells us about the impact

parameter in the exit valley. If, say, the rotational excitation of BC is high there must be anisotropic

exit forces that set the BC product in rotational motion so the geometry of excited ABC is bent, etc.
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Figure 7.11 Kinetic energy distribution of the fragments that result from the UV
photodissociation H2O λ=121.6 nm−→ H + OH [adapted from D. H. Mordaunt, M. N. R.
Ashford, and R. N. Dixon, J. Chem. Phys. 100, 7360 (1994); see also Schnieder et al.
Faraday Disc. Chem. Soc. 91, 259 (1991), Butler and Neumark (1996), Houston
(1996)]. There are two reasons for the very high resolution as shown. One is the high
sensitivity for detection of H atoms made possible by immediately exciting them to a
long-living Rydberg state. They can therefore be detected after a long flight path,21

as shown in Figure 1.4. Another facilitating factor is that the light H atom takes the
lion’s share of the relative energy so that it moves with a high velocity. A third
advantage is that Rydberg tagging produces neutral molecules so that space-charge
effects can be ignored. Later, the high-lying Rydberg state is converted to an ion and
counted. The resolution is sufficient so that, by conservation of energy, Section
6.3.1, the distribution in kinetic energy can be converted to the rotational distribution
of the OH, as indicated. There is no evidence for vibrational excitation of OH but, as
shown and as is to be expected for a Franck–Condon excitation, high rotational
states are produced. The dynamics of this bond breaking is more complicated than a
straightforward direct dissociation. There is some OH produced in its electronically
excited A state, so the dissociation is not electronically adiabatic. Further analysis
shows that there is also some dissociation into three atoms. As a rule of thumb,*
when this happens, the two atoms, here both hydrogen,22 come out with rather
different kinetic energies.

* This is because the number of accessible final states is much larger for an asymmetric dissociation

where first one atom departs and then the other.
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sufficient, Section 7.2.4. They can be heated by absorbing infrared radiation and
this is so useful that Section 7.2.5 is entirely devoted to this topic. Excitation to
the repulsive region of an excited electronic state will cause the molecule to fall
apart, but typically it will do so promptly. The reason is that such excitations often
involve promotion of an electron from a bonding to an antibonding orbital. It is
often the case that the antibonding orbital is fairly localized on a given bond. Upon
excitation there is then a sudden repulsion between two particular atoms leading
to a selective dissociation of not necessarily the weakest bond. For example, in

(CO)5Re–Re(CO)5
hν−→ 2Re(CO)5

it is the metal–metal bond that dissociates rather than the weaker Re–CO bond.
But even in this case there is enough time for some internal conversion followed
by dissociation of the carbonyl bond. In many other molecules internal conversion
is the rule rather than the exception. This produces a vibrationally hot molecule in
the electronic ground state and if the wavelength is short enough, there is enough
energy for bond breaking.

With the potentials shown in Figure 7.12, NO2 is a well-studied example
because it allows comparison with detailed computations for the rate of dissoci-
ation as a function of the excess energy, as also shown in Figure 7.12.

The measured temporal decay of the excited NO2 is not exponential, partic-
ularly so for energies just above threshold. This behavior is taken to reflect the
variation of the decay rates from one quasi-bound state to the next, as shown in
Figure 7.12. The laser (whose temporal width is about 650 fs) excites a super-
position of states, each one decaying exponentially but with its individual rate.
The observed decay is then a superposition of several exponentials. Why do
“states” occur above the threshold? Should the system not be in a continuum?
Here we must refer to the nature of the pump–probe experiment as shown in
the left panel of Figure 7.12. The short-pulse laser prepares states of NO2 in
the bound region of the 2B2 state. During the short laser pulse these states are
stable. These are the bright states of Section 7.1. It is only over a longer time
interval that these states couple to the isoenergetic, unbound, continuum states of
the lower-lying 2A1 electronic state. In terms of its energy content the molecule
is in the continuum yet it has states that are bound but only temporarily so.23

The quasi-bound states of NO2 have the same nature as the states that the
Lindemann hypothesis, Section 6.2.1, is all about. The difference is that we refer
to the case of NO2 as electronic predissociation, while the typical situation in
the Lindemann case is vibrational predissociation. To see the similarity (pre-
dissociation) and the difference recall that for an energy-rich molecule that can
dissociate the total energy is above the threshold for bond breaking but this total
energy is spread over more than one mode. There is not enough energy in the
reaction coordinate for the molecule to dissociate. In the absence of vibrational
energy redistribution, such a state will be stable. In this sense the states are truly
bound. But energy does exchange between different motions in the molecule,
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Figure 7.12 Left: a cut through the ground and excited state potentials of NO2

showing the principle of the time-resolved pump–probe experiment for measuring
the rates of dissociation as a function of the excess energy. The pump laser excites
molecules to the state 2B2 that is above the dissociation threshold. The excited
molecules are probed by excitation to the 2�g state followed by fluorescence. The
graph on the right shows a comparison between the experimental results for the
state-resolved rates (triangles and dots) and detailed computations (open circles). By
averaging the rates computed for specific initial states over a narrow energy interval
we obtain the energy-averaged rate shown as the solid curve. The RRKM-like
prediction is the staircase curve, which is computed in the SACM approximation of
Section 6.4.5.2. The steps in the RRKM curve are discussed in the text [adapted from
S. I. Ionov et al., J. Chem. Phys. 99, 3420 (1993) and B. Kirmse et al., J. Phys. Chem. A
104, 10398 (2000)]. Just above threshold, in the cross-hatched area, one can extract
the rates from measurements of the line widths in the frequency domain, see B.
Abel, H. H. Hamann, and V. Lange, Faraday Discuss. Chem. Soc. 102, 147 (1995). See
Reid and Reisler (1996) for a review.

and eventually it may sufficiently localize in the reaction coordinate so that the
molecule will fall apart. In both cases there are states stable for a time sufficient
for excitation into them but that will fall apart on a longer time scale. Hence
“predissociation.” In the case of NO2 it is coupling between two different elec-
tronic states that allows the dissociation. In the traditional Lindemann mechanism
it is coupling between different vibrational states.

The dissociation energy of NO2 is low enough, and it is a small enough
molecule, that the density of these quasi-bound states, while high, cf. Figure 7.12,
is not overwhelming. Consequently, both experiment and theory can just about
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see their discrete signature.24 Higher up in energy or for a bigger molecule, the
quasi-bound states are, de facto, a quasi-continuum.

Excited to just above the threshold to dissociation, NO2 is a very small
molecule with just enough excess energy to dissociate. How well can it be
described by the statistical RRKM theory? A statistical theory does not seek
to resolve state-specific effects because by its very definition all that matters is
what is the total energy. The RRKM theory assumes that prior to dissociation
the system has “forgotten” how it was prepared. All that we can ask from the
statistical theory is to reproduce the energy-averaged behavior, solid line in the
right panel of Figure 7.12. Why does the RRKM rate, as a function of the energy,
have a step structure? Because the computation is done correctly. Recall that the
RRKM rate is N ‡(E − E0)/hρ(E), where ρ(E) is the density of states of NO2

at the energy E. It is rather high and hence smoothly increasing. N ‡(E − E0)
is the number of states, not counting the reaction coordinate, at the barrier to
dissociation. In Figure 7.12 the results shown are for an energy E that is just
above the barrier energy E0. As E increases, more states become accessible, but
at threshold there is just one state and so N ‡(E − E0) increases slowly and the
count needs to be done discreetly and not by a quasi-classical approximation
that produces a smoothly increasing number of states. Each step in the rate, as
shown in Figure 7.12, means that one more state at the barrier becomes energet-
ically accessible. Pretty soon, so many states are available that even a discrete
count produces a smooth function but, just above threshold, there are distinct
increments.

At the statistical level we control the access to the transition state if the steps in
the rate of dissociation can be resolved.25 A triatomic molecule like NO2 is just
about the largest size for which the profile of energy along the reaction coordinate
is simple. Figure 7.13 shows such a profile for ketene, CH2CO, for both the
ground state (the lowest singlet state on which there is a high-energy intermediate,
oxirene, as shown; in this intermediate the two carbon atoms are equivalent), the
triplet state, and an excited singlet. The lowest dissociation threshold is from the
triplet surface producing triplet methylene.

The dissociation of ketene has a barrier of about 1300 cm−1 above the zero-
point energy of the products. Stepwise increases in the dissociation rate constant
are seen experimentally, Figure 7.14, and, as for the case of NO2 in Figure 7.12,
these steps can be quantitatively correlated with the quantum chemically com-
puted vibrotational energy spacings in the transition state.

Internal conversion allows ketene excited to S1 to dissociate also to singlet
CH2. For this higher-threshold channel, Figure 7.13, there is no barrier measured
with respect to the zero-point energy of the products.∗ This is a case where the

∗ This is often described by saying that the reverse association reaction has no barrier. In transition

state theory terminology, this corresponds to a loose transition state. Variational transition state
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Figure 7.13 Potential energy profile for the lowest three electronic states of ketene.
Note that in addition to the low barrier for dissociation from the triplet state, T1,
there is a higher barrier for formation of a symmetric structure, oxirene, that can
rearrange to a ketene molecule in which the two C atoms have exchanged. In the
transition state for dissociation the reaction coordinate is a C C stretch, as shown.
The products are detected by laser-induced fluorescence of CO [adapted from A. P.
Scott et al., JACS 116, 10159 (1994); see also Moore and Smith (1996)].

transition state is located further out in the products’ valley, essentially at the
top of the centrifugal barrier. Then the bending vibration of the transition state is
essentially a free rotation of the product. Phase-space theory, Section 6.4.5, indeed
counts the accessible channels in this way and it matches the observations.∗

The other channel in ketene is the possibility of interchanging carbon atoms26

by going through the symmetric configuration called oxirene, Figure 7.13. Both
by direct measurements of the rate of isomerization27 and by measuring both CO
channels in the process

13CH2
12CO

hν above 28 000 cm−1

−→
{

13CH2 + 12CO
12CH2 + 13CO

it is possible to verify that carbon–atom exchange does indeed take place.

theory allows for optimizing the location of the transition state, including the option that it will

tighten up at higher energies. For a discussion of RRKM theory including such examples see

Wardlaw and Marcus (1988).
∗ The agreement is very good provided the rotational excitation of CH2 is discriminated against. This

is an example of a dynamic constraint as discussed in Section 6.4.
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Figure 7.14 Steps in the measured and (RRKM) computed reaction rate for the
unimolecular dissociation. Left: the dissociation of CD2CO to triplet CD2, as a
function of the photolysis energy. This channel has a barrier, see Figure 7.13
[adapted from S. K. Kim, E. R. Lovejoy, and C. B. Moore, J. Chem. Phys. 102, 3202
(1995); see also Lovejoy et al. (1992), Marcus (1992)]. Right: a similar plot for the
dissociation of CH2CO to singlet CH2 in the very threshold region [adapted from
Moore and Smith (1996)]. The dissociation is energetically possible already at
threshold. Just above the threshold the energies for the steps match the rotational
levels of CO. This correspondence is confirmed by a match to the phase-space
theory computation shown as a smooth line. The fine structure in the steps can be
identified with the low rotational states of the parent CH2CO.

7.2.3 Access to the transition state region: vibrationally
mediated photodissociation

Vibrationally mediated photodissociation28 starts from selectively vibrationally
excited levels on the ground potential energy surface that, upon electronic exci-
tation, fragment differently from photodissociation, at the same total energy but
starting from the ground level. This long sentence means that vibrational exci-
tation has a dynamical role beyond the energy that is made available. We have
already seen that this is possible in full collisions. Vibrationally mediated photo-
dissociation shows that it is equally possible in half collisions. The point is that,
because it is a photoexcitation, the Franck–Condon principle implies that, starting
with vibrationally excited reactants, we access a different region of the (upper,
dissociative) potential energy surface.

A simplified, one-dimensional, view of vibrationally mediated photodissocia-
tion is shown in Figure 7.15. The sequential use of an IR photon and a UV photon
accesses the repulsive upper state more efficiently than a single UV photon of
their combined energy. The vibrational excitation allows a bond stretch on the
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Figure 7.15 Schematic drawing of a one-dimensional cut along the upper state
dissociation coordinate, of the ground and electronically excited states potential. If
dissociation can be made to start from an excited vibrational motion on the ground
potential then a lower-energy UV photon can reach the Franck–Condon region of the
repulsive upper state. The energy content in the vibration is exaggerated for clarity.
Starting from the bottom of the ground state, a UV photon of the same total energy
will have a far smaller dissociation cross-section because of very unfavorable
Franck–Condon overlap. Note that IR vibrational excitation of the ground-state
polyatomic molecule need not access motion along the dissociation coordinate. It
may therefore be advantageous to delay the UV photon until vibrational energy can
flow to the required coordinate. When strong lasers are used it may be possible to
reverse the order of the two pulses. This counterintuitive route is reviewed by
Bergmann et al. (1998) and by Vitanov et al. (2001).

ground potential such that a lower-energy UV photon can induce a transition to
the repulsive upper state.

What is the limitation of a one-dimensional view of vibrationally mediated
photodissociation? It is simply that the dissociation coordinate on the upper state
is usually not the coordinate that is vibrationally excited on the ground potential.
Taking the dissociation of HONO2 as an example,29 to pump in a significant
amount of energy the overtone absorption of O H is utilized, but it is the O N
bond that breaks:

HONO2
IR followed by UV −→ HO + NO∗

2

The fragmentation is detected by monitoring the fluorescence of the electroni-
cally excited NO2 product. The UV pulse that promotes the system to a higher
electronic state is delayed with respect to the overtone excitation. If the delay
is just a few picoseconds, the fluorescence is lower because there has not been
enough time for energy to flow out of the O H bond. By measuring the NO2

fluorescence as a function of the delay time between the two pulses one obtains
12 ps as the rise time for the intramolecular energy transfer. This transfer brings



7.2 Photodissociation dynamics 297

the system upon electronic excitation to a region of the upper potential where the
O N bond promptly breaks.

An example of how a proper positioning on the ground state is important in
selective bond cleavage is isocyanic acid, HNCO. It has two chemically distinct
photodissociation products

HNCO
UV−→

{
H + NCO

NH(1�) + CO

with a minority, spin-forbidden, channel to yield NH(X3�−) + CO. The main
NH + CO channel has a somewhat higher threshold but in a single UV photon
dissociation it is the majority channel at energies above threshold. Vibrational
excitation of the v = 3 overtone of NH followed by a lower-energy UV photon
considerably alters the branching ratio, at the same total energy, in favor of the
H + NCO channel. The electronically excited state of HNCO is bent while the
N C O backbone is nearly linear in the ground state. The v = 3 overtone of NH
is a bright state but it appears to be effectively coupled to a dark state that is a
mixed overtone of two quanta of N H stretch and one quantum of the bend.30

This dark state allows a much better Franck–Condon access to the electronically
excited state.

When reliable potential energy surfaces are available we can explicitly under-
stand how the Franck–Condon limitations determine which product channel is
favored. To do so we return to our old workhorse, HOD. In the photodissociation
of H2O, the surviving OH bond is a spectator. For example, vibrationally exciting
one O H to its third overtone (four vibrational quanta) and leaving the other cold
produces almost exclusively cold OH fragments. But photodissociating a state
with one vibrational quantum in one O H mode and three in the other produces
large amounts of vibrationally excited OH. In vibrationally mediated photodis-
sociation of HOD, the bond that is excited is almost exclusively the bond that
breaks, unless we go to shorter UV wavelengths. Then, vibrationally mediated
photodissociation produces comparable amounts of OH and OD. Figure 7.16
offers an explanation. It shows the excited state potential and drawn on it are two
special contours. One is the total energy for a UV photon of lower energy, when
the experimental result is selective bond cleavage. This is because we place the
molecule on the excited surface such that the motion carries it preferentially to
the desired product. The other contour is the total energy for a more energetic
UV photon. The classically allowed regions at these two energies are qualitatively
different. At the lower total energy there is no classical passage between the two
exit valleys. The Franck–Condon region for an excited O H stretch is in the exit
valley so the bond that is vibrationally excited is the bond that dissociates. At
a higher photon energy, the saddle point region on the surface is energetically
accessible and the system can be born on one side of the barrier but exit on the
other side.
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Figure 7.16 Contour plot of the potential energy in the repulsive excited electronic
state of HOD. The diagonal line is the bisector between the two exit valleys. Two
special energy contours are shown as dashed lines. One energy contour shown as
dashed lines corresponds to the total energy made available by exciting the O H
local mode to the fourth state plus a UV photolysis photon, λ = 238.5 nm, when the
experimental result is selective bond cleavage. (The wave function for the stretch is
shown as contours. Note the nodes along the O H coordinate that show that it
is the fourth vibrational state.) The Franck–Condon region for the UV photon is near
the outer turning point of the O H stretch, where the total energy is about equal to
the potential energy. The other energy contour, dot-dashed line, is for a more
energetic UV photon, λ = 218.5 nm. Now the Franck–Condon region is much closer in
and the molecule can exit in either valley [adapted from Crim (1996), see also
Schinke (1993)].

7.2.4 Mode-selective chemistry

Vibrational excitation means the stretching of a bond. A chemical change involves
a rearrangement of the molecular geometry. Should we not be able to give the
molecule vibrational excitation in a mode selective31 manner such that the energy
is made available where we need it at the transition state? Such a goal for many-
atom transition states has proved somewhat elusive. In an atom–diatom A + BC
collision we can imagine how the modes of the reactants correlate to the motions
in the transition state, as discussed in Chapter 6. In a polyatomic system it is
not quite so simple to excite vibrations that dynamically enhance the crossing of
the barrier.∗ The motion along the reaction coordinate can be as simple as the

∗ Exciting a vibration adds to the energy of the system and this, by itself, can enhance reactivity,

albeit not in a manner that necessarily depends on the initial vibrational mode that was pumped.

Even by itself this is worthwhile: how else can we prepare a really hot large molecule? (There are at

least two other ways.) The tar on the walls of the heated vessel in an organic chemistry laboratory is

one motivation. Collision-free heating, which has no wall effects, is interesting enough and useful
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stretching of a bond, but it can also be a mode that is not simply related to modes
of vibration of the molecule near its equilibrium.∗

The essence of the problem can be seen by thinking of a polyatomic molecule
as a number of masses, representing the atoms, connected by springs. If we kick
a particular mass then the first thing that happens is that it starts moving. The
springs communicate this displacement to the neighboring masses and then these
too start to move. Next, atoms further away are set in motion and, after a number
of vibrational periods, all the atoms are moving: the initially localized energy is
communicated to the molecule as a whole. Our task is to find out why this classi-
cal picture, which is not incorrect, is not the whole story either. In particular, why
will it possibly fail at lower energies but become increasingly realistic at higher
energies? This is the topic of intramolecular vibrational energy redistribution or
IVR. This is a key idea because it allows us to interpolate between two familiar
limiting situations. At quite low energies the molecule is in the spectroscopic
regime. It has well-defined vibrational states. These vibrational states are eigen-
states and so are stationary with assignable good quantum numbers. At energies
below (and above) the dissociation is the RRKM limit: the energy is distributed
over all modes. Only the total vibrational energy matters and there are no other
good quantum numbers.∗∗ In between these two idealized limits is the regime
where a molecule can be optically prepared in a bright state but this state need
not be stationary. The picket fence model of Appendix 7.A. is a good way to think
more quantitatively about this regime and we will make use of it below.

For small polyatomic molecules, such as H2O, NH3, CH4, it is possible to excite
a vibration and make its energy directly available and we have already seen this,
Section 1.2.4, for HOD where the unexcited bond acts as a spectator. For HOD
the mechanical picture is clear. The O H and O D bonds have rather different
frequencies. They are not in mechanical resonance. A vibrational quantum of
O H is sufficiently higher in energy than that of O D that energy placed in the
OH bond remains localized there. Let us carry on with the idea of a mechanical
resonance. Such bonds as O H, C H, etc. have high vibrational frequencies.
Larger amounts of energy can be pumped into them by directly optically accessing

enough that it merits its own section, 7.2.5 below. Because it starts with vibrational excitation, it

can be made species-selective sufficiently so as to excite one isotopomer and not others.
∗ Quantum chemical methods can not only locate the transition state configuration but can also

evaluate the forces. It is therefore possible to perform a normal mode analysis of the motion. This

is just like for an analysis about the equilibrium configuration with one essential difference: the

transition state is a saddle point and so the force constant for motion along the reaction coordinate

will be negative and the corresponding frequency will be imaginary. Otherwise it is a normal

mode of motion and one can, as for any other normal mode, ask what are the displacements of

the different atoms that together make up the mode of motion that transverses the barrier. For

example, in the transition state of the Cl + H2O reaction, the reaction coordinate is primarily an

O H stretch. This is consistent with the significant role of OH overtone excitation for bimolecular

reactions of water.
∗∗ Except for the total angular momentum, the M in RRKM. See also Section 6.4.
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their overtone absorption. The key here is the relatively large anharmonicity of
these high-frequency vibrations.32 Say the state corresponding to four quanta of
vibration in one O H bond in water can be reached. Such an initial state has no
quanta of vibration in the other O H bond and let us designate this state as 4,0,
meaning four quanta in one OH bond, none in the other. Is it a stationary state? It
depends on whether the energy can go to other states. In a harmonic world the 4,0
excited state is isoenergetic with the v = 3 excitation of one O H bond plus one
quantum of vibration in the other O H bond, and with the 2,2 state, etc. But in
the real world, anharmonicity means that the initially excited, 4,0, state is lower in
energy than the 3,1 state, which in turn is lower in energy than the 2,2 state. These
states are nearer in energy to one another than, say, to the 3,0 state. They form a
multiplet of states of four vibrational quanta. But the energy differences between
the states of the multiplet are such that they are not in mechanical resonance and
a laser can distinguish them apart.

For molecules containing a weak bond, say, HOOH, it is possible to provide
enough energy by an overtone excitation of an O H bond so as to dissociate
the molecule.33 For exoergic processes it is only necessary to provide enough
energy to surmount the barrier. A well-studied example is the dissociation of the
cyclic peroxide tetramethyl dioxane (TMD) that fragments over a barrier of about
110 kJ mol−1 (about three quanta of C H stretch) to two acetone molecules

The energy available in the dissociating molecule is high enough that one acetone
molecule is electronically excited.

Are there any limitations on the selectivity that we can achieve by vibra-
tional excitation? Unfortunately, yes and these limitations are of two kinds. First,
molecules are mechanically not quite so simple. For example, HOOH, that has
a trans form at equilibrium, has a barrier to internal rotation about the single
O O bond. The torsional motion has a low frequency. A combined change in
both O H stretch and torsion facilitates the mechanical resonance. In TMD it is
the methyl group deformations that provide the bath of low-frequency states. The
density of states of an excited molecule need not be high but it is not sparse either.
The upshot is that states of molecules with localized excitation do not survive for
ever. They may survive long enough for our needs and one can try to be quick,
but the states that are optically excited are typically not stationary. The problem
is compounded when the energy is higher. At sufficiently high excitation even the
vibrational multiplets will begin to overlap in energy and long before that, other
modes will offer options for establishing resonances.34 Typically, at energies well
below dissociation one is already in the quasi-continuum of vibrational states,
Section 6.2.2.3, where there is a plethora of states. A high density of states acts
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as a heat sink into which the localized state can dump its energy.∗ It is possible
to be somewhat more quantitative about when a molecule can act as its own heat
bath. Say the mean spacing of states is D. Then it takes time of the order of h̄/D to
recognize that we have a discrete manifold of states rather than a real continuum.
Problem E puts in some numbers. You will conclude that already at the (fairly
low) density of 1000 states cm−1 this time is longer than 10−9s, so the molecule
in the bulk gas phase will undergo a collision before it has had enough time
to discover that it is a quantum mechanical object. In solution, an energy-rich
molecule has even less of a chance. The environment helps to very effectively
erase any discrete-level structure, but often a large molecule is sufficiently large,
Section 6.2.2.3, to practically be in an effective continuum already on its own.
We first faced the issue of intramolecular energy redistribution in Section 6.2 and
it will remain with us throughout.

To compute the rate of decay we cannot appeal to transition state theory
because the rate is Franck–Condon limited. In other words, the system reaches
the critical configuration often enough but only rarely does it cross to the other
side. In Section 7.1.3.1 we discuss experimental evidence for systems that exhibit
such behavior. ∗∗ In Section 7.1.3.2 we discussed the picket fence model that
allows us to write the rate of decay of a state into a smooth quasi-continuum

as (2π/h̄)
∣∣V ∣∣2

ρ. Here V is the mean strength of the coupling and ρ = 1/D is
the density of states of the quasi-continuum to which the initial state is coupled.
The perturbation V couples states that differ in the distribution of energy over
the modes. It is like the self-anharmonicity of modes except that it is a cross
anharmonicity. It need not be large to have an observable effect. It is enough if
V can bridge the energy gap between adjacent states, V /D > 1, for the decay of
the optically prepared state to be faster than the rate of revival.35

The density of such states to which the initially excited state can decay can
well be much smaller than the total density of vibrational states. But the latter
can be so enormous that even a weak coupling will suffice to meet the condition
V /D > 1. But what will happen if we are at a relatively low energy where the bath
states are not numerous? Well, the initial state will revive within our observation
window. The simplest model of this revival is when there is only one bath (or
optically inaccessible) state. Then the initial state periodically disappears and
reappears, a phenomenon known as quantum beats and shown in Figure 7.17.

7.2.4.1 Unimolecular dissociation of van der Waals clusters
Dissociation of van der Waals clusters36 provides a nice illustration of several of
the ideas that were just discussed in connection with mode selectivity. Van der

∗ Not all of these vibrational states need to contribute. Quite a number can have too much of the

energy in one mode, which disfavors being in resonance with other states.
∗∗ We already encountered such behavior in Section 4.3.6, where the rate of decay of tunneling

resonances is much smaller than the rate of approach to the barrier that confines these states.
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Figure 7.17 Time-resolved decay of the fluorescence of an isolated anthracene
molecule in different vibrational levels, of increasing vibrational energy, in the
electronically excited first singlet state. Left: time-resolved decay of the population
of the excited state. Right: frequency-resolved emission. The energy of the initial
vibrational state is given and also indicated by an arrow. By exploring the vibrational
energy redistribution in the electronically excited state one can use the fairly prompt
fluorescence as a probe for the optically accessible state. At very low vibrational
excitation the usual decay of an electronically excited state is observed. The
system’s temporal evolution is not different from that of an electronically excited
atom. The fluorescence spectrum is made up of sharp lines. At a somewhat higher
vibrational energy superimposed on the smooth decay are quantum beats due to
the revival of the initial state. Further up in the initial vibrational energy, bottom row,
there is a fast and essentially irreversible decay. In principle, if one waits long
enough, there will be a revival but in practice other perturbations such as collision
with a wall or jitter in the detection system or the graduate student having gone
home to get some sleep, preclude its observation. Adapted from Felker and Zewail
(1988) who have complemented these time-resolved measurements with
measurements of the fluorescence spectra in the frequency domain. As expected on
the basis of the uncertainty principle, the slow decay results in sharp lines while the
spectrum higher up in energy, where the decay is fast, is inherently quite broad.
Such natural broadening that is due to the uncertainty principle is often termed
homogeneous broadening to distinguish it from other causes where the broadening
is due to the sample not being a collection of strictly identical absorbers.
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Waals clusters,37 of which we take I2·He as a prototype, are species where one
or more modes are bound by the far weaker physical-type potential. This shallow
potential is still deep enough to support one or a few vibrational states, so in the
ground state the He is bound with respect to I2. However, even if one vibrational
quantum of I2 is transferred to the relative motion of He and I2, the cluster will
promptly fall apart.

A (fairly high) vibrational state of I2 is prepared when it is electronically
excited. This is very similar to the case of ICl discussed earlier and is due to
the longer I I equilibrium bond distance in the electronically excited state. The
electronic absorption of I2·He is shifted a bit with respect to that of the bare
molecule, but is otherwise similar in that one can access I∗2(v)·He with a vibrational
quantum number v in the low twenties. Such an electronically excited cluster can
fluoresce and the small shift in wavelength, due to the one-atom “solvation” of
I∗2(v) by He, is sufficient to distinguish it from the fluorescence of bare I∗2(v).
The optically accessed state can dissociate if even one quantum of I∗2(v) vibration
makes its way to the I∗2(v) He motion. The experimental observation38 is that
some of the fluorescence is from the cluster and some from the free molecule.
In other words, dissociation occurs on the same nanosecond time scale as the
fluorescence.

On the nanosecond time scale, the I∗2 molecule vibrates some 104 times. So
only in about one in every 104 vibrations does a quantum of energy flow from
the I2 bond to the He I2 motion. This is understandable because the resonance
between the two modes is of quite a high order.39 The van der Waals potential
is rather shallow so the vibrational frequency is much lower by comparison to
the vibrational frequency of I∗2 (which, by itself, is low compared to that of
other diatomics). The dissociation of the energy-rich cluster does not conform
to the RRK model. It is much more similar to the restricted vibrational energy
redistribution of molecules.∗

7.2.5 Multiphoton dissociation

Multiphoton dissociation is a way of using infrared photons, from a higher-power
laser, to up-pump polyatomic molecules, to an energy sufficient to induce uni-
molecular reactions.40 Superficially, it might appear at first thought not to work.
But it does, and remarkably well. Monitoring the angular distribution of the frag-
ments by dissociating molecules in a beam shows a forward–backward symmetry,
the signature of the sprinkler model, meaning that the energy-rich molecule exe-
cuted at least a few rotations prior to dissociation. It also verifies that an isolated

∗ What restricts the energy transfer in I∗2(v)·He is the poor Franck–Condon overlap between I∗2(v)·He

and the dissociation channel, I∗2(v − 1) + He. In Chapter 9 we develop the exponential gap principle

as a semi-quantitative estimate of how far one can deviate from a naive Franck–Condon view,

namely that nuclei are rather reluctant to undergo a change in their momentum. Then the inefficient

energy transfer in I∗2(v)·He will provide quantitative experimental evidence for the principle.
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molecule does the absorption so that the process is truly unimolecular. Under-
standing why multiphoton dissociation works invokes all the theoretical concepts
at our disposal. Proposing new applications for its many capabilities is up to you.

The phenomenon is easy to state. Large molecules can be made to absorb a
high number of IR photons, sufficiently so that they acquire enough energy to
isomerize or to dissociate. The unexpected aspect is that these photons can come
from a laser that has a very well-defined frequency. Say the first photon matches
a vibrational absorption line of the molecule.∗ Then, because of anharmonicity,
the second photon will no longer be resonant and the process will stop. This is the
conventional wisdom backed by lots of experience. There are three ingredients
in the explanation why the process keeps going.

The first point is that we are typically talking here about larger molecules.
One of the attributes of “large” is that not all atoms can be near to the center
of mass and so large molecules necessarily have large moments of inertia and
hence closely spaced rotational levels. This fact helps to explain why the second
photon can also be about resonant. Say that the first transition is from v = 0, j to
v = 1, j − 1; the frequency is ν − 2Bj. Now go from v = 1, j − 1 to v = 2, j − 1,
a Q-type transition; the frequency is ν(1− xe), where xe is the anharmonicity. It
should be possible to find a value of j such that the two frequencies are nearly
the same. In fact, let’s go even higher up. The next transition can be from v = 2,
j − 1 to v = 3, j; the frequency is ν(1 − 2xe) + 2Bj. It is again about resonant.
“Rotational compensation” of the anharmonicity can take us up to v = 3.∗∗Taking
the typical IR frequency to be that of a CO2 laser, about 1000 cm−1, rotational
compensation can help us deposit about 3000 cm−1 in the molecule.

The second point is that a large molecule with an energy content of 3000 cm−1

is on the threshold of its quasi-continuum, particularly so if you take its initial
thermal energy content into consideration. To emphasize this point, Figure 7.18
shows the vibrational levels of SF6, a molecule whose multiphoton dissociation
received much attention. Once a large molecule absorbed three to four photons, it
is getting to be black in the sense that it will absorb further at almost any IR-active
frequency. The third ingredient is then the quasi-continuum and the mixing of
levels within. If so, the energy that is initially selectively put into a particular

∗ Experimentally we know that this is so because the method is species-selective. Indeed it is selective

enough to be used for isotopic separation (because of the isotopic shift in the vibrational spectrum)

or for dissociating (followed by scavenging of the radicals) trace impurities from chemicals that

need to be ultrapure.
∗∗ Seemingly this route is not very efficient because only molecules in a particular rotational level

can be pumped up. If the rotational spacing 2B is small, many rotational states are populated in

a thermal sample at room temperature. They will not absorb. But if rotational spacing is large,

we show in Chapter 9 that rotational-state-changing collisions are very efficient. So in the bulk,

molecules in a given j absorb and are pumped up. This upsets the rotational state equilibrium and

collisions restore the population in level j. These molecules absorb, and so on. Hence, in the bulk,

many molecules are efficiently heated.
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Figure 7.18 A partial
listing of vibrational states
of SF6 at energies below
3000 cm−1. The arrows
represent excitation of the
v3 mode of SF6 by CO2

laser photons. As is
evident even for one or
two quanta in v3 there are
near-resonant energy
transfer pathways to other
modes [adapted from
M. I. Lester et al., J. Chem.
Phys. 80, 1490 (1984)].

mode will eventually spread out over all modes. When we say that multiphoton
excitation prepares “hot” molecules we really also mean hot in the technical sense
of energy randomly distributed over all available modes.

There is still the problem of fine-tuning the rotational compensation. The
quantum number j is discrete so we cannot hope to compensate exactly for the
anharmonicity. The third point is that multiphoton excitation was only discov-
ered when high-power lasers became available. These were lasers of 106−108

W cm−2.∗ The new aspect at such powers is that power broadening begins to have
qualitatively new implications since for a transition dipole of 0.1 debye, the broad-
ening (that scales as the power0.5) is 0.1–1 cm−1. From the point of view of the
uncertainty principle, power broadening arises from the shortening of the lifetime
of the level because, at high densities of photons, light absorption and stimulated
emission, that are both proportional to the density of photons, become rather
fast. The inherently shorter time that the molecule spends in a state means that
its energy acquires a width. We emphasize that this broadening is measurable in
the frequency domain as wider lines. The effective onset of the quasi-continuum
is therefore not just a property of the molecule but can be brought about at lower
energies if the laser power is high enough.

7.2.5.1 Infrared multiphoton dissociation
Once the energy pumped into the molecule exceeds the dissociation threshold
it is in a real continuum. However, we already recognized that a large molecule

∗ Estimate (order of magnitude) the light power reaching the floor of the room where you are.

Your answer is likely to be below 1 W cm−2. On the other hand, nowadays we will not think of

106 W cm−2 as truly high-power. Table-top lasers with output reaching all the way to 1020 W cm−2

are available.



306 Photoselective chemistry

80

60

40

20

0.0

CH3O + NO
CH3  +  NO2

CH3ONOCH3NO2

kcal m
ol −1

E − E0

E − E0

isomerization
yieldyield

bond rupture

Figure 7.19 The energy profile along the reaction coordinate for the dissociation of
nitromethane [adapted from A. M. Wodtke, E. J. Hintsa, and Y. T. Lee, J. Phys. Chem.
90, 3549 (1986)]. Shown are the successive energies made available by the photons
of the IR laser. Not all molecules absorbed the same number of photons. See
Wodtke et al. (1986). E is the mean energy in the molecule. In this experiment an
attempt was made to fit the potential, including the barrier height for isomerization,
to CH3ONO using the observed translational energy distribution of the products. For
this purpose it is necessary to compute the RRKM rates as a function of energy, cf.
Figure 7.20. The analysis also makes use of the observed translational energy
disposal that can also be computed from RRKM if we assume, as shown, that there
is no barrier to the reversed association of the radicals. the transition state is then on
the way out in the exit valley and the distribution of energy in the products is
therefore accurately reflected by the distribution of energy in the transition state.
The extracted potential is as shown in the figure.

will have very many quasi-bound states at energies above the threshold of the
continuum. So the molecule will continue to absorb light in competition with
its unimolecular dissociation. The multiphoton-pumped molecule has its energy
shared among many modes, so the RRKM estimate for the rate constant should
be valid. At energies not too high above threshold the rate of dissociation of a
large molecule, while rapidly increasing with energy, is not high. Molecules can
therefore be pumped by multiphoton excitation to energies well above the lowest
threshold for dissociation.

Figure 7.19 shows an energy profile inferred mostly from experimental mea-
surements of the branching ratio between competing channels in the multiphoton
dissociation of nitromethane

CH3NO2
nhν−→

{
CH3 + NO2

CH3O + NO

and the translational energy disposal.
The methoxy radical, CH3O, is assumed to form via an isomerization of the

hot molecule to CH3ONO, as shown with an isomerization barrier height of
55.5 kcal mol−1. At lower energies, RRKM rates favor the dissociation over a
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Figure 7.20 RRKM computations of the unimolecular rate constants vs. energy for
the two decay channels in the dissociation of diethyl ether, as identified in the insert
[adapted from L. J. Butler et al., J. Phys. Chem. 87, 5106 (1983)]. The dissociation
into C2H5O + C2H5 has a higher activation energy as compared to the elimination of
ethylene. At lower energies it is not the favored channel, but its transition state is
looser and so has softer vibrations and less hindered rotations. Entropy therefore
favors this higher channel as summarized by its having a higher A factor (1017.3 vs.
1013.9 s−1 for C2H5OH + C2H4). At high energies the entropic factors are more
dominant and the dissociation into C2H5O + C2H5 has a higher rate. IR multiphoton
pumping can heat molecules to well above the lowest barrier to dissociation and
reach higher-energy channels.

lower barrier as shown in Figure 7.19. It is also shown that the importance of
the two dissociation channels is reversed at higher energies. This is an example
of the energy vs. entropy competition that we first discussed in Chapter 6. At
higher energies a channel with a higher threshold can become dominant if the
corresponding passage through the transition state is broader. If we write the
RRK rate as A ((E − E0)/E)s−1 then, as follows from Section 6.2.2.1, A is
the Arrhenius A factor. An entropically favored channel is one with a higher
value of A. This competition is shown for the two decay channels of diethyl ether
in Figure 7.20. The dissociation into C2H5O + C2H5 has a higher A factor and a
higher threshold energy. It therefore becomes dominant at higher energies.

The observed rate of dissociation (and the branching between different decay
channels) reflects the distribution of (total) energy because not all molecules
have absorbed the same number of photons. Above threshold, the distribution is
determined by a competition between dissociation, which depletes energy-rich
molecules, and further up-pumping by the laser. Is it possible to pump molecules
quickly enough so that the sideways siphoning off of energy-rich molecules is too
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slow to compete? If so, we could thereby reach higher up in energy and maybe even
beat the branching ratios as governed by RRKM. The alternative scenario for what
happens at fast up-pumping is known as ladder switching. The parent molecule
dissociates statistically but the (hot) fragments, which are typically already in
their quasi-continuum, can further absorb light and themselves dissociate, and so
on. Either mechanism leads to extensive fragmentation as shown experimentally
by the appearance of high-energy end products.

7.2.5.2 Multiphoton ionization/dissociation
Ions can be collected very efficiently and detected mass-selectively. The method of
choice for the production of ions for analytical purposes is the species-selective
multiphoton ionization,41 with lasers in the visible or the UV. When used for
identifying the absorbing species the method is implemented via a “resonance-
enhanced” route as discussed below. But using very high laser powers, it is pos-
sible to ionize in an indiscriminate (or not resonant) fashion any species that is
present in the path of the laser beam. In dynamics, multiphoton ionization is used
to probe reaction products as noted in Sections 7.1.2.1 and 7.1.2.4 and in specific
examples.

Resonance-enhanced multiphoton ionization (REMPI) means that the first
transition is to a bound excited electronic state of the molecule, typically the first
excited singlet, S1, or to another state with a strongly allowed absorption. Because
it is a resonance transition it is species-selective. The second transition, using one
or more photons, is from the intermediate level to the ionization continuum. This
transition can be carried out, if so required, with a second laser.

Power broadening of allowed electronic transitions (those with a large transi-
tion dipole) means that when the laser is high-powered enough a non-resonant
absorption is also possible. The scaling of power broadening means that a 1 cm−1

broadening at 108 W cm−2 (for a transition dipole of 0.1 debye) scales to42 several
hundred wavenumbers at powers of 1013 W cm−2. So this high power is more or
less the point where all discrete transitions are broadened beyond recognition.
The molecule becomes “black,” meaning that it absorbs at any frequency.

The molecular ion formed upon ionization can be stable or it can fragment if,
due to Franck–Condon factors, it is formed in a non-equilibrium configuration
and hence it is born energy-rich. A fragment can also continue to absorb photons
in a mechanism that we called ladder switching.43 The secondary fragments can
continue to absorb photons. At high laser power we can break a molecule all the
way down to atomic ions and electrons,44 Figure 7.21.

Stable polyatomic molecules live in a relatively deep well on a potential energy
surface. When there are known isomers, say toluene (C6H5CH3) and cyclohep-
tatetraene (C7H8), they are separated by a high barrier,∗ as shown in Figure 7.19

∗ For less rigid species such as clusters or linear molecules there are many more isomers, some of

which differ only in conformation (“conformers”) with a low barrier between them.
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Figure 7.21 Left: observed, labeled EXP, and computed fragmentation pattern of
benzene by multiphoton ionization. The experimental results, adapted from D. A.
Lichtin, R. B. Bernstein, and K. R. Newton, J. Chem. Phys. 75, 5728 (1981), are for a
laser wavelength and intensity such that the same pattern can be obtained at a
different wavelength and intensity. This supports the idea that the pattern depends
only on the mean energy absorbed from the laser. The computations [J. Silberstein
and R. D. Levine, J. Chem. Phys. 75, 5735 (1981)] assume that this is so and the
mean energy is shown. Right: computed fragmentation pattern at a lower energy,
where the fragmentation is less extreme and at a higher mean energy, where the C+

ion is the main product.

for the simpler case of CH3NO2 and CH3ONO. At the high energies made
available by multiphoton pumping, such barriers can be transversed. The multi-
photon ionization–fragmentation spectra of isomers can therefore be essentially
indistinguishable.

7.2.6 On to quantum control and the time domain

In this chapter we are using light to make the system access the transition state
region. The selectivity that is possible in the frequency domain has often invoked
the limitations provided by the Franck–Condon principle to place a molecule
where we want it on the upper potential energy surface. To restrict the range
of accessible configurations on the ground state potential we can go down from
an excited state. The dumping down onto the ground state can be light-induced
(as in stimulated emission pumping) or spontaneous (as in internal conversion).
Accessing the ground state from an excited state via a conical intersection is a
particularly promising way of reaching a localized region in configurations, and
we will return to it in Chapter 8. An alternative option is to start from a stable
transition state precursor such as an anion and detach the extra electron. But if an
initially localized state is what we are after,45 can we not directly impose it? In
Chapter 8 we shall examine how far this is possible by working in the time domain.
In Section 7.4 we continue with this theme, achieving selectivity by optical means
where the new point is that we specifically rely on the quantal aspects of the motion
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Figure 7.22 The bimolecular absorption coefficient for a mixture of Ne and Ar in the
infrared. This collision-induced absorption arises from the transient dipole moment
that arises during the flyby collisions of Ne with Ar atoms. In other words, it is the
heteronuclear NeAr transitory species that is absorbing light. Adapted from D. R.
Bosomworth and H. P. Gush, Canad. J. Phys. 43, 751 (1965).

of the nuclei. So far however we concentrated on unimolecular processes. Before
going further we need to discuss the effect of light on bimolecular collisions.

7.3 Bimolecular spectroscopy

Only at very low densities do spectroscopic observations refer to isolated atoms or
molecules. At higher densities collisions can perturb the act of light absorption or
emission. At the high densities characteristic of liquids and solids the molecular
interactions can be so severe that the spectrum is changed beyond recognition.
In this section we begin first with collisions as perturbations but then we turn
the point of view around and speak of the spectroscopy of the collision act and
thereby provide yet another means to access the transition state.

7.3.1 Collision-induced light absorption

An example of a bimolecular spectroscopic phenomenon is collision-induced
absorption. In its essential form it is exhibited as a broad-band absorption (usually
in the far infrared) that is observed in a gaseous sample containing different rare
gases. The absorption of photons at the frequency ν is found to depend upon the
product of the densities of both gases, and, as usual, on the path length l,

log[I (0)/I (l)] = lnAnBε(v) (7.6)

The binary absorption coefficient ε(v) is independent of the density, but does
depend upon the species present. This absorption is not found in the pure rare
gases and obviously disappears in the very low density limit. It is a bimolecular
phenomenon and requires the participation of dissimilar atoms.

The spectrum shown in Figure 7.22 can be considered as the spectrum of the
transient heteronuclear AB dimer that fleetingly exists during the A + B collision.
AB is a very short-lived species and this is reflected in the spectrum as we discuss



7.3 Bimolecular spectroscopy 311

µ(t)

τ

Time

Figure 7.23 A schematic representation of the time-dependence of the (transient)
dipole moment associated with a flyby collision of unlike atoms, at a given b and E.
The “width” in time, τ , of the dipole-moment function can be related via the
uncertainty principle to the frequency of the most intense absorption of radiation.

below. The far IR absorption is not found in the pure gases for the same reason
that stable homonuclear, A2, diatomics do not have an infrared spectrum.∗ In
classical language, light is absorbed or emitted when a dipole is oscillating or,
in general, changing with time. A heteronuclear diatom has a dipole moment
and will have an infared vibrational spectrum due to the oscillations of the AB
distance. Similarly, a transient AB heteronuclear pair has a dipole moment µ(R)
that is a function of the AB distance. During the collision the AB separation
varies with time and so does the dipole moment, i.e., µ(R) = µ[R(t)], as shown
in Figure 7.23. This variation with time is how the transient dimer can absorb
light, when the frequency of light is within the range of frequencies characteristic
of the time dependence of µ[R(t)]. Technically speaking, what we need to do is
to expand the time dependence of µ[R(t)] in a Fourier series and check which
frequency components have a large contribution. We will simplify this task, see
below, by appeal to the uncertainty principle: the range of important frequencies
is inverse to the range in time over which µ[R(t)] varies.

It is important to stress that we are considering truly transient dimers that exist
during a flyby collision. These transient dimers have an absorption spectrum with
a width �ν of about 200 cm−1, Figure 7.22. Hence the average duration of their
existence is

τ ∼= h/hc�ν = (c�ν)−1 ∼= 2·10−13 s (7.7)

which is indeed comparable to a typical duration for a collision between two rare
gas atoms at ordinary temperatures, where a is the range of the force between the
atoms

τ ∼= a/v ∼= 10−8/5·104 = 2·10−13 s (7.8)

∗ With a sensitive enough detection one can observe a Raman spectrum from a single component

rare gas mixture due to the time-dependent polarizability that characterizes an A A collision.
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In Section 7.3.4 we discuss collision-induced UV absorption where the AB dimer
is pumped to an electronically excited state.

As we already discussed, broad absorption spectra can also be seen for half
collisions, that is, for an AB species that has a finite lifetime because it can disso-
ciate. Examples include the electronic predissociation of O2 due to crossing from
a stable to a repulsive electronic state, Section 7.1.1, vibrational predissociation
when a state with energy partitioned over many vibrational modes is isoenergetic
with the dissociation continuum, Section 7.2.2, and the orbiting states, trapped
behind the centrifugal barrier, Section 4.3.6. Typically such quasi-bound states
have narrower absorption lines than the broad spectrum shown in Figure 7.22.
The reason is clear. The width of the spectrum in Figure 7.22 is inverse to the time
the system spends over the (shallow) rare gas–rare gas potential. Hence the width
is the vibrational frequency ν. For other quasi-bound states the width is typically
of the form νp, p 	 1, where the probability p is the likelihood of dissociation
per vibrational period. For example, for orbiting states, p is the probability of
tunneling through the barrier.

7.3.2 Pressure broadening of spectral lines

An important spectroscopic manifestation of state-changing collisions is the phe-
nomenon of pressure broadening of molecular absorption lines.46 Consider an
excited vibrational state of the molecule, which in a very low-density gas (i.e., in
the absence of collisions) would lose its excitation by radiative decay. Collisions
can change the state or reorient the molecule and hence serve as a mechanism
to quench the emission of that excited state.∗ The lifetime of the molecule in the
absence of collisions, the radiative lifetime, is long compared to the duration of
a collision.∗∗ The quenching and “interrupting” collisions shorten the lifetime of
the excited state so that the spectral line will then be broadened. To argue that
this broadening is proportional to the pressure we proceed as follows. An excited
state can decay either through a unimolecular fluorescence

X∗ → X + hν

or through a bimolecular quenching, that is, by a change of state induced by
collision with some partner M,

X∗ + M → X′ + M′

∗ In addition, the perturbation of the molecular levels by collision modifies the emission process

owing to changes in the time evolution of the transition dipole. We consider such processes as

“interrupting” collisions.
∗∗ Typically 1–10−3 s for emission in the infrared and decreasing with increasing frequency as ν−3

so that it is in the nanosecond range for allowed transitions in the UV. We say “allowed transitions”

because the radiative lifetime also scales inversely with the squared transition dipole moment.
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where the prime denotes new states. Hence, the kinetic equation for the concen-
tration of the excited species is of the form

d[X∗]

dt
= −[X∗](kr + kq[M]) (7.9)

τ r = 1/kr is the radiative lifetime and kq is the bimolecular rate constant for the
quenching process. The rate for the decay of the concentration of the excited state
is given by

τ−1 ≡ −[X∗ ]−1 d[X∗ ]

dt
= kr + kq[M] (7.10)

meaning that the lifetime τ of the state will be shorter than the radiative lifetime
τ r. The width �ν of the line is therefore larger than the natural (or radiative)
width �νr

�ν = (cτ )−1 = kr/c + nkq/c = �νr + nkq/c (7.11)

Here kq is the bimolecular rate constant for quenching the excited level
and n is the number density of the quenching collision partner. As shown in
Figure 7.24, the observed spectral line width increases linearly with pressure and
the slope allows the determination of the quenching rate constant.

∆ν / cm−1

3

10 20
0
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2

Pressure (atm)

Figure 7.24 Width of an
absorption line of HCl in
the presence of Kr at
increasing pressures. The
slope of the line provides
a determination (cf.
Eq. (7.11)) of the rate
constant kq for
state-changing collisions
of HCl with Kr. The very
high rates of rotational
state changes, cf.
Section 9.2, too fast to be
measured by
conventional
time-resolved kinetics,
were first determined by
such a frequency domain
measurement [adapted
from D. H. Rank et al., J.
Mol. Spec. 10, 34 (1963)].

The infrared spectra of molecules contain many adjacent lines that correspond
to different rotational–vibrational transitions. As the pressure increases, these
lines broaden and begin to overlap. Ultimately, at high pressures, they merge
together and the detailed structure is lost. This collapse due to pressure broadening
is typical of spectra at high pressures and of molecules in the liquid phase.

Emission from electronically exited states is also pressure broadened (Myers,
1998). Application of the Franck–Condon principle allows us to provide an intu-
itive picture of how collisions perturb the emission. We use the familiar∗ yellow
sodium D line, Na(32P) → Na(32S), as an example. Figure 7.25 shows the inter-
action potentials of the ground and excited states of Na with an Ar atom. Because
the excited Na atom has a significantly higher polarizability, the upper potential
has a stronger long-range attraction,47 leading to a deeper well. When the rare-
gas atom is far away, the spacing between the two potential curves is the energy
corresponding to emission on the D line. But if emission takes place when the
two atoms are nearer to one another, and the emission occurs without a change
in the momenta of the two atoms, then it must occur vertically and the energy of
the photon is now somewhat lower (vertical arrow in Figure 7.25). This emission

∗ The Na D emission can be efficiently generated by an electrical discharge through sodium vapor

and so such lamps are used for high-power illumination. But some people find the intense yellow

color uncomfortable. The solution: use a high-pressure lamp so as to shift the emission toward the

red, as we discuss below.
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Figure 7.25 Potential energies (cm−1) for the interaction of a ground- and an
excited-state Na atom with an Ar atom vs. the internuclear distance. The ground
state correlates to Na(32S) + Ar while the excited state asymptotically corresponds
to Na(32P) + Ar. On the energy scale needed to plot both curves, the well in the
ground-state potential is barely visible. In the Franck–Condon vertical transition
approximation the energy of the photon emitted when the two atoms are at a
distance R apart is the difference between the two potentials at that distance R, hV =
Vupper(R) − Vlower(R). Such a transition is shown at a particular distance Rc. Note that
over most of the accessible range at thermal velocities, the photon will be
red-shifted compared with the emission of an isolated Na∗ atom, as seen in the
experimental results in Figure 7.26. The arrow shows a vertical transition at a
frequency shifted to the red. The repulsive B2� excited state plays a role in the
observation of absorption during the collision, Section 7.3.4. Here, because the
upper state is rather steeply repulsive, the Franck–Condon approximation indicates
that the photon needs to be detuned to the blue.

is shifted to the red of the D line because if the transition is vertical, the energy
hν of the photon emitted when the atoms are a distance R apart is

hν = Vexcited(R) − Vground(R) (7.12)

The extent of the shift is sometimes referred to as the detuning. If the emission
takes place when the two atoms are rather close to one another, the emission will
be shifted to the blue. This requires a close-in approach (meaning a low impact
parameter collision) and preferably an above thermal collision energy (kT at
room temperature is about 200 cm−1). Typical experimental results are shown in
Figure 7.26 and confirm that there is a broad shoulder of red-shifted emission.

There are two immediate implications of our discussion. If electronically
excited atoms can emit to the ground state during a bimolecular collision, why
can the ground-state atoms not absorb light during their collision? Well, they can,
and we take up this theme in Section 7.3.4. There we will also return to our theme
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Figure 7.26 Measured line profile (logarithmic scale) for Na D line emission in the
presence of Ar, at a pressure of below an atmosphere and 418 K. Most of the
emission is at the wavelength of the unperturbed D line (the collisionally
unperturbed line is inherently broad due to the spontaneous decay). Shifts primarily
to the red but also to the blue are evident. Below an atmosphere the blue wing is not
pressure dependent. The upper scale gives the shift (= detuning) with respect to the
position of the D line. Some of the emission is from bound states of the upper
electronic state [adapted from G. York, R. Scheps, and A. Gallagher, J. Chem. Phys.
63, 1052 (1975)].

of interference and argue that there can be interference between absorption on
the way in or absorption on the way out. Our next topic is emission of molecules
in the process of falling apart, picking up this theme from Section 5.1.2.1.

7.3.3 Emission in half collisions

If an electronically excited sodium atom can emit during its bimolecular collision
with an Ar atom, why can it not emit during a half collision when it recedes, say,
from an I atom? Why an I atom? Because NaI can be excited in the UV to an
electronically excited state that dissociates to a Na(32P) state, the state that emits
the D line, and an I atom, Figure 7.27.

The ground electronic state of NaI is much more strongly bound than the
electronically excited state so that, in this case, the D line emission is shifted
to the blue. To estimate the fraction of molecules that emit we take a radiative
lifetime of several nanoseconds and the time of about 10−13 s for Na and I to
recede from one another, cf. Eq. (7.8). So only fewer than one in 104 molecules
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Figure 7.27 Potential energy curves for the ground (X) and the electronically
excited state of NaI that can be reached by a UV excitation (λ ∼ 235 nm). This state
dissociates to an electronically excited Na(32P) atom and a ground-state I atom. The
vertical excitation from the ground state, shown as an arrow, accesses the inner
region of the upper state with enough excess energy to allow dissociation. In the
course of falling apart the emission from the excited state, vertical arrow, will be
spread over a wide frequency range and be very blue-shifted. This emission leads to
bound (but possibly highly vibrationally excited) NaI in its ground electronic state.
The vibrational structure is hard to resolve for a molecule with low vibrational
spacing such as NaI, but can be seen in the case of photodissociation of CH3I as
discussed in Figure 5.7. The earlier on its way out the NaI molecule emits, the larger
is the shift to the blue [adapted from H.-J. Foth, J. C. Polanyi, and H. H. Telle, J.
Chem. Phys. 86, 5027 (1982)].

will emit on their way out. Moreover this emission will be spread over a wide
frequency range so that the wing of the D line will be of low intensity.∗

As is clear from Figure 7.27, the earlier on its way out the NaI molecule
emits, the larger is the shift to the blue. This is quite interesting because by a
measurement in the frequency domain we find out about where the system was.
This is just what we are missing so far. The absorption spectrum tells us how
quickly the molecule departs from the Franck–Condon region it was excited to,
but it does not tell us where the system went to. This Raman-type experiment

∗ This is unlike pressure broadening where the intensity of the wings can be made to increase by

increasing the pressure.
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Figure 7.28 A construction showing the two possible locations of the interatomic
distance, solid arrows, at which absorption of a photon of a given frequency is
possible in a collision of a ground-state Na atom with Ar [adapted from Grosser
et al. (1999)]. For a transition from the X2� ground state to the B2� excited state, the
transition dipole lies along the interatomic distance R. The circle is that value of R
that is the implicit solution of Eq. (7.9) for a photon that is blue-shifted by a given
detuning from the D line. For this detuning the absorption occurs when the
trajectory crosses the circle. Two such circles correspond to two trajectories that
traveled for different lengths on the ground- and excited-state potentials. One made
the transition at R1 and the other at R2. The deflections of these two trajectories are
such that they result in the same angle of scattering of the excited Na atom.* Two
such trajectories can exhibit quantum mechanical interference and the experimental
manifestation is shown in Figure 7.29.

(light in and light out) provides just what we wanted to know. Problem L outlines
a time-dependent point of view that allows us to further develop this idea.

7.3.4 Spectroscopy of elastic collisions

We already have all the machinery that is needed to think about the UV absorption
of molecules in the process of their collision. In this subsection we consider the
simpler case where the collision is elastic so that, in the absence of radiation, the
only result is the deflection of the atoms. Even for this simple case we will go
all the way up to control. Reactive collisions are even more of a challenge and
are discussed in the next subsection. As always in this chapter the final goal is to
access the transition state.

We return to a Na + Ar collision. For an incident photon with a frequency to
the blue of the Na D line, absorption will lead preferentially to the B2� excited
state, as shown in Figure 7.25. Here the detuning of the photon selects, via
Eq. (7.12), the interatomic distance at which the absorption takes place.
Figure 7.28 shows two trajectories for a Na + Ar collision. Superimposed is

* It is the condition that both trajectories lead to the same scattering angle that excludes the absorption

of the photon taking place at the other point where the trajectory crosses the circle. For example, if

the trajectory that absorbed at R2 had instead absorbed earlier it would have traveled more on the

more attractive upper potential and have collected a different deflection.
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Figure 7.29 The
observed (points) and
computed (solid curve)
laboratory differential
cross-section of excited
Na atoms from a Na + Ne
collision with a photon
detuned by 240 cm−1

from the sodium D line.
The collision velocity is
1125 m s−1 [adapted from
Grosser et al. (1999)].

a circle at that particular value of R, as determined by Eq. (7.12), for which a
vertical transition is possible. In the absence of absorption the scattering results
in a deflection. It is seen that absorption of the photon is possible either as the
two atoms are on their way in or on their way out.

The excited Na atom can be efficiently detected by exciting it further to a high
Rydberg state, cf. Figure 7.11, and its angular distribution can be determined at
high resolution as shown in Figure 7.29.

As shown in Figure 7.28 there can be two classical trajectories that lead to
the same deflection angle. As in Section 2.2.6, the differential cross-section can
therefore be written as a superposition of two scattering amplitudes

I (θ ) = | f1(θ ) + f2(θ )|2 (7.13)

The resulting interference pattern is very clearly seen in Figure 7.29.
When the excited state is attractive and can support bound states, light absorp-

tion during the collision of ground-state atoms results in their photoassociation∗

Figure B3.1 showed the potentials for a Hg + Hg collision leading to a bound
Hg∗

2 excimer.
The ability to use light at a frequency detuned from the absorption of the

asymptotically separated reactants has the advantage that only partners in the
very process of a collision will absorb the light. So it is potentially very selective.
But the required high-intensity light source has the disadvantage that it may
induce unwelcome multiphoton processes.

∗ When the collision partners are not atoms, the excited-state potential can conically intersect the

potential of the ground state and absorption during the collision then results in quenching and the

exit of the products in the ground electronic state. M + H2 collisions, M alkali atom, have been

extensively studied.
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Figure 7.30 Potential energy along the reaction coordinate of the ground electronic
state and the same potential dressed by a UV photon, cf. Figure B3.1 and Appendix
3.B, dashed curve. The dressed ground state crosses an excited state potential that
has a well in the region of the transition state of the ground surface. The dressing
photon is shown as an arrow. The system can exit as excited products or on the way
out the excited state can emit and thereby bring the system to the other side of the
barrier on the ground state. The lighter dashed curve is one cautionary note. If the
laser is intense enough to well dress the ground state by a single photon it is already
able to dress it by two photons, bringing it up to the light dashed curve. There is
usually a significant density of higher excited electronic states for this doubly
dressed state to cross into.

7.3.5 Spectroscopy of the transition state and
laser-assisted collisions

We have discussed a variety of optical methods that can place reactants in the
transition state region. What we specifically aim for in this section is to have
reactants absorb light during their approach motion so as to spectroscopically
probe the transition state region and/or to facilitate a reaction taking place. At the
moment, theory is ahead of experiment. There have been many valiant efforts,
but currently there are more theoretical arguments and detailed computations
showing that this should be possible than clear-cut experimental examples.

In principle, the situation is clear-cut. We want to use an intense laser to
dress the ground-state potential energy surface, a surface that often has a barrier,
Section 5.1, so that it crosses an excited state surface, a surface that typically has
no barrier,48 Figure 7.30.

Laser-assisted collisions are most readily demonstrated experimentally when
reaction is only possible on the electronically excited state. The harpoon reactions
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of excited rare gas atoms,49 as discussed in Section 3.2.4.1, e.g., Xe∗ + Cl2 →
XeCl∗ + Cl, is an example where pumping of the rare-gas atom during the collision
is possible.

7.4 Quantum control

Organic chemists are masters of control. They not only optimize solvent, temper-
ature, catalyst, etc. to get the desired chemical product, they are even able to direct
the process toward one particular stereoisomer out of very many. In this section
we too want to be able to direct the reaction to one out of several alternatives. Of
course, we want to do so on the microscopic, molecular level. Starting with an
initial state we want to prescribe a particular final state. But much of this book
and almost all of this chapter is about doing just that. For example, in Section
7.2.3 we showed how at a given energy it is possible to vary the branching ratio
for HNCO photodissociation by providing the energy in different ways. So why
do we need a special section about control? What is new in this section is that
we want to be able to take advantage of the unique opportunities that are only
available courtesy of quantum mechanics.

In this section we discuss quantum control in the frequency domain.50 In
Section 8.3 we discuss control in the time domain.

From quantum mechanics we need an idea that has already played a central
role: superposition of states and the resulting interference.

First, by our definition of control we aim to favor one particular outcome.
So obviously there needs to be more than one possible outcome. Say that there
are two. To make it very simple, say two final quantum states, each one being
a separate outcome. In Section 4.3.2 we showed how the wave function of the
collision is specified in terms of the initial state and the Hamiltonian of the system.
On the molecular level time runs just as well forward as backward. Therefore,51

a wave function can just as well be specified in terms of the final state it will
evolve into! For our problem we have two wave functions, at the same energy,
each evolving exclusively into a different final state. An arbitrary wave function
will be a superposition of these two “target” states. If we can experimentally alter
the contribution of these two states we can vary the branching ratio.

A more technical but still simple analysis suggests that we have two control
parameters. Say that experimentally we can prepare two different wave functions∗

ψ1 and ψ3.∗ We know that we can, in principle, do that because there are two
independent wave functions defined by the two different outcomes.∗∗ We denote

∗ Why the indices “1” and “3?” Because a simple way to prepare these two states is by a one- or a

three-photon process, see below.
∗∗ Note the correspondence between physical reality and theory. At the same energy there are two

distinct final states. Therefore there are two independent solutions of the Schrödinger equation.

We denote the two solutions (that each correspond to a definite final state) as ψa and ψc. These

two solutions have the same energy and so any superposition of them, say ψ = αψa + χψc, is
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the two target states as ψa and ψc. Say that we prepare a state ψ that is a super-
position of ψ1 and ψ3, ψ = c1ψ1 + c3ψ3. Here the c’s are complex amplitudes
whose amplitude and phase are determined by the laser pulse and are therefore
under our control.

The probability of getting products in state a is the overlap of the wave function
ψ that we prepared with the target state ψa:

|〈ψa | ψ〉|2 = |〈ψa | c1ψ1 + c3ψ3〉|2 = |c1|2 |〈ψa | ψ1〉|2 + |c3|2 |〈ψa | ψ3〉|2
+ c1c∗

3 〈ψa | ψ1〉 〈ψa | ψ3〉∗ + c∗
1c3 〈ψa |ψ1〉∗〈ψa |ψ3〉 (7.14)

The first two terms are the usual classical “OR” addition of probabilities: we can
get to state a either through route 1 or through route 3. The second set of terms in
Eq. (7.14) is the, by now, familiar interference between the two classical alterna-
tives. There are two control parameters because the magnitude of the interference
is governed by the absolute values of the two “experimental” coefficients and, sep-
arately, by their relative phase. We could write that c∗

1c3 = |c1c3| exp(i(ϑ3 − ϑ1))
and so conclude that it is the phase difference ϑ3 − ϑ1 between the two paths that
determines the interference. This is almost, but not quite, correct. The properties
of the molecule also enter in: wave functions in the continuum are complex num-
bers and so have a phase. Scalar products such as 〈ψa| ψ1〉 are therefore complex
numbers. If we want to emphasize interference we should rewrite Eq. (7.14) as

|〈ψa | ψ〉|2 = |〈ψa | c1ψ1 + c3ψ3〉|2 = |c1|2 |〈ψa | ψ1〉|2 + |c3|2 |〈ψa | ψ3〉|2
+ 2 |c1c3 〈ψa | ψ1〉 〈ψa | ψ3〉| cos(ϑ1 − ϑ3 − δ) (7.15)

where δ is the phase of the scalar products of the molecular wave functions; δ is
due to molecular properties. The two control parameters are the amplitude and
the phase angle of the interference term.

How are we going to implement this in the laboratory? We need a process
with two (or more) distinct outcomes. Experimentally we need two (or more)
distinct ways of preparing the system with an energy E. For photodissociation,
for example, one way is by absorption of one photon of frequency h̄ω = E.
Another way is by absorption of three∗ photons of frequency h̄ω = E/3.
Indeed, our notation above, where we called the two experimental routes “1”
and “3,” was with this choice in mind. An early experimental result is shown in
Figure 7.31. The control is to alter the branching between dissociation and ion-
ization of HI by using lasers such that one- and three-photon excitation leads to
the same total energy

HI
10.6 eV−→

{
H + I
HI+ + e

also a solution of the Schrödinger equation. In general, an experiment prepares a superposition of

ψa and ψc so that both possible final states are produced. Control means being able to change the

coefficients α and χ in the superposition prepared by the experiment.
∗ Two photons will not do the trick because the selection rules for one- and two-photon absorption

are different. But three photons can access the same state as one photon.
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Figure 7.31 The (smoothed) observed signals in the photoionization vs.
photodissociation of HI vs. H2 pressure. The dissociation products are detected as
ions. The phase difference ϑ1 − ϑ3 is proportional to the pressure of H2. Note that
the signals of the two channels are out of phase and they are shifted by about 150◦,
showing an (energy-dependent) molecular contribution δ in addition to the phase
difference between the two light beams [adapted from L. Zhu et al., Science 270, 77
(1995); see also Gordon, Zhu et al. (1999, 2001)].

The phase difference between the two preparations is imposed by passing both
beams through a cell of H2. The index of refraction for the two frequencies is
different and depends on the pressure in the cell, and by varying the pressure the
phase difference, ϑ1 − ϑ3 above, is varied.

7.4.1 Strong field control

The control scheme that we have discussed does not require high-power lasers.
The electric field of the light is weak enough that the levels of the system are not
shifted by it. The laser induces transitions but these can be described as transitions
between states of the free molecule. This is no longer the case when the laser
is strong. The very potential on which the nuclei move can be altered by the
external field because, if it is strong enough, its effect on the electrons can become
comparable to the electrical field due to the nuclei or that of the other electrons.
Once that happens a variety of other processes, such as non-resonant ionization,
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(B)
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Figure 7.32 The distribution in space of a 3,4 dibromothophene molecule (black
circle: S; dark gray circles: Br) when: (A) no field is present and the rotation is
unhindered; (B) a linearly polarized laser aligns the symmetry axis of the molecule
but it is still free to rotate about this axis; (C) an elliptically polarized laser forces all
three axes into alignment. That the alignment is achieved is probed by coulomb
exploding the molecule in a second intense laser pulse [adapted from J. M. Larsen
et al., Phys. Rev. Lett. 85, 2470 (2000)].

Section 7.2.5.2, also become important. Strong laser fields can be used to induce
mixing between different electronic states and thereby tailor the molecule in a
desired direction. We are not quite yet as good as the organic chemists who can
tune the solvent to perturb the system in just the right way. But we are getting
better. Here we discuss a different aspect: the control of the alignment of the
molecule.52 We give a technical meaning to the term “alignment” in Chapter 10
where we discuss stereodynamics. For now let us think of it as inhibiting the free
rotation of the molecule, which one can do by a strong laser field. The effect
is due to the interaction of the electric field of the light with the (permanent or
induced) dipole moment of the molecule. Figure 7.32 shows the schematic idea
for aligning all three rotation axes of a polyatomic molecule.
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Problems

A. The quasi-classical vibrational motion and the Franck–Condon region. We
consider a bound diatomic molecule with a given vibrational energy. We want
to mimic the quantal distribution of bond distances in a stationary vibrational
state. Conclude from Chapter 5 or otherwise that the probability of finding
the atoms in the range R, R + dR apart is proportional to dR/v(R) where v(R)
is the classical velocity at R, µ(v(R))2/2 = E − V(R) and µ is the reduced
mass. It is therefore more likely to find the system where the motion is slowest.
At the turning point itself the quasi-classical probability diverges. This point-
wise divergence is not serious because the integrated probability is still finite.
The quantum mechanical probability is maximal near the turning points,
Figure 7.1, and decreases exponentially in the classically forbidden regime. For
the ground vibrational state, the quantum mechanical probability is maximal
in the middle and so is rather different in character from the quasi-classical
distribution.

B. IR multiphoton dissociation. Attempts to dissociate O3 or other triatomics
under the same conditions that work for, say, SF6, fail. There are at least two
reasons why this is consistent with the mechanism proposed in the text. Discuss.

C. Delayed ionization of vibrationally hot molecules. Attempts to dissociate
C60 by multiphoton absorption reveal electron emission and the formation of
C+

60 ions. (a) Why is the dissociation of energy-rich C60 slow?53 Of course, the
threshold energy for breaking the cage structure is high, but all the evidence
is that the molecule has energy above the threshold. (b) Are there any other
examples where a hot body emits electrons? (c) Size and one other criterion
should be relevant to when delayed ionization will be an important decay channel.
Discuss.

D. The reaction Br + HCl(v = 0) → HBr + Cl is endoergic by 65 kJ mol−1 and
the reaction rate constant at room temperature is estimated to be 1 cm3 mol−1 s −1.
(a) Refer to the potential energy surface that you have drawn earlier, or make one
now, and discuss whether it is consistent with this result. (b) Two surfaces of
rather similar barrier heights were proposed for this reaction. The difference was
that one surface led to a far higher frequency for the Br H Cl bending vibration.
For which surface does TST predict a higher reaction rate constant? (c) A vessel
containing HCl was pumped with light from a HCl chemical laser. A vibrational
quantum of HCl is 34 kJ mol−1. The reaction rate constant at room temperature
for Br + HCl(v = 2) → HBr + Cl was measured as 1012 cm3 mol−1 s−1. Propose
a simple argument explaining why the increase in the rate constant by 12 orders
of magnitude is to be expected. The rate of the reaction of Cl with HBr was
measured at room temperature to be 4.5·1012 cm3 mol−1 s−1. Is this consistent
with your explanation? (d) Naturally occurring Cl atoms are a mixture of two
stable isotopes, 35Cl and 37Cl in a ratio of 3:1. The Cl atoms produced by the
Br + HCl(v = 2) → HBr + Cl reaction were efficiently scavenged by the reaction
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Cl + Br2 → ClBr + Br. It was found that about 90% of the ClBr molecules contain
the lighter Cl isotope. Provide a simple explanation for the isotopic enrichment.54

E. Interference between dissociation channels. As discussed in connection
with Figure 7.8, provide a simple estimate for the difference in phase shifts for
the two different isotopes and show that the trends you expect when the mass is
heavier are consistent with the observations.

F. A quasi-continuum. It takes of the order of h̄/D to discern that a set of
quantum energy levels that have a mean energy spacing D apart are discrete
and not a continuum. Plot this time on a log–log scale against D. Make your plot
practical by expressing D as, say, the number of states cm−1 or another convenient
measure of your choice. Conclude that even fairly small polyatomic molecules
with an energy excess of, say, one vibrational quantum per mode, are, for practical
purposes, in a quasi-continuum.

G. The picket fence model. This is one of the oldest workhorses. It is necessary
to diagonalize the Hamiltonian. To build the Hamiltonian matrix we take the
bright state to have the index 1. Its energy is the matrix element H11. The dark
states have indices from 2 on and are not coupled to one another. They are equally
spaced in energy, D units apart, but this is only needed when you compute the time
evolution. Otherwise, all that we need is their energies En = Hnn. The only other
non-vanishing matrix elements of H are along the first row and first column and,
apart from the diagonal element, they all have a common value V . Diagonalizing
the Hamiltonian means solving the secular equation HC = EC where C is a
column vector whose components are the amplitudes of the wave function on
the different states. (a) Show that the amplitude on dark state n is largest when
E is near Hnn. (b) By formally solving for C1 obtain an equation for the energy.
(c) Use the fact that the wave function needs to be normalized to get an explicit
solution for C1. (d) Now make the dark states equally spaced and try to sum
V 2�n(E − Hnn)−m, m = 1,2. It can be done, see O. K. Rice, Phys. Rev. 35,
1551 (1930) and J. Phys. Chem. 65, 1588 (1961), but it is not trivial so, as an
alternative, (e) devise a graphical way to solve for the energy (there is more
than one solution). (f) Use the solution for C, replace summation over a quasi-
continuum by an integration, and derive the decay rate as given in the text.
(g) Show that the bright state revives after the time h/D.

H. The picket fence model criterion. When a bright state is coupled by a mean
strength V to a quasi-continuum of dark states of density ρ, the picket fence model
predicts that it will decay irreversibly when V ρ > 1. (a) IVR. The coupling is
due to cross anharmonicity. Anharmonicities of increasing order scale as hν/N m

where ν is the vibrational frequency, N is the number of bound states of that
(anharmonic) mode, and m, m > 1 is the order. By what size molecule and in
what energy range will you predict facile IVR? (b) Radiationless transitions. The
coupling is due to the breakdown of the Born–Oppenheimer approximation. Use,
say, input from the data of Figure 7.16 for the energy range and the coupling. By
what size molecule will you predict an onset of radiationless transitions?
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I. Competitive unimolecular decay. Consider an excited species A∗ that can

decay in two different ways: A∗ k1−→ P andA∗ k2−→ Q. Write kinetic rate equations
and thereby show that the rate constant for the decay of the concentration of A∗ is
k = k1 + k2 , [A∗](t) = [A∗](0) exp(−kt). As discussed, in quantum mechanics
we can reproduce a unimolecular decay by endowing the energy of the state with
an imaginary part that we call the width. Hence, in the absence of interference
effects, the widths add up.

J. The threshold for coulomb explosion. A strong laser field can strip many
electrons off an atom, molecule, or cluster on a time scale comparable to or
shorter than that for nuclear motion. A multicharged molecule or cluster will then
fragment owing to the coulomb repulsion between the like charges. Consider the
removal of the first electron from a one-electron H atom. The electron is bound
in a coulomb potential around the nucleus. Draw this potential as a function of
the distance along the z axis of the electron from the nucleus. Now add an electric
field F along the z axis. This adds a term ezF to the potential. (a) Draw the new
potential. The barrier for an escape of the electron is now lowered. Examine
the drawing and convince yourself that except for just under the barrier top, the
barrier is quite wide so that tunneling through it is not probable. (b) What is the
field (in V cm−1) for which an electron formerly bound in a 1s level can escape?
(c) Translate this electrical field to the intensity of the laser beam.55

∗K. Electronic and spatial control. Construct molecular orbitals for the one-
electron molecule H+

2 as a symmetric and an antisymmetric linear combination
of 1s wave functions on each one of the H atoms, as in Section 5.1.5. The anti-
symmetric state is unbound. In HD+ the dissociation can be to either H + D+ or
to H+ + D. Show that these two channels can be written as a linear combination
of the molecular orbitals and further that they have a dipole moment opposite in
direction. Consider a linearly polarized electric field composed of two frequencies
ω and 2ω, with amplitudes E1 and E2 and a relative phase φ, E = E 1 cos(ωt) +
E2cos(2ωt + φ). Show that this field has a maximal amplitude in the forward or
backward direction depending on the magnitude of the relative phase. Using such
a field one can control the direction in space for the dissociation products. See
the experimental results in B. Sheehy, B. Walker, and L. F. DiMauro, Phys. Rev.
Lett. 74, 4799 (1995).

∗L. The time-dependent view of spectroscopy (Heller, 1981). Suppose that
at time t = 0 we make a Franck–Condon transition to an upper electronic state.
This takes the initial vibrational wave function up in energy and onto a different
potential for the motion of the nuclei. This initial state is no longer stationary
and it starts evolving in time. The first thing that will happen is that the wave
function will depart from the Franck–Condon region. What we want to know
is how quickly it will do so. If the molecule is a diatomic, the initial state will
periodically revive. But for a polyatomic, IVR will, over time, reduce the revival.
Hence for a polyatomic we also want to know where the wave-packet goes to. This
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problem is to show that the first question is answered by the frequency dependence
of the envelope of the absorption spectrum while for the second problem we need
a Raman excitation spectrum.

M. The energy gap law for radiationless transitions. To understand the role of
the Franck–Condon principle for radiationless transitions we consider a simple
model of one, harmonic, nuclear coordinate as shown in the figure below. We
further simplify by assuming that the force constant for this vibration is the same
in the ground and the electronically excited state and that the only difference is
that the equilibrium distance is shifted to a slightly higher value. As seen in the
figure, excitation to the first excited singlet state, S1, at a low energy E, say just
above the ground vibrational level, results in a very poor Franck–Condon overlap
with vibrational levels of the ground singlet state, S0, at the same total energy.
(a) Using harmonic oscillator wave functions show that the overlap integral from
the v = 0 level of S1 to the level v of S0 is given by

|〈0|v〉|2 = (λv/v!)exp(−λ)

where

λ = ω(�Q)2/2h̄

ω is the harmonic frequency and �Q is the difference in the equilibrium geome-
tries of the two states. In the harmonic approximation the final vibrational quan-
tum number, v, is determined by E, E = h̄ω(v + 1/2).
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(b) Plot the dependence of the FC factor on the excess energy E remembering that
for typical values of E, v > 1. By Chapter 9 we will come to call this dependence
the exponential gap principle. (c) Conclude that, as observed, replacement of
C H vibrational modes by C D ones will further reduce the FC factor. (d) The
rather low FC factor means that radiationless transitions are relatively slow. Can
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you suggest changes in the assumptions of the model above that will allow a
facile transition from S1 to S0?

Notes
1 The reason we want to shape the pulse is that ours is a world of high-amplitude motion

where bonds stretch and molecular geometries deform. Shaping (or tailoring) light pulses is

a way to adjust to the dynamics of anharmonic motion. The motivation for the shaping is

that the frequency at which a molecule absorbs light is a constant characteristic of the

molecule but this is so only at, or very near, equilibrium. Consider a diatomic molecule that

we want to dissociate by exciting its vibrational motion with a laser pulse. Because of

anharmonicity, the vibrational frequency decreases monotonically the more energy is put

into the molecule. As the laser pulse sets the nuclei in motion, it makes sense to adjust the

frequency to the changing geometry of the molecule, if we want the absorption of the same

molecule to continue. We typically do not do it but use a fixed frequency. But to drive the

molecule to the transition state region it may be necessary to shape the pulse by adjusting

Time

F
re

qu
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cy

its frequency on the time scale of the molecular vibration so as to track the deformation of

the molecular geometry. This is known as a chirped pulse where the intensity contours are

the ellipses and their tilt is meant to show that the main frequency components of the

shaped pulse go down with time, as would be necessary for pumping an anharmonic mode.

For more on pulse shaping see Kawashima et al. (1995), Kohler et al. (1995). Learning

algorithms can be used to advantage to improve the pulse shape so as to approach a desired

outcome, see Rabitz and Zhu (2000), Rabitz et al. (2000), Brixner and Gerber

(2003).

2 In the semiclassical limit the amplitude squared of the wave function goes as 1/velocity,

|ψ(R)|2 ∝ 1/v(R), where v(R) is the classical, local value of the velocity, (µ/2)(v(R))2+
Veff (R) = E. (Veff (R) is the effective potential, Section 2.2.2). This estimate for where the

system can be found is equally true when the energy is in the continuum and the motion is

unbounded.

3 Strictly speaking, the transition probability is determined by |〈ψv ′ (R)|µge(R)|ψv ′′ (R)〉|2
where µge(R) is the transition dipole moment, the expectation value of the dipole operator

between the ground and excited electronic states. The Condon approximation takes the

transition dipole moment to be a constant and therefore it can be factored out. The success

of the Condon approximation is because, as we argue, only a very limited region in R

values contributes to the integral over R. Strictly speaking, the transition dipole moment

can vary significantly with R.

4 When the two potentials are quite different the Franck–Condon factors can vary

non-monotonically with the final vibrational state. This behavior is observed in the

fluorescence of the I2 molecule after it has been prepared in one particular high-lying

vibrational level. Condon called these oscillations, a function of v ′′ for a given v′, “internal

diffraction” and suggested that they were just as real a proof for the intrinsic wave nature of

matter as external diffraction experiments. The oscillatory nature of the wave function is

even more important when the energy is so high that it is in the continuum. For the general

problem of the Franck–Condon principle in bound–free transitions see J. Tellinghuisen,

Adv. Chem. Phys. 60, 299 (1985).
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5 See Michl (1972), Bernardi et al. (1996), Yarkony (1998), Haas et al. (2000), Worth and

Cederbaum (2004).

6 See Yarkony (1998) for a discussion of the dimension of the manifold and for coordinates

that are especially suited for describing a conical intersection.

7 Such an “inverse electronic relaxation” is indeed observable [A. M. Ronn, Adv. Chem.

Phys. 47, 661 (1981); H. Reisler and C. Wittig, Adv. Chem. Phys. 47, 679 (1981)].

8 There is a rich literature dealing with radiationless transitions. Selective references

include Henry and Kasha (1968), Jortner et al. (1969), Schlag et al. (1971), Parmenter

(1972), Jortner and Mukamel (1975), Avouris et al. (1977), Freed (1978), Jortner and

Levine (1981).

9 Pioneering studies of dissociation dynamics are by O. K. Rice, Phys. Rev. 35, 1551 (1930)

and later, J. Phys. Chem. 65, 1588 (1961).

10 Jortner and Levine (1981), Felker and Zewail (1988), Crim (1996), Moore and Smith

(1996), Nesbitt and Field (1996).

11 Should we not have a zeroth tier consisting of bright states? Yes, this will be an even better

model. But at some point, making schematic models should give way to introducing a

Hamiltonian and doing a more fundamental job. For physical insight it may be useful to

sort states into sequences of coupling, but a real Hamiltonian has so many states that the

sorting is better done by a systematic procedure that can be implemented by the computer

rather than by hand, see Wyatt et al. (1995).

12 To bear on this question the spectra need to be as free as possible from inhomogenous

broadening. This is the obvious requirement that there is a definite initial state so that what

is measured is not a mix of different spectra originating from different states. It is easy to

state but not quite so easy to implement because polyatomic molecules have many (mostly

rotational, some vibrational) states close in energy to the ground states and these are

thermally populated. The measured spectrum can therefore contain many “hot bands.” For

the present purpose, these need to be avoided.

13 The states that can be formed from two atoms in a given state are enumerated by the

Wigner–Witmer rules (Herzberg, 1950; Zare, 1988). See also P. Pechukas and R. N. Zare,

Am. J. Phys. 40, 1687 (1972).

14 For experimental aspects see Eppink and Parker (1997), Chandler and Parker (1999),

Yonekura et al. (1999), Whitaker (2003).

15 Zare and Herschbach (1963) Houston (1989), Gordon and Hall (1996).

16 Zare and Dagdigian (1974), Kinsey (1977).

17 Simons (1984), Crim (1993), Dixon (1994), Butler and Neumark (1996), Ashfold and

Baggott (1997), Sato (2001).

18 In a suitable setup, e.g., Amirav et al. (1983), cooling is routinely achieved to rotational

temperatures below 10 K (Scoles, 1988; Pauly, 2000). The limiting aspect is the heat of

vaporization, the energy that is being released upon condensation. The higher it is, the

higher is the limiting temperature that can be reached. With effort and using He as the

carrier gas one can go down to 1 K or even below (Even et al., 2000).

19 For CH3I → CH3 + I and CH3 + I∗ See Y. Amatatsu, S. Yabushita, and K. Morokuma, J.

Chem. Phys. 94, 4858 (1991). For ICN see Y. Amatatsu, S. Yabushita, and K. Morokuma,

J. Chem. Phys. 100, 4894 (1994).

20 For ICN in different solvents see A. C. Moskun and S. E. Bradforth, J. Chem. Phys. 119,

4500 (2003).
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21 See Schnieder et al. (1995) for application of this method toward a high-resolution study

of the H + D2 → HD + D bimolecular reaction.

22 So should we expect quantal interference between trajectories dissociating as H···O H vs.

H O···H? See Y. Dixon et al. (1999).

23 The special nature of these quasi-bound states is usually expressed by writing their energy

as a complex number, Ej − i�j/2. The imaginary part, � j /2, indicates the finite lifetime

of the state as is most easily seen by writing the time-dependent part of the wave function

of state j: exp(− i(Ej − i�j/2)t/h̄) = exp(− iEjt/h̄)exp(−(�j/2) t/h̄). The probability of

finding an isolated state decreases exponentially with time as exp(−�j t/h̄). So the decay

rate is �j/h̄. The complex energy is a convenient device for a quantitative expression of

the implication of the time–energy uncertainty principle that an unstable state cannot have

a sharp value of its energy. A hermitian Hamiltonian with the usual boundary conditions

on the wave function cannot have complex eigenvalues. A state with complex energy is

equivalent to a coherent superposition of states of sharp real energies where the states are

weighted (by a Lorentzian function) such that the spread in energy is �. So a

well-resolved spectroscopic experiment will see a broadened line. Of course, such an

experiment will not be able to probe a time decay of the state because it takes an energy

resolution better than � to see the energy dependence of the line profile. To probe the

decay you need to prepare the state in a time short compared to h̄/�. Such a preparation

must have an energy spread wider than �. Note that the pump used in the experiment

shown in Figure 7.17, that has a time duration of 650 fs, just about satisfies this

requirement. Actually, the discussion above was simplified in one respect that bears on the

experiment. We took the quasi-bound state to be isolated; its neighbors are more than �

away in energy. In a real system isolation is not necessarily valid. The widths can overlap

and this is why the pump used in the NO2 experiment prepares a superposition of

quasi-bound states and the temporal decay is not exponential.

To compute states with a complex energy an effective Hamiltonian is often introduced

that treats the states as bound at the price of adding a non-hermitian term representing the

coupling to the continuum (Levine, 1969). A few of the eigenvalues will have a rather

large energy width. These are the states that have enough energy localized near or at the

reaction coordinate. Such states dissociate promptly, cf. Section 5.3.3.2.

24 The fluctuations in the decay rates of states nearby in energy illustrate that such states can

differ considerably in how the total energy is partitioned and therefore in the strength of

coupling to other states. The variations can be far more extreme than shown for NO2 in

Figure 7.17, because the coupling in NO2 is strong, as can also be judged by other

indicators. The fluctuations themselves can be treated statistically [W. Pollik, C. B. Moore,

and W. H. Miller, J. Chem. Phys. 89, 3584 (1988); Levine, (1988)].

25 Nature need not fully cooperate. There are steps only if you either have enough energy to

cross the barrier or you do not. But a real molecule, with energy just short of the barrier

height, has the option of quantum mechanically tunneling through the barrier [W. H.

Miller, Chem. Rev. 87, 19 (1987)]. This will smooth the sharp step structure. There is no

question that tunneling is an option, but one must also be careful not to invoke it without

proper examination, particularly so in many-atom systems that sometimes have an option

of going around rather than going through a barrier.

26 For a discussion of isotopic scrambling in general, see J. I. Brauman, R. N. Zare, and R. D.

Levine, Chem. Phys. Lett. 172, 231 (1990).
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Sagdeev et al., 1988).
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where the motion of the electron is very dependent on the interatomic distance.
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The electric field of a laser is oscillating. Keldysh (Landau and Lifschitz, 1971) provided

an estimate for the role of an oscillating field that is not resonant. The Keldysh estimate

for the onset of non-resonant ionization of an atom, for a field frequency lower than any

natural frequency of the system, is consistent with our value of 1013 W cm−2. Molecules

are not like a hydrogen atom and, in particular, the gap between electronic states is very

dependent on the internuclear distances (Dietrich and Corkum, 1992; Chelkowski and

Bandrauk, 1995). This has interesting potential applications, e.g., S. Lochbrunner et al.,

J. Phys. Chem. A102, 9334 (1998). For diagnostic non-resonant ionization of molecules

at high laser powers, see Levis and DeWitt (1999).
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application of ATI is that in the intense electric field of a pulsed ultrafast laser, the

electron may scatter from the nuclei and give a diffraction pattern that provides
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(1999).
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electron in a radical?
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in Figure 7.30 emit on its way out. This is sometimes called laser catalysis (Lau, 1982;

Vardi and Shapiro, 2001).

49 See T. O. Nelson, D. W. Setser, and J. Qin, J. Phys. Chem. 97, 2585 (1993); J. Kohel and

J. W. Keto, J. Chem. Phys. 113, 10551 (2000).

50 The subject of quantum control is extensively reviewed. Special reference to the frequency

domain will be found in Brumer and Shapiro (1992, 1995), Shapiro and Brumer (1994).

51 For a detailed technical discussion of this point see Levine (1969).

52 Lasers can also be used to guide the translational motion of molecules, e.g., H. Sakai

et al., Phys. Rev. A 57, 2794 (1998). Laser cooling of the translational motion is also

possible, e.g., C. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998), and is also applied to

cooling of internal degrees of freedom of molecules.

53 In mass spectrometry, the rather slow dissociation of large ions is known as a kinetic shift.

See C. Lifshitz, Eur. J. Mass Spec. 8, 85 (2002).

54 The actual experimental situation [D. Arnoldi and J. Wolfrum, Ber. Bunsenges. Phys.

Chem. 80, 892 (1976)] is a shade more complex. The HCl laser pumps the HCl molecules

in the sample to v = 1. HCl molecules in v = 2 are produced by the energy pooling

process HCl(v = 1) + HCl(v = 1) → HCl(v = 2) + HCl(v = 0), a process that we discuss

in Chapter 9. The straightforward argument predicts a somewhat higher isotopic

enrichment than is actually observed. It is necessary to appeal to the exponential gap

principle, Chapter 9, to identify the process that acts to reduce the isotopic selectivity.

55 Intensity of light is the flux of energy, meaning energy per unit time through a unit area.

Since power is energy per unit time, intensity is expressed as power per unit area, typically

quoted in W cm−2. The SI units are W m−2. Intensities of up to, say, 1020 W cm−2 are

available from table-top lasers.



Chapter 8
Chemistry in real time

In this chapter we follow the chemical change as it unfolds in time. We have
three primary motivations. The first is that the time-dependent view matches
the way most of us think about a reaction. We have an image of atoms moving,
changing partners, etc., rather like a movie on a molecular scale. Time-resolved
experiments provide insights that are intuitively appealing.1 On a more technical
level, working in the time domain allows us not only to access the transition state
region but also to probe the system as it exits from the transition state. We can
see how things evolve rather than just the integrated effect of the dynamics as
revealed by a post-collision analysis. Thirdly, time-resolved experiments reveal
what happens at short times and this kind of information is otherwise hard to
come by experimentally.∗

In earlier chapters we discussed experiments at a well-defined energy; we
know where we start before the event and we can probe what happens well after
it. But we have to infer what happens in the middle. In this chapter we discuss
time-resolved experiments, experiments that are able to probe what the nuclei
are doing throughout. This then paves the way for studies in the condensed phase
where time-resolved experiments are a main tool.

To implement our program we have first to address two key issues, one of
principle and one of practice. The uncertainty principle inherently imposes a loss
of energy resolution when the time resolution becomes better. We have to show
that for the time intervals of interest to us, this loss is acceptable on the chemical
scale. We further have to discuss the practical problem of how we are going to
measure time on the scale of intramolecular motions when the electronic circuits
at our disposal have much longer response times.

What is the time resolution that we need? Chemical forces are short-ranged
so the transition state region around a barrier is typically quite localized, at most
a few Ångströms wide. The motion slows down as we cross the barrier so if the

∗ In the gas phase some of that information can be inferred from spectroscopic experiments as

discussed in Section 7.3. Such experiments, that use long time pulses with a well-defined frequency,

are referred to as “working in the frequency domain.” The time–energy uncertainty principle forces

us to make a choice between working at a better frequency resolution or working at a better time

resolution, so the two types of experiment are complementary.

334
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velocity is in the thermal range, say 300 m s−1 = 3·1012 Å s−1, and we want a
spatial resolution of, say, 0.2 Å, the required time resolution is 0.2/3·1012 s ≈ 70 fs.
Such ultrashort pulses are available nowadays from commercial lasers with the
Ti–Sapphire laser being the more common choice. Typically we need at least two
such pulses, one, the pump pulse, prepares the system. The pump is followed by
the probe pulse that interrogates the system. The two pulses are delayed in time
with respect to one another and it is this delay that is varied in order to reveal the
motion.∗

The time resolution required for preparing a system in a localized vibrational
state is a shade more stringent.∗∗ The vibrational period is the time required to
span the available range of the vibrational motion, from the right to the left turning
points. To (at least partially) freeze the vibrational motion we need a pulse that
is short compared with the period. We can more easily freeze rotational motion,
because its period is so much longer, but it is not quite so easy to localize the
vibrational motion because some vibrational periods can be as short as 10 fs.2

In classical mechanics there is no limit to how well one can localize the motion
in time. Indeed we launch a classical trajectory with well-defined values for all the
coordinates and momenta. As already discussed in Section 5.2.2, this is inherently
not possible in quantum mechanics: if the coordinates are sharply defined there
is complete uncertainty about the momentum. This is not quite as detrimental as
it might seem because the value of Planck’s constant is moderate on the scale
of interest to us. With a finite but small uncertainty in position we still can have
a small uncertainty in momentum. Let us start with the preparation. The uncer-
tainty in time needs to be shorter than the vibrational period. So the uncertainty in
energy is larger than a vibrational spacing: with an ultrashort excitation that can
localize the vibration we must give up knowing a sharp value of the vibrational
quantum number, as first seen in Figure 1.7. The ultrashort pulse prepares not
a stationary vibrational state but a localized state. Such a state is not stationary
and will move in time just as a classical trajectory will, if we launch it with some
vibrational energy. We can think of the non-stationary state as a superposition
of stationary vibrational states and for some purposes this view is particularly
useful. But it is not essential to think of the non-stationary localized state as a

∗ The delay can be introduced by splitting a pulse and making one beam take a slightly longer route

to the sample (light travels 30 cm in 1 ns). That what we measure is the probe signal vs. the delay

overcomes the technical problem that our detectors are too slow to clock the motion of the nuclei.
∗∗ A vibrational quantum of energy is high compared with kBT so the velocity is higher than for

thermal motion. An ultrafast photoexcitation, on a time scale short compared with a vibra-

tional period, is often referred to as “impulsive.” This is a terminology that we do justice to in

Section 9.2.2. What it means is that we kick the oscillator on a time scale shorter than its response

time. An atom colliding with a molecule also applies a force and then the time scale is the duration

over which the force acts between the atom and the molecule. An ultrafast photoexcitation has a

shorter duration than a molecular collision at thermal velocities and so the photoexcitation can be

in the impulsive regime but the vibrational excitation by collisions is typically not.
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superposition. It is a state in its own right. In that it is not stationary it is similar
to other non-stationary states that we encountered in Chapter 7. How localized in
space is a state prepared in a time shorter than a vibrational period? If we start from
the time–energy uncertainty principle for a pulse width �τ , �E�τ > h̄ we can
go over to the position–momentum principle as follows: �E = (p/µ)�p where p
is the mean momentum. Hence the uncertainty in position is �x = �τ (p/µ) =
�τv . But this is the same estimate as we used above to go from the required res-
olution in position to the time span of the pulse, �τ = �x / v. The shorter
is �τ than a vibrational period, the smaller is �x compared with the span
of the vibrational motion between the two classical turning points, and hence
the more adequate is the preparation for our purpose of creating a localized
state.

*8.0.1 The coherent state – a wave-packet

The state prepared by an ultrafast excitation from an initial state is often called
coherent, meaning that it can be written as a superposition of wave functions
of stationary states. The term coherent is used because we are adding wave
functions (= amplitudes) rather than probabilities so that the components of the
non-stationary state have a definite phase with respect to one another. The differ-
ent stationary states have different energies and so, under the Schrödinger time
evolution, each component in the superposition evolves independently and differ-
ently: as time moves on, the phase of each term in the superposition, exp(−iEt/h̄),
changes. In physics one often uses the term coherent state in a more restrictive
sense. The most common restriction is that a coherent state evolves in time with-
out changing its shape. Such a coherent state3 is rather near to what a classical
motion does. Indeed the center of such a coherent state travels along a classi-
cal trajectory. A simple and often used such coherent state is a wave function
localized in a Gaussian shape (Heller, 1981),

ψ (x ; x(t), p(t)) = (1/2πσ 2)1/4 exp(−(x − x(t))2/4σ 2)

× exp (i(xp(t)/h̄ + δ)) (8.1)

Here x(t) and p(t) are time-dependent parameters. This wave function is centered
at x(t) and so, as time progresses, the wave function moves with its center along
x(t), as shown in Figure 8.1. But the shape remains Gaussian.∗ If the potential
is harmonic, this wave function is an exact solution of the Schrödinger time-
dependent equation and, and this is the point, the parameters x(t) and p(t) are
the coordinate and momentum of a classical trajectory at the same energy as the
(mean) energy of the quantum system.4

For potentials that are not harmonic the Gaussian shape, Eq. (8.1), is not an
exact solution: if we take the initial state as Gaussian and proceed to numerically
solve the time-dependent Schrödinger equation, the solution first broadens and

∗ The way we have written it, it remains not only Gaussian but Gaussian with constant width.
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Time coordinate

x coordinate

Probability

Figure 8.1 The probability density |ψ (x(t ), p (t ))|2 vs. x for different values of time.
Computed for a wave-packet, Gaussian in the position x, Eq. (8.1), and centered at
the mean position x (t ), moving in time along the classical trajectory x (t ). Not shown
is the phase of the wave function that is also varying with time.
The plot assumes, as does Eq. (8.1), that the width σ is not changing as the packet
moves. For anharmonic potentials this is not quite accurate, see Figure 8.2.

then bifurcates into several localized components. On the other hand, as a practical
matter, even for anharmonic motion a Gaussian retains its shape for times of the
order of a few vibrational periods and this is often sufficient for our needs.5

A localized non-stationary state is also referred to as a “wave-packet.” A
wave-packet is a chunk of a wave. But a strict wave, meaning one with a definite
frequency, needs to extend forever in time and space. To create a localized entity
we need to superpose waves of different frequencies. Over most of space these
waves interfere destructively and therefore cancel out, but in one region they
add up constructively.∗ Figure 8.9 below illustrates that this interference is an
experimental reality.

8.1 Watching the breaking and making of chemical bonds

8.1.1 Photoinitiated bond-breaking

The object of the most elementary experiment is to watch a direct bond-
breaking, i.e., when we rapidly excite the molecule, what is the time scale for the

∗ Using the technique of Fourier transformation one can show that the Gaussian in position as given

by Eq. (8.1) can be written as a superposition of waves of different frequencies, where the amplitude

of the different waves is a Gaussian in the momentum variable. The width of the Gaussian in the

momentum variable is inverse to the width of the Gaussian in position. So a state described by a

Gaussian wave function has a finite uncertainty in both its position and its momentum. By making

such a state more localized in its position, we make it more spread in the momentum, or vice versa.
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Figure 8.2 Three views of the photodissociation of ICN. Left: the ground and excited
state potential in the quasi-diatomic view where CN is regarded as an atom, plotted
vs. the I CN distance R. Middle: the time evolution of the excited wave-packet,
shown as probability |ψ (R,�t )|2 vs. the I C distance for different values of the
delay time �t. The initial wave function ψ (R,�t = 0) is quite localized and hence
has a large spread in momentum. As the delay before probing increases, the
wave-packet is moving out at a mean speed of about 2·105 cm s−1 and broadens.
Right: experimental LIF signal profiles of CN vs. the delay time between
the pump and probe pulses, for a series of frequencies. The topmost curve is at
the resonance CN adsorption. Lower curves are for probing as the products are
closer and closer in, so the peaks occur at earlier times [adapted from M. J. Rosker,
M. Dantus, and A. H. Zewail, Science 241, 1200 (1988) and G. Roberts and A. H.
Zewail, J. Phys. Chem. 95, 7973 (1991); see also Bernstein and Zewail (1988),
Zewail (2000)].

appearance of products? To do so, an ultrafast pulse promotes the system to a
repulsive state, and the probe pulse is used to determine for how long the frag-
ments remain near one another. The pump pulse must be shorter than the time it
takes the products to separate.

The photodissociation of ICN in the UV has been studied extensively; exper-
iments using polarized lasers, cf. Section 7.1.2, and quantum chemical com-
putations have characterized the relevant potentials. For our present simplistic
discussion, we use a “quasi-diatomic” model6 where the CN fragment is treated
as an atom.7 There is then only one coordinate, R, the relative separation of I
and the center of mass of CN. The potentials relevant to this picture are shown
in Figure 8.2. It is seen that the excited state rises very steeply in the Franck–
Condon region, so that even a pulse of duration comparable to the vibrational
period of the ground state will create a localized dissociative state. As this state
propagates outward it quantum mechanically broadens, which is what we mean
by dephasing. However, as shown in Figure 8.2, the broadening is tolerable.
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Next to probing the outcome: CN has an electronically excited state that is
very convenient for laser-induced fluorescence (LIF, Section 7.1.3.3) detection.
The probing is carried out both at the resonance absorption frequency of CN and
at a second frequency, detuned to the red. Both are measured as a function of
the delay between the pump and probe pulses, Figure 8.2. When the probe is at
the resonance CN absorption frequency, its rise time, about 200 fs, is the time
for appearance of the separated dissociation products. The absorption of the CN
resonance line probes the products while they are still near to one another. This
absorption depends on the extent of detuning, Figure 8.2, and the data can be well
accounted for if the system spends some 20–50 fs in the strong interaction region.
This time is determined primarily by the steepness of the repulsive potential and
the available excess energy.

The direct dissociation as discussed for ICN is also observed in other reactions.
However, once we go beyond a quasi-diatomic model, the motion of the other
degrees of freedom needs to be addressed.

8.1.1.1 Bond-breaking occurs along more than one dimension
Chapter 5 emphasized the polyatomic nature of reaction dynamics. There we saw
that it is not enough to ask about the reaction coordinate. During the motion on
the potential energy surface the system can and does take large excursions from
that path. Working in real time one can directly probe and demonstrate these more
intricate dynamics. Here we discuss a simple example, but the very same coherent
behavior is seen in more complex systems, including those of photobiological
interest as discussed in Section 9.3.7.

HgI2 dissociates in the UV. At 310 nm there is sufficient energy to break both
bonds but the two-body dissociation is still an important channel

HgI2
λ=310 nm−→




HgI+ I
(

2 P3/2

)
HgI + I

(
2 P1/2

)
Hg + I + I

HgI is formed in its ground electronic state and can be probed by excitation to its
well-characterized fluorescing B2� state. HgI can be probed on its way out and
also after the HgI and I products have separated. So far this is as shown for CN
from ICN in a quasi-diatomic view in Figure 8.2.

However, now we want more than probing the motion along the reaction
coordinate. We also want to characterize the motion in the modes perpendicular
to the reaction path, the modes that after the dissociation are the bound Hg–I
vibration and rotation.

In a two-dimensional view, Figure 8.3, the non-stationary wave-packet begins
at the Franck–Condon region and descends along the symmetric coordinate. For
those events where only one bond breaks, the symmetrically placed wave-packet
needs to bifurcate. If it bifurcates one way, one bond breaks and if it goes the other
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Figure 8.3 A schematic two-dimensional view of the potential energy surface and
wave-packet dynamics in the ultrafast photodissociation of HgI2 [adapted from Voth
and Hochstrasser (1996), Zewail (1996)]. The transition state for the I + HgI reaction is
along the bisector, dashed line, with the lowest barrier at the bottom of the potential
along that line. The UV excitation creates a localized wave-packet along the bisector.
The center of the packet is displaced from the saddle point to a compressed
configuration along the symmetric stretch. During the dissociation the wave-packet
bifurcates, as shown, and each component is followed in the figure. It shows the
coherent vibrational motion in the Hg I well*.

way, it is the other bond that will break.∗∗ During this descent from the barrier
the motion changes character, from being along the symmetric stretch to some
energy going into the asymmetric stretch. This energy will appear as the relative
translation of the HgI and I products. The energy remaining in the symmetric
stretch will appear as vibrational excitation of the bound Hg–I.

8.1.1.2 Coherence
The two-dimensional view, as shown schematically in Figure 8.3, gives us more
than just the realization that HgI will be born vibrationally excited. The initial
wave-packet is a coherent state and propagates out in the exit valley just as a

* Note that what is plotted is a contour within which most of the wave-packet is located. As time

evolves, the packet moves along the line shown and the contour is shown only at a number of points

in time. As expected from the Franck–Condon principle, the packet is initiated with most of its

energy as potential energy. As time evolves, much of this is converted to kinetic energy. The total

energy remains constant but the plot shows the potential energy along the center of the packet.
∗∗ Recall a similar discussion for photodissociation of H2O in Figure 7.16.
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classical trajectory will. What this means is that it undergoes oscillatory motion
along the symmetric stretch coordinate. Asymptotically, it oscillates along the
Hg I distance: the nascent products are not simply vibrationally excited but are
coherently excited.∗ We must recognize the implications and the limitations of
this conclusion. The motion is coherent, but the potential along which it occurs
is anharmonic. So the vibrational motion may be initially localized, but on the
picosecond time scale it will delocalize and spread as motions tend to do in
anharmonic potentials.8 The time for exit is measured in the experiment to be
about 300 fs for the I-atom-producing channel so the detection signal, simi-
lar to Figure 8.4, shows oscillations reflecting not only the coherent vibrational
motion of Hg I but also the rotational coherence for which the period is much
longer.

Coherence in the nascent products is one manifestation of the limitation of a
one-dimensional point of view because it refers to motion not along the reaction
coordinate. Will the coherence survive for more complex systems or for situations
such as reactions in solution where the coupling to the environment is a key?
The answer to both questions is yes. In solution, the coherence of Hg I motion
following ultrafast photodissociation of HgI2 is observable, Figure 8.4.

Another well-studied case is I−2 coherence in the photodissociation of I−3 .9

Coherent motion also survives in molecules solvated in clusters.10 In Section 9.3.7
we discuss photobiological processes and there too we will find a need for
going beyond a one-dimensional view. Also in this class of many-atom reactions
there is clear experimental evidence for coherence in the response to ultrafast
excitation.11

8.1.2 Bimolecular collisions

We want to access the transition state and we want to probe the motion in a time-
resolved fashion, so we need to establish an origin of time from which the motion
starts. Initiating a bimolecular collision at a definite time is an experimental
challenge. One way is to start with a precursor that is photopumped to start
the reaction, just as in Section 1.2.5, except that the excitation is done with an
ultrashort pulse and the products are to be probed on their way out. The HBr·I2

van der Waals adduct is an example of a suitable precursor for the study of the Br +
I2 → BrI + I reaction, Figure 2.12, a member of a family that has been thoroughly
studied in collision experiments and is known to proceed over a shallow well.12

The reaction is initiated by photolyzing HBr in the UV, offering two advantages.
First, the light H atom moves away at a far higher velocity than the Br atom. So
the H atom is out of the scene of chemical action before much happens.13 Second,

∗ Meaning that we have a vibrational wave-packet, made up as a superposition of several stationary

vibrational states, where the different components have definite phase relations.



342 Chemistry in real time

B

X
400 nm

B

X490 nm

B

X560 nm

30

25

20

15

10

5

0
−0.5 0.0 0.5 1.0 1.5 2.0

Delay time (ps)
Hg–I distance

A
bs

or
pt

io
n 

si
gn

al

270 fs

310 fs

360 fs

v ≈ 1

v ≈ 8

v ≈ 14

Figure 8.4 Visible absorption of HgI to the upper B state, at a short delay after an
impulsive photodissociation of HgI2 in ethanol [adapted from N. Pugliano et al., J.
Chem. Phys. 99, 7273 (1995); see also Voth and Hochstrasser (1996)]. Shown are
results at three wavelengths. The upper trace corresponds to a Franck–Condon
region near the well of the ground state of HgI, labeled as v ≈ 1. As shown in the side
panel this pulse samples molecules at low vibration and the period of the oscillation
is that which is expected. The middle plot is for a pulse that probes the ground state
of HgI at higher vibrational excitation. The lower trace is for a Franck–Condon region
near the outer turning point in the well of the ground state of HgI. It samples
vibrationally excited molecules (v ≈ 14) so the vibrational period is longer and the
dephasing is faster.

the slow-moving Br atom does not have enough energy to cross any large barrier.
So one is studying the Br + I2 reaction near its threshold. To increase the available
energy one can start with DBr·I2, which (about) doubles the velocity of the Br
atom.

The experimental detection of IBr by LIF, Figure 8.5, shows that there is
essentially an exponential increase with time of the fluorescence signal. The rise
time constant, 53 ± 4 ps, confirms that the collision is sticky, with a duration
of the order of several rotational periods, suggesting that it proceeds through a
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Figure 8.5 The rise of the LIF signal of IBr vs. time (fitted to an exponential function
[1−exp(−delay time/τ )]) as a function of the time delay between the pump and
probe. The fit is shown for both HBr·I2, available energy 145 cm−1, τ = 53 ps, left
panel and DBr·I2, available energy 286 cm−1, τ = 44 ps, right panel precursors
[adapted from I. R. Sims et al., J. Chem. Phys. 97, 4127 (1992); see also S. A. Wright,
M. F. Tuchler, and J. D. McDonald, Chem. Phys. Lett. 226, 570 (1994), who used
multiphoton ionization to detect the products].

complex that lives over a shallow well. The rise of the products is faster when
DBr is used, as shown.

The results shown in Figure 8.5 indicate that reaction occurs even when the
available energy is low. If there is any barrier to reaction it is therefore late, that
is, in the exit valley. The simple picture, see Section 5.1.5.1, is that of an occupied
p orbital on Br oriented along the I–I axis, sharing its electron with the lowest
unoccupied orbital of I2. This I2 orbital is antibonding and has a node between
the two I atoms. So the Br–I bond is formed at the expense of the I–I bond. But a
more detailed picture is required to fully analyze the reaction. For example, there
are three p orbitals on Br, two of which are perpendicular to the I–I axis. So there
has to be more than one potential energy surface correlating to the reactants.
Somewhat higher up there are the surfaces that correlate to the spin-orbit excited
state of Br, and since the photodissociation of HBr also produces Br atoms, other
features of the dynamics are there to be studied.

8.2 Chemical transformations

As for scattering of crossed molecular beams, real-time experiments have greatly
profited from the introduction of probing via mass spectrometry. The experiment
is made possible by having the probe be an ionization laser, as in many examples
in Chapter 7. This addresses issues of chemical interest because we can determine
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Figure 8.6 Snapshots of the computed geometry of cyclobutene for ultrashort
times following excitation of a π electron to an antibonding π∗ orbital at time zero
[adapted from M. Ben-Nun and T. J. Martinez, JACS 122, 6299 (2000)]. Shown are
the bond distances for the initially double bond and the C C bond that is broken
and the HCH hybridization angle. By about 20 fs the hybridization angle has
increased and the motion is well toward a disrotatory ring opening, as expected
from the Woodward–Hoffmann rules for a photochemical ring opening in a ring with
4n + 2 π electrons, see Problem A. For the well-studied case of ring opening in
cyclohexadiene the motion is conrotatory, as expected for 4n π electrons [see M. O.
Trulson, G. D. Dollinger, and R. A. Mathies, J. Chem. Phys. 90, 4274 (1989)].

the entire range of species that are present after one laser shot of a given delay
after the pump. Varying this delay provides snapshots of the chemical dynamics
vs. time. Of course, we can also lock the detection on a particular mass and watch
how its number density evolves in time.

8.2.1 Concerted vs. sequential bond forming

Pericyclic reactions in general and electrocyclic reactions∗ in particular, for exam-
ple the ring opening of cyclobutene to 1,3 butadiene as shown in Figure 8.6, have
been central to physical organic chemistry and its interpretation by orbital theories
of electronic structure.14

∗ In an electrocyclic reaction (Woodward and Hoffmann, 1970) a molecule with a conjugated system

of m π electrons cyclizes to form a ring of m−2 π electrons and one σ bond. For this transformation

to happen, the two ends of the relevant π system must approach each other in such a way as to enable

the end p orbitals to overlap constructively. To form a σ bond the two terminal p orbitals need to

rotate. When the molecule is substituted the rotations can be in the same or in opposite directions.

This leads to different stereoisomers and is of much interest to physical organic chemists. Therefore,

such reactions are extensively studied. They are a special case of a pericyclic isomerization where

the transition state is cyclic.
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Figure 8.7 Dynamics following ultrashort UV excitation of cyclopentanone. Shown
is the (time-of-flight) mass spectrum at different delays between the pump and
ionization laser. When there is no delay, only the mass of the parent (84 amu) is
detected. The parent signal decays exponentially, with a lifetime of about 120 fs.
There is a corresponding buildup of an intermediate of mass 56, the mass of the
tetramethylene diradical that results from elimination of CO (this is also the mass for
elimination of ethylene and formation of CH2CH2CO). The peak of the intermediate
(mass 56) decays exponentially in about 700 fs. The decay of the intermediate
becomes even longer if the parent ketone is substituted so that there are more
vibrational modes and the decay time does become shorter when the excess energy
brought in by the UV photon is higher. This is as expected if the energy is
randomized. The decay time is rather short, but not short enough and, even at
significant excess energies, the lifetime for the disappearance of the intermediate is
not as short as expected for a direct descent from a barrier region [adapted from
Pedersen et al. (1994)]. The high power of the ultrashort pump laser means that it is
necessary to properly resolve one- and two-photon processes. [The nature and
fragmentation of the ions created by the ionization laser also needs to be elucidated,
see T. I. Solling et al., Chem. Phys. Chem. 3, 79 (2002)].

Another Woodward–Hoffmann allowed process is the ring opening of electron-
ically excited cyclobutane to two ethylene molecules. This is unlike the thermal
process that has a high barrier. Upon crossing the transition state region, do
the two bonds break in concert or sequentially? It is quite conceivable that both
paths are possible on one and the same multidimensional potential energy surface
(Hoffmann, 1999). It is further reasonable that the relative importance of the two
paths will depend on the total energy and on the detailed manner in which this
energy is supplied. So the essential question to ask is whether a sequential mech-
anism for ring opening is possible. To access the transition state region where the
intermediate in a sequential mechanism is located we need a suitable precursor.
This can be a cyclic ketone. Figure 8.7 illustrates the clocking of the mass spectral
pattern.
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A different aspect of concerted vs. sequential routes is illustrated by the high-
energy dissociation of linear ketones

R CO R′ hν−→ (
RCOR′)∗ →

{
RCO + R′ → R + CO + R′

(RCOR′)†

that are found experimentally to dissociate in a stepwise manner, with one radical
departing well before the other. The alternative route is to form vibrationally hot
parent molecules through radiationless transitions. The first bond break is a stretch
of the C C bond accompanied by a C C O bend to form the acetyl radical. The
time constant for the first bond break increases somewhat as the molecule size
increases, from about 60 fs in acetone to 290 fs in (CH3)2CHCOCH(CH3)2 with
comparable values for cyclic ketones. This increase is rather small compared
with what is expected from the statistical RRKM theory of Section 6.2 when
the number of vibrational modes roughly doubles. It strongly suggests that not
all degrees of freedom participate in the bond-breaking process. This is further
confirmed by the effect of deuterium atom substitution. If D is substituted on
the near C atom (the α position in the terminology of organic chemistry), the
decay slows significantly to 230 fs for CH3CD2COCH3 compared with 100 fs for
C2H5COCH3. Substitution on the next C atom, the β position, brings the time
down to 110 fs for CD3CH2COCH3. This is particularly telling because, apart
from differences due to zero-point energy, the potential energy landscape should
not change upon isotopic substitution.

The non-statistical character of the first bond breakage does, of course, depend
on the nature of the excitation. The UV excitation promotes an electron from a lone
pair on the O atom. The unpaired electron that is left behind can then form a new
π -type bond when the C C bond is weakened. The lowest excited singlet state
(Ã1A2) has the unpaired electron placed in a π∗ orbital. Computations suggest
that the motion out of the Franck–Condon region is along vibrations (CO stretch
and out-of-plane bend, CH3 torsion) that are not part of the reaction coordinate for
the C C bond break but that favor the bonding. The wave-packet moves rapidly
downhill in potential energy. There is a barrier along the reaction coordinate and
if the energy is sufficient, a combination of C C bond stretch and an increase
in the C C O angle will take the motion over the barrier and toward a conical
intersection with the ground surface. Crossing of the intersection produces either
a hot parent molecule or the first C C bond break. The nascent acetyl radical
will be nearly linear but it can deform on the ground state or the trajectory can
bend on the upper state prior to crossing. Figure 8.8 is a two-dimensional view,
which indicates that a correlation between the C C stretch and the C C O bend
is necessary for dissociation.

It is possible to access the first excited state of acetone at energies that are not
sufficient for the motion to surmount the barrier and cross to the ground state in its
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S0/S1 CI

Figure 8.8 A 3D view of the potential energy surfaces for the first excited state and
the ground state of acetone. The plot is as a function of the two most important
coordinates for dissociation: the C C bond distance and the C C O bending angle.
Crossing from S1 to the ground state is possible either at a linear C C O
configuration, identified in the figure as CI, or at a bent one. The solid/dashed line
traces the motion of the center of the wave-packet on the excited/ground state
potential. The concerted motion required for bond-breaking makes the dissociation
non-statistical [adapted from E. W. G. Diau, C. Kotting, and A. H. Zewail, Chem. Phys.
Chem. 2, 273 (2001)].

exit valley. The excited molecule will then live much longer. It will (intersystem)
cross to the lowest triplet state and dissociate on the nanosecond time scale. On
an even longer scale, it can internally convert to the ground electronic state.

At shorter wavelengths and/or for a two-photon process the excitation can
reach higher up excited states. These correspond to the electron on the O atom
reaching a Rydberg orbital. These higher states have several conical intersections
with the first excited singlet state. Here too the crossing is non-statistical and the
first bond-breaking is quite prompt.

In cyclic ketones, the first bond break leads to the formation of the
·CH2(CH2)n−2CO· diradical. As for the acyclic ketones, the second bond break
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in these energy-rich species is delayed but the delay does not increase with size
in the manner expected from a statistical theory.

In Section 7.2.4 we argued that excitation along the reaction coordinate can
propel a system across a barrier even when there are many other degrees of free-
dom. The dissociation of energy-rich ketones provides such an example since
there are two motions that control the dissociation, the C C stretch and the CCO
bend. When the species is nearly linear and energy is placed in the stretch, direct
dissociation can occur in a vibrational period. On the other hand, if some of the
energy is placed in the bend motion, the molecule will miss the narrow bottle-
neck and rattle around. Thus, at the same energy, the molecule can exhibit both
direct and complex dynamics depending on the finer details of the preparation
process.

8.3 Control of chemical reactions with ultrashort pulses

Ultrashort pulses can help us place a wave-packet in a well-localized region on
an excited state potential.16 Moreover, the details of the optical excitation, specif-
ically the momentum in the different vibrations, can have a decisive influence on
the outcome. In Section 7.4 we discussed control in the frequency domain and
emphasized interference between different pathways as an essential element in
making the process go one way or the other. Here we consider how we might
control chemical reactions15 in the time domain.

A very vivid experiment that forges a link between the two points of view
is to let two wave-packets interfere. By being able to adjust the relative phase
of two, otherwise identical, laser pulses we can proceed as follows. The first
ultrashort pulse prepares a localized state at the left (inner) turning point of the
bound excited electronic state of I2. This packet begins to propagate to the right.
The excited state potential is fairly shallow so it takes a while (300 fs) for the
packet to reach the outer turning point and come back to where it started. At that
time the second laser pulse, with a π phase difference, is applied. It too creates a
wave-packet at the inner turning point and this packet destructively interferes with
the first packet so there should not be any fluorescence from the electronically
excited I2 molecule. On the other hand, if the phase difference between the two
pulses is 0, the interference should be constructive and the fluorescence will be
enhanced. This shows the imprint of the coherence of the light on the motion of
matter. In addition the wave-packets acquire a phase during their motion on the
upper potential. So a further refinement is to examine the fluorescence also as a
function of the delay time between the two pulses, Figure 8.9.

To generalize this approach consider a pulse that is tailor-made to have pre-
scribed phase relations between its frequency components.17 Such a “shaped”
pulse is what was used in the example mentioned already in Section 1.1. A
learning feedback approach is to start from an arbitrary pulse shape and feed
the output to a (computer) controller that then seeks to change the shape of the
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Figure 8.9 The interference contribution∗ to the fluorescence
(heterodyne detection) signal from I∗2 excited by two ultrashort
identical pulses as a function of the delay between them.
Upper trace: no phase difference between the two laser pulses.
The wave-packet promoted by the first pulse and the newly
promoted wave-packet can interfere constructively whenever
the time delay between the pulses is a multiple of 300 fs so that
the first wave-packet is back in the Franck–Condon window.
Lower trace: a π phase difference between the two laser
pulses. At intervals of 300 fs the returning wave-packet
interferes destructively with the new wave-packet [adapted
from N. F. Scherer et al., J. Chem. Phys. 95, 1487 (1991). For
other experiments showing interference between
wave-packets excited by two pulses see Baumert et al. (1997).
Even an electron can be so controlled during electron transfer
(Barthel et al., 2001; Martini et al., 2001; Bardeen, 2001)].

(n+1)p

np

ns

(n+2)s Figure 8.10 Energy level for a two-photon excitation of a Cs
atom by a shaped pulse [adapted from D. Meshulach and Y.
Silberberg, Nature 396, 239 (1998)]. The frequency spectrum
of the pulse is shown schematically so as to indicate why the
pulse will contain two or more pairs of photons whose
frequencies add up to the required energy.

pulse so as∗ to enhance the desired outcome. The process is iterated. A simple
example, where one can understand why this approach should work, is shown in
Figure 8.10.

The ns → (n + 2)s transition is two-photon allowed. Detection of the upper
level is through its one-photon fluorescence to the np state. The object of the
control is either to populate or not to populate the upper state using the interference
between different two-photon transitions. The principle is very much the same
as in Section 7.4 but the implementation is different. Here only one pulse is used
but this pulse is ultrashort so it is a superposition of many pulses each with its
own well-defined frequency. It is the interference between these components that
allows us to direct the outcome. The shape of the pulse, meaning the amplitude

∗ The interference term between the two amplitudes, see, e.g., Eq. (2.37), is determined by heterodyne

detection.
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Figure 8.11 Potential
energy curves for Na2 and
Na+

2 for the two-photon
coherent excitation of a
packet on the 21�g

electronic state. By
probing this packet at the
left, arrow 1, and the
right, arrow 2, turning
points respectively one
accesses two different
higher excited states.
The probing at the left
produces the ground state
of Na+

2 . The probing at the
right produces a doubly
excited state, Na∗∗

2 , that
dissociates to a
ground-state Na atom and
a Na+ ion. The ground
state can be probed by
transitions to a repulsive
excited state, arrow 3.

and phase of its different frequency components, has been sequentially adapted,
using a feedback loop, to optimize the output.

8.3.1 Control by pump and probe

The pump–probe experiments discussed earlier in this chapter lend much scope
for control. The idea is to localize the initial state by the pump pulse and to time
the probe so as to catch the system as it is following one path rather than another.
The pumping sequence for the Na2 molecule for which this has been realized is
described in Figure 8.11, with the results shown in Figure 8.12.

Examination of the signals of the ions as shown in Figure 8.12 shows that
the Na+

2 production oscillates with the 320 fs vibrational period of the A1�u

potential. This is because the 21�g → 2�+
g transition to form Na+

2 is possi-
ble at all interatomic distances because the light departing electron takes up
any excess kinetic energy. On the one hand, the Franck–Condon region for
pumping the 21�g state through the A1�+

u → 21�g transition only occurs near
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Figure 8.12 Left: the out-of-phase Na2
+ and Na+ signals as a function of the delay

between the pump and probe pulses (each 80 fs in width at 618 nm). The potential
energy curves are shown in Figure 8.11. By taking a fast Fourier transform (FFT) of
the signals, right panels, the main frequency components can be identified and
thereby the electronic state on which the motion took place [adapted from Baumert
et al. (1997)].

the inner turning point. On the other hand, the Na+ production oscillates pri-
marily with the 380 fs vibrational period of the 21�g potential. This is because
the formation of Na∗∗

2 is possible only near the outer turning point of the 21�g

potential.
The probe laser can also be used to dump the system back to the ground

state. Stimulated emission pumping18 (SEP) shows that dumping can reach
higher-energy regions on the ground potential energy surface that are not other-
wise accessible. By using a localized initial wave-packet, its motion on the upper
surface can bring it to where it can be effectively dumped down into an exit valley.
Note that here, too, one can think of the selectivity being achieved as an interfer-
ence between alternative paths being made possible by the many components of
the localized state.

Control of molecular motion need not refer only to species selectivity. For
a number of purposes, including molecular-scale computing, one may want to
send the system to one or another internal state. Examination of the options of
doing so have also drawn attention to the advantages that sometimes accrue of
reversing the order of the probe and pump pulses. A counterintuitive sequence
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can dress the intermediate and final states and thereby allow a very selective
pumping (Bergmann et al., 1998).

Dephasing limits our ability to control. In larger systems, energy redistribution
and coupling to the environment are important additional sources of dephasing.
Learning algorithms, where the pulse is optimized by monitoring the perfor-
mance, have allowed us to make progress (Brixner and Gerber, 2003). Quantum
computing is a particular form of control and the issue of dephasing is paramount
for such applications.

Problems

A. The Woodward–Hoffmann correlation diagrams (Woodward and Hoffmann,
1970). The text states that the thermal ring opening of cyclobutane is forbidden
but that the photophysical process is allowed. (a) Draw the four molecular orbitals
for a ring of four C atoms where only one pz orbital per C atom is considered.
The z axis is taken as normal to the plane of the ring. Also draw the orbitals for
two ethylene molecules, two π orbitals per molecule. (b) Using the symmtery of
the orbitals with respect to the plane of the molecule, correlate the four orbitals.
(c) Why in Figure 8.6 is the ring opening in cyclobutene called “disrotatory” and
how is this related to the number of π electrons?

B. How long does it take to break a bond? Consider a direct dissociation
along a repulsive potential. The optical excitation places the system high up on
the potential, essentially at the classical turning point, R0. (a) Take the repulsive
potential to be exponential as in Eq. (2.13). Say that as in ICN the potential
correlates with the ground state of the fragments. For a given (mean) frequency
of the light pulse, calculate the available energy and hence relate the classi-
cal turning point to the parameters of the potential and to the photon energy.
(b) As shown in Figure 8.2, the products are detected when they have separated
to a larger distance, say Rd. Compute analytically how long it takes the products
to move from initiation to detection. Hint: if the velocity v is constant, the time
it takes to transverse a distance �R is �R/v. But the velocity increases as the
products separate. (Why?) So it is necessary to divide the distance R0− Rd into
short intervals and add together the contributions from the separate intervals.
(c) Verify the experimental value for ICN, about 200 fs, if the range parameter
for the exponential repulsion is 0.8 Å.

C. The revival time. Taking the ground vibrational state to be at zero energy,
the higher vibrational states have energies that are not quite multiples of the
harmonic frequency. Rather, Ev = �(ωv − ωxv2). There is an uppermost bound
state. Its quantum number N is given as Nx where we approximate 1/x as an
integer. Therefore the energy levels are Ev = (h̄ω/N)v(N − v). Say we build
an arbitrary wave-packet of bound vibrational motion. Its generic form is
ψ(t) = ∑N

v=0 Av exp(−iEvt/h̄)ψv. The amplitudes Av determine the shape of
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the packet. (a) Show that in the harmonic limit, Ev = h̄ωv, the wave function at
times t + 2π/ω recovers the same shape it had at time t. (b) Show that in the
anharmonic case the revival time is N times longer. (c) Back to the harmonic
limit. Can you specify such amplitudes Av that the wave function retains its shape
at all times? Try: Av = (αv/

√
v!)A0. This is, in fact, the wave function Eq. (8.1).

See C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, New York,
John Wiley, 1977, complement Gv. (d) The anharmonic limit. Can you do the
same as you did in (c) for the anharmonic case?

D. Coherent rotational motion. Build a wave-packet of (rigid rotor) rotational
states and show that it will revive.

E. Directed molecular states. Can you build a wave-packet of rotational states,
giving a different amplitude to different m states, such that the wave-packet will
be initially localized in a given direction and will then rotate as the hand of a
clock?

F. Spreading of wave-packets. In an anharmonic potential, a localized wave-
packet will, in general, spread. Show this for the simplest case, a constant poten-
tial. Take an initial state that is a Gaussian like Eq. (8.1), but allow its width σ to
depend on time. By substituting this function in the Schrödinger time-dependent
equation show that it is a solution. Thereby show how σ increases with time. See
C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, New York, John
Wiley, 1977, complement GI.

Notes
1 Theorists like it too because you do not need to propagate the numerical solution of the

quantum dynamics for a long time. A short propagation interval is often enough: you have

computed just as much detail as is really needed. Working at a sharp energy is, in some

sense, wasteful. You generate answers that are more precise than they need to be. There are

other pleasing aspects. One is that one can explore large systems using only few

coordinates because intermode energy exchange is initially limited to a small subset of

modes. A more technical way of saying this follows from our considerations in Chapter 7:

you do not have to include weaker coupling terms until such propagation times are of the

order of h̄/coupling strength. Because h̄ is small, a strength of 0.1 cm−1 corresponds to

50 ps, which is long on the scale of vibrational periods.

2 Would it not be interesting to localize electrons? Seemingly it is not going to be practical

because by the Born–Oppenheimer approximation, electrons move faster than nuclei. True

but not always true. Say we go up in electronic energy. The spacings between excited states

get smaller so the period of the electronic motion, which is inverse to the spacings, gets

longer. Indeed, if you use the Bohr model of the atom, the orbital period increases as n3

where n is the principal quantum number. So we should be able to localize electrons with

high n’s, known as Rydberg electrons. Once localized they will revolve about the nucleus

almost just as Bohr and Sommerfeld imagined them to do. See, for example,

Nauenberg et al. (1994), Verlet and Fielding (2001).

3 The first example, our Eq. (8.1), was reported by Schrödinger himself in 1926.
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4 The general case was already known to Ehrenfest who showed in 1927 that the mean

position and momentum of a wave function strictly follow what look like classical

equations of motion, d x(t)/d t = p(t), d p(t)/d t = −dV (x)/dx . The quantal nature of

the dynamics enters in the equation of motion for the momentum. For a classical

trajectory x(t), p(t) the expected result is d p(t)/d t = −dV (x)/dx . For a harmonic

potential, where V(x) = kx2, the two results are the same but, in general, the average (over

the wave function) of the force, −dV (x)/dx , is not equal to the force at the average

position. The Ehrenfest theorem is powerful but can be potentially misleading: it is valid,

say, if the wave function bifurcates into two components. Under such circumstances, the

system is very much not at its average position.

5 The Gaussian is also an exact solution if there is no potential, that is, for a free motion. In

this case the width increases with time. This is useful for setting a time scale for

broadening. Note that this broadening has a classical interpretation: for a Guassian wave

function there is a distribution in the values of the momentum and, classically, the

components of higher velocity move out faster. Explicitly, if �v is the spread in velocity

as determined by the initial width σ , the additional spread in x is �x = t�v = t�p/µ = h̄t

/ µσ . Given any

initial state that is localized, the time-dependent Schrödinger equation enables us to

propagate it in time. Numerical methods for doing so are available, e.g., Kosloff (1994),

Jackson (1995). An important advantage of such methods is that the complete wave

function can be simultaneously propagated on several electronic states. For each state

there can be a different wave-packet for the nuclear motion, so that the motion can be

bound on one state and dissociative on another. See Figure 9.12 for an example.

6 The pioneering study of ICN photofragmentation is K. E. Holdy, L. C. Klotz, and K. R.

Wilson, J. Chem. Phys. 52, 4588 (1970).

7 This means that we overlook that the equilibrium configuration in the excited state(s) is

probably bent so the Franck–Condon region for excitation from the linear ground state

will create an I CN configuration with a force that will set CN rotating (this is detected

as fairly rotationally excited CN fragments). We also neglect the presence of several

electronically excited states and the possibility of non-adiabatic coupling between them.

Furthermore, there are also electronic states that correlate asymptotically to the spin-orbit

excited state of the iodine atom that is about 1 eV above the ground state. For the accurate

description of the potentials from ab initio quantum chemistry, see Y. Amatatsu, S.

Yabushita, and K. Morokuma, J. Chem. Phys. 100, 4894 (1994).

8 In principle and in the absence of environmental perturbations, the coherence will revive.

The revival time is expected to be much longer than a vibrational period. Problem C

addresses the not trivial task of estimating that the revival time is about 2N times longer

than a vibrational period where N is the (finite) number of bound states of a Morse-type

anharmonic potential. N (≈ 60) is quite high for HgI. The (harmonic) vibrational period is

267 fs.

9 On the coherence in the ultrafast dissociation of I−3 , see Banin et al. (1994); T. Kuehne,

R. Kuester, and P. Voehringer, Chem. Phys. 233, 161 (1998). See also Ruhman and

Scherer (1998) for a collection of papers on coherence effects.

10 J. K. Wang, Q. Liu, and A. H. Zewail, J. Phys. Chem. 99, 11309 (1995).

11 Wang et al. (1994), Zhu et al. (1994), Bardeen et al. (1998), T. Ye et al., Chem. Phys. Lett.

314, 429 (1999). See also El-Sayed et al. (1995). Of course, coherent motion can be seen
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in larger inorganic molecules. One can make the case for a parallelism between the decay

of coherence and the phenomenon of IVR. By analogy to the terminology of nuclear

magnetic resonance (NMR), one can call them a T2 and a T1 process. Such analogies have

been beneficial to coherent optical spectroscopy and have suggested many useful

extensions, particularly so in relation to 2D NMR (Mukamel, 1995, 2000; Dantus, 2001;

Jonas, 2003).

12 Migratory dynamics is discussed by J. J. Wang, D. J. Smith and R. Grice, Chem. Phys.

207, 203 (1996).

13 The structure of the adduct favors this because in similar molecules it is known that they

are “anti” hydrogen bonded, meaning that the hydrogen atoms point away from the

halogens. The prompt departure of the H atom also eliminates the possibility that in

reactions initiated, e.g., by photolysis of BrH·CO2, which is hydrogen bonded, the heavy

Br atom stays around and may play an unintended guest role.

14 For more on electrocyclic reactions, see Borden et al. (1988), Dolbier et al. (1996), Fukui

(1982, 1971), Pross (1995), Rauk (1994), Woodward and Hoffmann (1968, 1970).

15 For control in the time domain, see deVivie-Riedle et al. (2001), Gaspard and Burghardt

(1997), Gordon and Rice (1997), Rabitz and Zhu (2000), Rice and Zhao (2000), Tannor

and Rice (1988).

16 In principle, using IR and the coordinate dependence of the (permanent) dipole moment

one could also do this on the ground state. One can also dump the packet onto the ground

state from higher up as in SEP, e.g., Pausch et al. (2000).

17 Wave-packets moving in an anharmonic potential dephase see problem F. We can think of

the wave-packet as a coherent superposition of stationary vibrational (and rotational)

states, each having its own phase. These components are born with a phase imprinted by

the pump but as time goes on each acquires an additional phase and if the potential is

anharmonic the phase factors get out of ‘sync’ because, unlike the case of a harmonic

potential, the period of the vibrational motion depends on the energy. This dephasing can

be relatively slow because its time scale is determined by the anharmonicity. But it can

also be turned to advantage. Using chirped (that is, phase-modulated) pumping one can

compensate for the dispersion in the phases by exciting each component with a proper

phase. The proof of principle is that one can set the chirp in the opposite direction so as to

enhance the spreading.

18 Stimulated Emission Pumping is reviewed in Hamilton et al. (1986), Silva et al. (2001).



Chapter 9
State-changing collisions: molecular
energy transfer

The transfer of molecular energy by collisions is the slow step in the return of
a macroscopic system to thermal equilibrium.∗ These state-changing collisions
are called inelastic because conservation of energy requires that the change in
the internal energy of the molecules is balanced by a change in the (relative)
kinetic energy of the two partners. When they gain internal energy, the molecules
exit from the collision slower than they approached and vice versa. You already
know that the heavy atoms are resilient to changes in their kinetic energy. So our
main theme in this chapter is an elementary discussion of what determines the
propensities of molecular energy transfer. This will provide a more quantitative
version of the Franck–Condon principle, a formulation that is not limited to
the sudden regime. We will examine a variety of processes of interest that are
made possible or are limited by these propensities. Our last section deals with
how and when it is possible to transfer electronic energy, a process that nominally
results in a large change in the internal energy.

9.0.1 Equilibrium and disequilibrium

Thermal equilibrium in the gas phase can be characterized by a constant (time-
independent) fraction of molecules in any given energy level. At a tempera-
ture T the relative population in the ith energy level is given by the Boltzmann
distribution

Pi = Ni

N
= gi exp(−Ei/kBT )/QI (9.1)

Here Ni is the number of molecules in level i and N is the total number of
molecules. As usual, the degeneracy gi is the number of possible quantum states

∗ In principle, the system can also relax to equilibrium by light emission. Unless the circumstances

are unusual, emission of IR photons is too slow a process to significantly compete with collisional

relaxation. An extreme case is that of molecules in outer space where the density is very low so

the time between collisions is exceedingly long. Another unusual situation is a chemical laser,

Section 9.0.3, where the presence of a high density of photons stimulates the emission of other

photons.
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of the molecule corresponding to the energy level Ei. QI is the internal partition
function, Eq. (A.6.4), that insures the conservation of matter,

∑
i Ni = N .

Perturbing the system can lead to a transient population distribution that devi-
ates from Eq. (9.1). The system is then in a state of disequilibrium. Such a state can
be achieved, for example, by very rapid heating as in a shock tube. Alternatively,
and more selectively, a preferential population of excited states can be created
either by physical activation (e.g., absorption of light) or by chemical reactions
that are selective in their energy disposal (compare Figures 1.2 and 1.3).

Following a transient disturbance the gas “relaxes” into an equilibrium dis-
tribution. One can follow this relaxation process in terms of the changes in the
population of the different energy levels. Such changes are the manifestations of
the energy-transferring molecular collisions. For example, a vibrationally excited
HCl molecule can lose its excess energy in a collision with a vibrationally cold
DCl molecule

HCl(v = 1) + DCl(v = 0) → HCl(v = 0) + DCl(v = 1), Q = 775 cm−1

Such an inelastic collision is not reactive yet it is not elastic either since the final
translational energy is not equal to the initial translational energy. The initial
vibrational energy of HCl is converted partly to vibrational excitation of the
DCl partner and the balance goes into the translational energy of the receding
molecules, which therefore move faster after the collision. The energy balance
is shown in Figure 9.1, which also shows an experiment that monitors the rate
of energy transfer. Q is the translational energy release for the process indicated.
Below we shall loosely call Q the gap and set up a scale for assessing when the
gap is large or small for a given experimental condition.

In the experiment shown in Figure 9.1 a mixture of HCl and DCl in an excess∗

of Ar buffer gas is irradiated by a brief pulse of infrared light (say, from an HCl
chemical laser, Section 9.0.3). HCl molecules are thereby selectively excited from
the v = 0 to the v = 1 level. Thereafter, the population of the HCl(v = 1) level is
depleted both by transfer of its entire vibrational energy to rotation and by trans-
lation, mainly owing to collisions with the excess Ar buffer gas, HCl(v = 1) +
Ar → HCl(v = 0) + Ar, and by vibrational energy transfer to DCl(v = 1). The
v = 1 population of DCl is depleted mainly by transfer of its energy to rotation
and translation by collisions with an Ar atom, DCl(v = 1) + Ar → DCl(v = 0) +
Ar. This process has a large gap but not as large as the corresponding transfer in
the case of HCl. The smallest gap, Q = 775 cm−1, is for the vibrational energy
transfer from HCl to DCl.

The experiment monitors the IR fluorescence∗∗ of HCl(v = 1) and DCl
(v = 1). For DCl(v = 1) it shows, Figure 9.1, both a fast-rising exponential

∗ The Ar acts as a buffer gas, that is, as a heat bath for the released translational energy.
∗∗ The loss of molecules due to fluorescence is negligible compared with the loss due to energy trans-

fer collisions. But the sensitivity of detectors in the near IR is sufficient to detect the photons that

are emitted and thereby to follow the changes in the concentrations.
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Figure 9.1 Time-resolved IR fluorescence intensity from DCl(v =1) and HCl(v = 1)
following a laser excitation pulse that excites HCl to v = 1 [adapted from H.-L. Chen
and C. B. Moore, J. Chem. Phys. 54, 4072 (1971)]. The energetics of the different
processes are shown in the left panel. Three different values of Q, for three different
inelastic collisions, are indicated: the HCl/DCl transfer, the V R, T transfer in HCl + Ar
collision, and the V R, T transfer in DCl + Ar collision. The time dependence of the
fluorescence signal from vibrationally excited HCl and DCl is shown on the right. HCl
decays faster by the lower Q process, the V V’ transfer to DCl. The decay of DCl is by
V R, T transfer and is slower.

due to the∗ rapid energy transfer from HCl(v = 1) and a slower decaying expo-
nential due to V R,T, transfer due to collisions of DCl(v = 1) with the buffer gas.
The time evolution of the populations measures the role of collisions because the
slow loss of molecules by IR emission is only a small fraction on a millisecond
time scale. On the other hand, on that scale at a moderate pressure, a molecule
undergoes millions of collisions with the buffer gas.

9.0.2 A hierarchy of relaxation rates

The rate of change of state due to inelastic collisions depends on the pressure. To
factor out this dependence we compare the rate of energy transfer to the number
ω of all collisions that the molecule undergoes per unit time, Eq. (2.8). The ratio
is defined as the (dimensionless) collision number Zr for a particular relaxation
process r. An equivalent definition of the collision number is as the ratio of the
relaxation time τ to the time interval ω−1 between collisions:

Zr = ωτ (9.2)

∗ At a total energy E, E = EI + ET = E ′
I + E ′

T or Q ≡ E ′
T − ET = EI − E ′

I.
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Thus the expected transition will occur, on average, once in every Zr colli-
sions. Alternatively we can regard Zr

−1 as the probability of inducing the par-
ticular inelastic transition r in a single collision. The transfer between rotation
and translation, R–T, that has a rather low gap, is very fast. Measurements of
pressure broadening of the line shape, see Figure 7.24, show that R–T trans-
fer occurs on nearly every collision, or that ZRT is typically between 1 and 10.
Studies of V T transfer as shown in Figure 9.1, or of many other examples, say
O2 in Ar at room temperature, yield ZVT ∼ 106, meaning that a vibrationally
excited O2 molecule will survive a long time before it is deactivated by trans-
fer of the vibrational energy to translation. An early example of the importance
of these differences is the lasing pattern of chemical lasers, as discussed next.
Another practical application is that workhorse, the CO2 laser, as discussed in
Section 9.1.2.1.

Studies of relaxation in the bulk have yielded valuable information, summa-
rized in Figure 9.2, on the rates of energy transfer processes. It is clear from the
summary and the HCl/DCl example that low translational exoergicity is favored.
But why? We will argue that this requires an extension of the Franck–Condon
principle, Section 7.0.1, beyond the sudden limit. We will call the resulting rule
of thumb the exponential gap principle and show that the collision number Zr is
exponentially large in the “gap” (= the change, Q, of the translational energy),
Zr ≈ exp(?·Q). As indicated by the question mark, Q cannot be the only relevant
factor because Q carries dimensions and the exponent must be dimensionless. For
the moment we continue to examine the implications of an exponential decrease
of the probability of the process with increasing Q.

V V

RR

T

10−8

10−6

10−10

10−4

10−8

Figure 9.2 Schematic
diagram showing the
energy transfer processes
occurring in thermal
molecular collisions.
V, R, and T refer to
vibrational, rotational,
and translational energy,
respectively. The numbers
are typical relaxation
times, in seconds,
characterizing the
particular mode of energy
transfer for a gas at
atmospheric pressure.
The slowest process is the
V T transfer and so it
is rate-determining for
the return to thermal
equilibrium [adapted from
W. H. Flygare, Acc. Chem.
Res. 1, 121 (1968)].

9.0.3 The HF chemical laser

The HF chemical laser operates by a flash photodissociation of a suitable precursor
for F atoms in the presence of H2 and an excess buffer gas. The F atoms react with
H2 and produce rovibrationally excited HF molecules. A few microseconds after
the flash the system begins to lase in the IR, Figure 9.3. It does so when an excited
HF molecule spontaneously emits an IR photon that then stimulates another
excited HF molecule to emit a clone of that photon. These two photons, which
are of the same frequency and direction of propagation, next stimulate two excited
HF molecules to emit two more photons. As long as there are HF molecules in
the excited level and photons of the right frequency this stimulated emission
process can continue to cascade. Opposing this is the (stimulated) absorption
process. As long as there are photons of the right frequency, HF molecules in the
final state can absorb these photons and go back to the emitting level. To have a
net gain of identical photons the stimulated emission process must be faster than
the absorption of photons (and of other losses due to photons going out, etc.).
In 1917 Einstein argued that there should be not only spontaneous but also stim-
ulated emission of light. He further showed that the rate constant for stimulated
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Figure 9.3 Time-resolved laser emission from HF(v = 2) molecules produced by the
F + H2 reaction initiated at time zero by a photodissociation of an F atom-producing
precursor. The different axes are labeled by the rotational quantum number, j, of the
emitting molecule [adapted from M. J. Berry, J. Chem. Phys. 59, 6229 (1973)]. Note
the microsecond time scale in reference to the relaxation times shown in Figure 9.2.

emission, the so-called Einstein B coefficient, equals the rate constant for absorp-
tion of light. Say we consider an emission process where the HF molecule is going
down from state v, j to v′, j ′ (where v′ = v − 1 and j ′ = j ± 1). It follows from
net gain, meaning that the system operates as a laser,∗ producing a net increase in
cloned photons, that there is a “population inversion” defined quantitatively by

[HF(v, j)]

g j
>

[HF(v′, j ′)]
g j ′

(9.3)

Here the square brackets denote the concentrations of molecules in the particular
rovibrational level and g is the degeneracy of the level, gj = 2j + 1 for a rovibra-
tional level. Note that it is the concentration of the initial, emitting, species that
is on the left-hand side.

The laser emission occurs several microseconds after the reaction is initiated.
During this interval a nascent HF molecule has had time to undergo hundreds
of collisions. Such collisions could bring the molecules to thermal equilibrium.
Obviously they do not because the condition of population inversion, Eq. (9.3),
is the very antithesis of equilibrium. If there was equilibrium

[HF(v, j)]

g j

/
[HF(v − 1, j ′)]

g j ′
= exp (−(E(v, j)

−E(v − 1, j ′)/kBT ) 	 1 , thermal equilibrium

∗ Laser: light amplification by stimulated emission of radiation. The rate of stimulated emission for

the transition from state v, j to v′, j ′ is [HF(v, j)] ρB(v, j → v′, j ′)/g j where ρ is the density of

photons at the frequency of the transition. The rate of transition from v′, j ′ to v, j by absorption of

photons is [HF(v′, j)] ρ B(v′, j ′ → v, j)/g j ′ . For lasing, the rate of stimulated emission needs to

be larger. Why do we divide by the degeneracy g? Because the concentration divided by g is the

number of molecules in any particular quantum state, per unit volume.
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whereas the experiment shows that the left-hand side is larger than 1! How can
that be? Understanding the mechanism was one of the early triumphs of the
principle of exponential gap.

It follows from the time scale axis of Figure 9.3 that prior to the onset of
lasing there is enough time for hundreds of collisions. Therefore, for any given
vibrational state of HF there is complete exchange of energy between the rotations
and the translation. (Recall that there is an excess of a buffer gas.) But the HF
quantum of vibration is rather large. There is a large gap when such a large
energy needs to be dumped into translation. Therefore, on the microsecond time
scale of interest, the nascent vibrational population of HF is hardly perturbed.
It takes a far longer time for vibrational relaxation of HF, see Figure 9.1 where
the vibrational relaxation of DCl occurs on the millisecond time scale (and the
vibrational quantum of HF is larger than that of DCl). In other words, it is an
implication of the principle of exponential gap, as summarized in Figure 9.2,
that on the microsecond time scale the HF sample acts like a mixture of distinct
species. Each species is an HF molecule in a given vibrational state. We can surely
tell apart an HF molecule in v = 2 from that in v = 1, so there is no problem. They
really can be regarded as distinct chemical entities. Each species is in thermal
equilibrium because the R–T energy exchange is fast. But the species are not
in “chemical” equilibrium. The “reactions” that bring the system to “chemical”
equilibrium are of the type HF(v) + M → HF(v′) + M where M is an atom of the
buffer gas and the process interconverts the different species. These “reactions”
are too slow to occur on the time scale of interest.

The recognition that a gas can be in equilibrium in one sense yet fully in
disequilibrium in another is actually familiar once you pause to think about it. An
extreme case∗ is a gaseous mixture of O2 and H2 that is in thermal equilibrium.
It can be stable for a very long time but it is not in chemical equilibrium, as one
verifies by accelerating the rate of reaction by some external means. The reason
we care about the principle of exponential gap is that it allows us to understand
that, on the shorter time scale, some internal modes can be in equilibrium while
others will not be. In other words, what we usually call thermal equilibrium can
be undone in a variety of ways and we will see several examples.

*9.0.3.1 The funnel mechanism
The funnel mechanism shows why the fast rotational relaxation and the far slower
vibrational relaxation allow an efficient operation of an IR chemical laser. To
illustrate the mechanism Figure 9.4 shows, as a function of the rotational quantum
number j, the population in two vibrational manifolds, v and v−1. An IR transition
occurs not quite vertically on such a plot. A state v, j emits to v − 1, j + 1 or

∗ A very extreme case is a gaseous sample that is in both thermal and chemical equilibrium. It

is typically not in equilibrium with respect to nuclear reactions, meaning that the distribution of

elements is not the one that would be obtained if nuclear reactions took place at a measurable rate.
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Figure 9.4 The funnel mechanism for chemical lasers. Plotted, with the energy
on the vertical scale, are the populations (per quantum state), [HF(v, j)]/g j , for the
upper and lower vibrational states of the laser transition. The rotations are taken to
be at thermal equilibrium (with B/kBT = 0.05, which is realistic for HF at room
temperature). Left plot: an excess population in the upper vibrational level. Right
plot: [HF(v)] / [HF(v − 1)] < 1. Shown are two j → j + 1 transitions and these show that
at higher js one can have laser emission even when there are fewer HF molecules in
the level v than in the level v − 1. Problem A determines the range
of j values for which this is possible.

j − 1. The plot is made under the assumption that rotational relaxation is fast
enough so that the rotational states of a given j are in thermal equilibrium. But if
so,

[HF(v, j)]

g j

/
[HF(v − 1, j + 1)]

g j+1
= [HF(v)]

[HF(v − 1)]

× exp (−B( j( j + 1) − ( j + 1)( j + 2))/kBT ) (9.4)

where, for a j → j + 1 transition, as written, the Boltzmann factor is larger than
unity (B is the rotational constant). So positive gain (= population inversion,
left-hand side of (9.4) > 1) is possible even when there are fewer HF molecules
in the level v than in the level v − 1, 1 > [HF(v)]/[HF(v − 1)]. One can therefore
recover a lot of the chemical energy as laser radiation. Lasing is not limited to
the case where there is an excess of HF molecules in the vibrational level v.

The funnel begins to operate once the system begins to lase. The laser output
means that the concentration of molecules in the level v, j decreases while the
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concentration of molecules in the level v − 1, j + 1 increases. So even if we had
gain it would shortly be exhausted. To keep the laser going we need to drain the
final level v − 1, j + 1 and/or to provide a fresh supply of molecules into the
emitting v, j level. Both needs are satisfied by a fast rotational energy transfer.
The shortage of molecules in level v, j due to their (stimulated) emission is made
good by transfer from other rotational levels of the same v, thereby restoring
thermal equilibrium. The excess of molecules in level v − 1, j + 1 is depleted
by transfer to other rotational levels of v − 1. The funnel mechanism explains
why, once lasing begins, the system acts collectively to lock onto that transition:
the cascading of cloned photons means that the stimulated emission (whose rate
is proportional to the density of photons) favors this transition and the funnel
insures that there is a continuous fresh supply of molecules to the upper level
and a draining of molecules from the final level. Indeed, it is a characteristic of
chemical lasers (e.g., the excimer lasers of Section 3.2.4.1) that they operate not
only by preferential pumping into the emitting levels but also by the efficient
draining of the final level.

While not of much practical use, it is an interesting implication of the principle
of exponential gap that lasing is also possible on pure rotational transitions,
v, j → v, j − 1. Seemingly we just argued that this is not possible because of
efficient rotational energy transfer. True, but recall that the spacing between
rotational levels increases with increasing j. If we could access states of such
very high j that the gap between two adjacent rotational levels, 2Bj, is large
enough then such high j states will not efficiently relax! How would we go about
it? One option is to note that the process

HF(v, j) + Ar → HF(v − 1, j ′) + Ar

can have a small gap and therefore be efficient, if the internal energy of the final
state is about comparable to that of the initial state. This requires that almost
an entire vibrational quantum has been converted to rotational energy. For HF a
V–R transfer with a low gap requires dumping over 4100 cm−1 into rotation. As
a hydride, the rotational constant of HF is large, B ≈ 21 cm−1, and so for a low
initial j it requires j ′ of about 14 or 15 for the gap to be small.1

9.1 Vibrational energy transfer

We discuss first collisions that induce vibrational–vibrational energy transfer, first
in diatomics and then in larger molecules. Such processes can have a low gap and
therefore occur fairly efficiently. Then we return to a topic that played a key role
throughout the history of chemical kinetics: the collisional acquisition (or loss) of
vibrational energy of larger molecules. We know from the Lindemann mechanism
that such processes can drive a molecule all the way to isomerization or dissoci-
ation. But they are also important in any chemical system in disequilibrium.
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Figure 9.5 The relative
population of vibrational
states of CO in an
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vs. the vibrational
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The rate of energy transfer collisions increases with the pressure, and in
Section 11.1.4 we examine vibrational relaxation in liquids.

The experimental techniques that can be brought to bear toward understanding
inelastic collisions are the same as for reactive collisions. In particular, the tech-
niques that were discussed in Chapter 7 for photoselective chemistry have been
useful in preparing initial states and for probing the products. The theoretical
machinery is also similar.2

9.1.1 V V′ processes in diatomics

Spectroscopy of a flame rich in CO molecules reveals an unexpected deviation
from thermal equilibrium, Figure 9.5. For the very lowest vibrational states the
distribution is Boltzmann-like, exhibiting a monotonic decrease in concentration
of CO(v) with increasing vibrational quantum number. The only feature worth
remarking on is that the temperature of the distribution is high, but this is to be
expected for a flame. The unexpected feature is the maximum in the distribution
for intermediate values of v. Theoretical considerations3 have suggested that the
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excess of population in higher v states is pumped by the vibration to vibration,
V V, processes

CO(v = 1) + CO(v = 1) → CO(v = 2) + CO(v = 0)

CO(v = 2) + CO(v = 1) → CO(v = 3) + CO(v = 0)

. . .

Such processes have no gap if the molecule is harmonic, but the real molecule is
not, and so the processes as written are a shade exothermic. Problem J shows that
the process is faster in the exothermic than in the reversed endothermic direction.
At very high vs the vibrational levels become close enough that other relaxation
processes such as V T begin to compete and the up-pumping ceases.

The same V V up-pumping is observed in other diatomics and in mixtures
of gases. When the two molecules are not the same one can have either a one- or
a two-quantum transfer and the relaxation of O2 by N2O, as shown in Figure 9.6,
is a particularly nice example because it shows the role of anharmonicity. The
efficient transfer from O2 at v ≈ 15 is due to the one-quantum loss that goes into
the symmetric stretch of N2O:

O2(v) + N2O(000) → O2(v − 1) + N2O(100)

where the notation for the vibrational quantum numbers of N2O is discussed
in Section 9.1.2. The facile rate of transitions from O2 at v = 21 is due to the
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two-quantum loss to the (higher-frequency) asymmetric stretch of N2O:

O2(v) + N2O(000) → O2(v − 2) + N2O(001)

Computing the gap for a one- and a two-quantum loss explains why the second
process is more selective for the initial vibrational state of O2.

Vibrationally excited O2 is formed in atmospheric photochemical processes
and its relaxation competes with its removal by reactions, particularly with another
O2 to form O3. Satellites monitoring the IR emission of the atmosphere have also
uncovered the formation and relaxation of rovibrationally excited NO.

9.1.2 V V processes in polyatomics

In polyatomic molecules, new types of V V transfer processes are possible. To
discuss these we begin with Figure 9.7, which shows the low-lying vibrational
states of CO2 together with their spectroscopic designation. The triplet of numbers
m, n, p indicates the numbers of vibrational quanta in the symmetric stretching
(m), bending (n), and asymmetric stretching (p) modes, respectively.

The new feature for polyatomics is illustrated by the intramolecular collision-
induced V V transfer

CO2(020) + M → CO2(100) + M Q = −103 cm−1
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that is very efficient∗ (Zr ∼ 10). Next are the two intermolecular V V “sharing”
processes

CO2(100) + CO2(000) → CO2(010) + CO2(010) Q = 54 cm−1

and a V V process familiar to us from diatomics

CO2(010) + CO2(010) → CO2(020) + CO2(000) Q = 49 cm−1

for which Zr ∼ 50. In CO2, intermolecular sharing “equilibrates” among the
levels of the 0n0 manifold, while the intra- and intermolecular transfer processes
couple the m00 and 0n0 levels. Thus, the whole mn0 manifold of vibrationally
excited states is rapidly equilibrated and is then depleted slowly by the inefficient
V T transfer out of the lowest vibrationally excited state

CO2(010) + M → CO2(000) + M Q = 667 cm−1

to the vibrational ground state. In pure CO2 this process is rather inefficient:
Zr ∼ 5·104. This, then, is the slowest step in the bulk relaxation of CO2.∗∗

On the other hand, the 00p manifold of states reaches equilibrium within
the manifold by intermolecular sharing, but it is not efficiently coupled to the
mn0 manifold, as there are no states near enough in energy to the 001 state, cf.
Figure 9.7. Thus V V transfer processes out of the 001 state are comparatively
inefficient, with Zr ∼ 2·104. We thus see a somewhat uncommon case of a slow
V V step, which is nearly rate-determining.† Hence, vibrationally excited CO2

can be viewed as a mixture of two species, each species being in thermal equilib-
rium. Molecules of one species are CO2 molecules in vibrational states of the 00p
manifold and those of the other species in the mn0 manifold. Collisional transfer
between the two manifolds is inefficient.

∗ The near degeneracy of the two zero-order states 100 and 020 means that they are already mixed

by anharmonicities. This was the first example of a Fermi resonance, here a 1:2 resonance. The

gap is however wide enough that it requires a perturbation by a collision to fully mix the two states.

When the energy is higher so that there are many nearby states, as in Chapter 7, intramolecular

coupling can be sufficient to overcome the (small) gap.
∗∗ Indeed, the proliferation of nearby excited vibrational states of polyatomics, see Figure 7.22 for

example, suggests that this would be a general trend: the rate-determining step in the vibrational

relaxation is the V T transfer out of the lowest vibrational level. The principle of exponential gap

therefore implies that the lower is the vibrational quantum of that mode, the faster is the relaxation.

This is a long-known observation, as the Lambert–Salter rule, Eq. (9.16) below, and it holds over

several orders of magnitude. Note that its empirical validity tells us more than just that the principle

of exponential gap is useful. It also implies a facile V V transfer among the excited vibrational

states.
† Transfer out of the 001 state can be made to become the rate-determining step when the inefficient

V T relaxation of CO2(010) is facilitated by adding other molecules to which it can relax by V V

transfer. Finding molecules that effectively drain CO2(010) is a key to increasing the efficiency of

the CO2 laser.
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9.1.2.1 The CO2 laser
The seemingly esoteric considerations of V V′ transfer form the basis for the
workhorse∗ of all lasers, the CO2 laser. In the first stage nitrogen molecules are
efficiently vibrationally excited by collisions with electrons∗∗ during an electrical
discharge,

N2(v = 0) + e → N2(v = 1) + e

The vibrationally excited N2 molecules then undergo a rather facile V V transfer
with CO2

N2(v = 1) + CO2(000) ⇔ CO2(001) + N2(v = 0) Q = −18 cm−1

and promote a significant fraction of CO2 molecules into the 001 level. The basis
for lasing is the stimulated emission from the 001 level, Figure 9.8,

CO2(001) →
{

CO2(100) + hν(10.6µ)
CO2(020) + hν(9.6µ)

provided that (a) collisional loss of CO2(001) is kept to a minimum and (b)
collisional loss of CO2(100) and CO2(020) can be enhanced so that the upper-
level population can be maintained higher than that of the lower levels. The first
condition is obtained owing to the inefficient V V′ transfer out of the 001 state.
The second condition is fulfilled by depletion of CO2(010) and (020) due to the
efficient sharing and V V processes as discussed above.

*9.1.2.1.1 Chemical pumping for the CO2 laser
The CO2 need not be pumped by vibrationally excited N2. Chemical means can
also be used. As an example, vibrationally excited DF molecules produced in the
fast exoergic reaction F + D2 → D + DF(v′) can undergo efficient V V′ transfer
with CO2:

DF(v′) + CO2(000) → CO2(001) + DF(v′ − 1)

From here on, the CO2 fate is the same as before. The necessary F atoms can be
produced by the precursor reaction

NO + F2 → NOF + F

∗ For everyday applications this laser is the universal “knife.” It can cut through most materials

because it is so efficiently absorbed. But if one uses CO2 with the heavier carbon isotope, 13C,

the laser emission is in an atmospheric “window,” meaning that it is not highly absorbed by

the atmosphere. This has not escaped the attention of the (former Soviet) military. The isotopic

enrichment was achieved by IR multiphoton dissociation of organic molecules, as discussed in

Section 7.2.5.
∗∗ Why would that be? Surely an electron is too light to impart much momentum to the far heavier N

atoms. Quite right, but the mechanism is the temporary attachment of an electron to form N−
2 . The

extra electron goes into an antibonding orbital and so the equilibrium position of N−
2 is larger than

that of N2. The anion is therefore formed in a vibrationally excited state and when it autodetaches

the extra electron it retains some of that vibrational excitation.
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In this way, by mixing tank gases (NO, F2, D2, CO2) it is possible to effect a direct
conversion of chemical to coherent radiation energy.

At the center of our discussion in this section has been the concept of a state-
to-state rate constant for energy transfer, and the wide variations possible in such
rates. In Section 9.2 we begin to explore the basic dynamical factors that determine
such rates. Before that we turn to energy-rich polyatomic molecules.

9.1.3 Energy-rich polyatomics

Molecules with energy sufficient for dissociation or isomerization deserve a spe-
cial mention. Even for diatomics, the high amplitude of the vibrational motion and
the small energy spacings for high v states make for more efficient collisional
deactivation.∗ This is even more so for polyatomic molecules because of the
exceptionally high density of vibrational states, Section 6.2.2.3. The Lindemann
mechanism of unimolecular reactions, Section 6.2.1, assumes that energy-rich
molecules are produced by collisions and, in the high-pressure regime, they are
mostly depleted by deactivating collisions rather than reacting. It is therefore of
interest to directly observe such energy-loss processes.4

Methods of photoselective chemistry can be used to pump molecules up and
to monitor the collisional processes. It can even be done in the bulk as long as
the pressure is low enough that the pump process is over in a time that is short

∗ Detailed balance then implies that the collisional activation into such states is also more efficient.
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vibrational state. The initial vibrational energy of pyrazine is about 41 000 cm−1 and
an energy transfer of ≈6000 cm−1 corresponds to a loss of two C H stretch
quanta.

compared to the interval between collisions. A particularly used pump process
is internal conversion, Section 7.0.3. In a relatively short time, of the order of
nanoseconds, a molecule raised by a UV laser to its first electronically excited
state will convert the excess energy (say, of the order of 5 eV ≈ 40 000 cm−1

or more5) to vibrational excitation on the ground electronic state. When such a
vibrationally excited molecule collides with another polyatomic, the most prob-
able energy transfer is a low-gap V V process with not much energy dumped
into translation. So far, this is as expected. The transfer can be monitored both by
inferring the energy content remaining in the initially rich molecule, say, by how
much energy is required to ionize it. The initially cold partner can be probed spec-
troscopically and Doppler measurements will further determine that not much
energy went into translation.

It is also observed that energy-rich polyatomic molecules can lose large
amounts of vibrational energy into the translation and these are high-gap pro-
cesses. The energy loss can be so extreme that one sometimes speaks of
supercollisions.6 One must not be misled; these are relatively rare as shown
in Figure 9.9, but they do occur.
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There are at least two mechanisms that can induce large energy transfers. One
is a sticky collision where the relative motion of the partners undergoes several
vibrations before they recede from one another. The other is to recognize that at,
say, a vibrational energy content of 41 000 cm−1, as in Figure 9.9, the molecule
is quite a bit contorting. There are therefore atoms that execute large-amplitude
motions and are able to deliver a large kick to the collision partner. Of course, for
such a close encounter there are steric requirements on the approaching partner
so the supercollisions are low-impact-parameter, low-probability processes. But
they do take place and thereby drain large amounts of energy out of the hot
molecule. Do note that there must be a corresponding time-reversed process
that is able to pump large energies into the vibrations, in a single collision. An
interesting implication is that, in the Lindemann mechanism, it need not be the
case that the polyatomic molecule works its way up the ladder of increasing
energy in many small steps. Rather, warm molecules could get all the way up to a
chemically interesting region in one or a few steps each involving a large energy
transfer. We shall return to such a possibility when we discuss activated barrier
crossing in solution.

9.2 Understanding the essentials of energy transfer

The reluctance of nuclei to undergo a change in their momenta has so far been
discussed in terms of the Franck–Condon principle. In its simplest form it says
that a photon-induced electronic excitation is not accompanied by a change in the
kinetic energy of the nuclei. But an inelastic collision is necessarily characterized
by such a change, that we called “the gap.” We have seen ample experimental
evidence that the transition is more likely when the gap is small. How small is
“small” is the subject of this section.

9.2.1 Two extremes of vibrational energy transfer

The simplest inelastic event, conceptually, is the collinear collision between an
atom A and a “harmonic oscillator molecule” BC. In such a collision all three
atoms are confined to a line, and the atom A hits the near atom of the oscillator,
say atom B. Two limiting situations can be considered. One extreme is that the
oscillator spring is extremely stiff, meaning that BC is practically a rigid body.
When A collides with the oscillator, any kinetic energy lost by A is gained by the
“united atom” BC as kinetic energy of its center of mass. In other words, after
A hits B, the atoms B and C recoil together without any change in their relative
velocity. In the limit of a stiff BC bond the collision is purely elastic, as the total
kinetic energy has not changed.

The opposite extreme is that of a very loose BC oscillator spring. Here the
atom C is so very weakly connected to B that it initially does not respond to a
change in the velocity of atom B. In the limit of a vanishingly small oscillator
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force constant, atom C is a spectator to the A B collision. Any change in the
velocity of B is thus a change in the relative velocity of B and C and hence a
change in the vibrational energy of BC.

We next need to decide what is the scale against which we regard the oscillator
as stiff or loose.

9.2.2 The adiabaticity parameter

In physical terms, the limit of a loose BC oscillator spring is the limit where the
duration, τc, of the A B collision is short compared to the time required by atom
C to “know” that atom B has changed its momentum. B communicates with C
via their mutual force. So the time required for C to respond is the vibrational
period,∗ tv, of the oscillator. The limit of a loose spring is therefore when

τc < tv or vτc < 1 sudden limit (9.5)

where v is the oscillator frequency. Since the duration of the collision decreases
with increasing relative velocity, the short collision time is a high-velocity or a
sudden limit. The opposite extreme

τc > tv or vτc > 1 adiabatic limit (9.6)

is a low-velocity or an adiabatic7 limit. Energy transfer is very inefficient in the
adiabatic limit. In this limit the duration of the collision is long compared with
the period of oscillation, so that the perturbation by the collision is “slow.” The
oscillator can accommodate itself to the perturbation or (in our earlier language)
it presents a rigid, unyielding front.8

To determine the range of velocities that correspond to the different limits we
estimate for the duration of the collision

τc = a/v (9.7)

Here a is the “range” of the intermolecular force and v is the relative velocity
during the collision. In the adiabatic regime v ≤ a/tv or, in terms of the vibra-
tional energy spacing �E, hν = h/tv = �E, v ≤ a�E/h̄ = aν. For many
diatomic molecules v ∼= 1013 s−1 and taking as an estimate a = 2 Å, we obtain
v < 2·105 cm s−1. At ordinary temperatures, where velocities in the gas phase
are typically of the order of 104 cm s−1, collisions are in the adiabatic range for
vibrational energy transfer.

We can summarize our qualitative considerations by the introduction of an
adiabaticity parameter ξ ,

ξ = τc/tv = a|�E |
hν

(9.8)

∗ The period (or the inverse of the frequency) is a measure of the oscillator force constant,

k:tv = v−1 = 2π (µBC/k)1/2. A weakly bound (= loose) oscillator has a long vibrational period.
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where |�E | is a measure of a typical amount of energy transferred into (or
out of) the translation, so that �E is the translational exoergicity. Large values
of ξ correspond to adiabatic collisions when energy transfer is inefficient.
Below ξ ∼= 1 we enter the region of efficient transfer and for ξ < 1 we reach
the sudden or spectator regime.

9.2.2.1 Rotational energy transfer
The spacings between rotational levels (with the exception of hydrides) are some
three orders of magnitude smaller than vibrational energy spacings.∗ Hence, for
T R transfer, the adiabatic velocity range is more typically v < 102−104cm s−1.
At ordinary temperatures R T transfer is in the sudden range and hence should
occur quite readily. The one special feature is that rotational spacings increase
with increasing rotational excitation so that, for higher js, the transition may not
be in the sudden limit.

Similar considerations apply to rotational energy transfer where the adiabatic-
ity parameter is defined by

ξ = τc/tr (9.9)

Here tr is the rotational period. Since typically tr � tv, ξ for rotation is usually
much smaller than ξ for vibration. Rotational energy transfer tends to be in the
sudden regime.

9.2.2.2 Adiabatic behavior
The notion of an adiabatic process is a very general one and conforms also to
our everyday experience. The adiabaticity parameter ξ has been introduced as
the ratio of the time scale for the perturbation to the time scale within which the
system can adjust:

ξ = τperturbation/τresponse (9.10)

If you perturb a system slowly enough on its own time scale, it can adjust and
therefore it will be found in its original state when the perturbation is over. This
does not mean that the system is not changing as the perturbation is acting. It
can and generally will change, but, because the system changes quickly as the
perturbation is acting, its instantaneous state is adjusted to the perturbation. So
the system will return to the initial state when the perturbation is over. The way
electrons adiabatically adjust to the motion of the nuclei is a good example. But
a perturbation can also be sudden-like, ξ < 1, and its action can leave the system
in a different state.

∗ The classical period of the motion of a mode at a given level of excitation corresponds to the

difference between the spacings of adjacent levels. As discussed in Chapter 7, we need at least two

stationary quantum states to define a state that mimics a classical motion, Problem O.
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9.2.3 The exponential gap

A more quantitative approach is to define a resonance function, R(ξ ), a measure
of the efficiency of the energy transfer at a given value of ξ . Thus if 〈�E〉 is the
average energy transfer in the collision, we write

〈�E〉
ET

= 〈�E〉ξ=0

ET
R(ξ ) (9.11)

where 〈�E〉ξ=0 is the energy transfer in the sudden limit. This is the part that is
mass-dependent, Problems H and I.

The computation of the resonance (or “energy mismatch”) function requires
a solution of the collision dynamics. We then find that, at least for ξ > 1, we can
approximate the expected decrease with increasing ξ as exponential

R(ξ ) ∼= exp(−ξ ) (9.12)

Qualitatively similar results apply for R T transfer. The exponential decline of
the efficiency of energy transfer with increasing ξ is a useful rule in the field
of energy transfer. This is not to say that deviations from this rule are unknown
(see, for example, Section 9.3.3). Rather, deviations are taken as a diagnostic
indication that some special features are present.

Some guidance to the physical significance of the resonance function is pro-
vided by our model of a collinear A + BC collision. The energy transfer to the
vibration was very small when it was difficult to change the relative momentum
of B with respect to C (a stiff bond), while it was large in the opposite extreme.
The combined role of the internal motion and the perturbation is characterized
by the value of the adiabaticity parameter ξ . For a given value of ξ , R(ξ ) is a mea-
sure of the readiness of the BC bond to change its momentum. In other words,
R(ξ ) is a quantitative measure for the more qualitative guidance given by the
Franck–Condon principle, see also Section 9.2.4. Rather than saying that there is
a propensity for the momentum not to change, we say that the larger the change
in the momentum of the nuclei, the larger is ξ and the (exponentially) smaller is
R(ξ ). Quantitatively, if p and p′ are the initial and final momenta we can write

ξ = (p − p′) a/h (9.13)

with a being the range of the force that is applied. To show the equivalence to
Eq. (9.8) we put p − p′ = [p2 − (p′)2]/(p + p′) or in terms of the energy gap
p − p′ = �E/ v where v = (p + p′)/2µ is the mean velocity.

9.2.4 Light as a bridge of the exponential gap

An appealing way to see the connection of our considerations to the Franck–
Condon principle is to think of the light as dressing the ground state as discussed
in Appendix 3.B. The potential for the dressed ground state is raised up by the
energy of the photon as shown, for example, in Figure B3.1. This potential crosses
the potential of the excited state and the point of crossing is the Franck–Condon
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window. Why? Because at a given total energy, when the potential energies are
equal the kinetic energies are also equal. The transition can then occur without any
gap. The gap has been bridged by the photon. What the exponential gap estimate
shows is that the Franck–Condon window is not a point but a finite interval in the
internuclear distance. The width of the window is that range where there can be
finite changes in the momenta provided that they satisfy ξ = a(p − p′)/h̄ < 1.
In Section 9.3.3 we will have more to say on the finite window of opportunity
when two potential curves cross. We will there estimate the range parameter a
whose value is needed to compute the magnitude of ξ .

9.2.5 Propensity rules for energy transfer

We can thus summarize the necessary conditions for an efficient energy transfer
(i.e., a resonance function near unity). At a given energy gap, the resonance
function R(ξ ) will be exponentially small at low velocities, and will increase with
increasing velocities. This version is the form most useful for collision theory.
An indirect illustration of this exponential gap principle is the strong positive
temperature dependence of the V T relaxation rate. For most diatomic molecules
the temperature dependence is best fitted by a so-called Landau–Teller equation

ln k = A − BT −1/3 V T transfer (9.14)

which is quite different from the Arrhenius T −1 temperature dependence of
bimolecular reaction rate constants. See Figure 9.10.
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Saddle point integration, Problem F, shows that Eq. (9.14) is the expected result
for an inelastic cross-section that increases near exponentially with increasing
collision velocity

σVT ∝ exp(−v0/v) (9.15)

The parameter v0,with dimensions of velocity, is determined by the saddle point
procedure discussed in Problem F. It is found to be a nearly linear function of the
vibrational frequency, as expected from Eq. (9.8). Similarly, the collision number
ZVT for V T transfer in polyatomics is found to be an approximate exponential
function of the lowest normal mode vibrational frequency

log ZVT ∝ vmin (9.16)

Other fairly general statements can also be made, e.g., collisions at higher impact
parameters will tend to be more adiabatic, because only the longer range of the
force will be sampled. High-impact-parameter, grazing collisions, which lead to
nearly forward scattering, will therefore be essentially elastic. The inelasticity
increases at larger scattering angles. It is the “head-on,” backward scattering
collisions that are the most inelastic. A corollary is that collisions resulting in a
large change in the internal energy (and hence a large change in the vibrational
quantum number) will occur mostly at low impact parameters. The cross-section
for energy transfer being an integral over the impact parameters that contribute
would then be rather small.∗

A less obvious but valid qualitative generalization is that it is easier to transfer
energy into (or out of) an excited oscillator than into a ground-state one. The
physical reason is that the amplitude of oscillation of the bond is greater. An
experimental test is to determine the efficiency of a V T transfer process, as a
function of the initial vibrational energy. This has been done for a number of
V T processes. A rough linear relation between the efficiency of the transfer (as
measured, say, by the reciprocal of the collision number) and the initial vibrational
energy is obtained.

At low temperatures bulk vibrational relaxation shows evidence of the long-
range attractive intermolecular forces. This is particularly so between molecules
with polar bonds that also strongly absorb radiation in the near infrared. Such
strong absorption indicates that the molecule can easily be distorted from its
equilibrium position by the electrical field of the light. In a collision experiment
such a time-dependent field can be provided by the motion of the other polar

∗ A caveat is that events with exponentially small probabilities can still be chemically important.

Experimental evidence for large changes in the vibrational quantum number in a single collision

comes from molecular and ion beam measurements. In bulk systems such rare events can compete

with gaining energy by a succession of collisions each involving a smaller change in the internal

energy. This is because climbing up the energy ladder by small steps is like a random walk as the

molecule can also efficiently lose and not only gain energy by collisions. The event is rare but in

one collision it accesses a chemically interesting range.
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molecule. When the temperature is low enough, dimers can be formed. Then,
as in Section 7.2.4.1, although the transition probability per collision is low, the
two molecules of the dimer collide again and again, at a frequency much higher
than the bulk collision frequency, until a V T process causes dissociation of the
dimer. The anomalous temperature dependence shown in Figure 9.10 is therefore
not an indication of the failure of the exponential gap principle.

9.2.6 Detailed balance

Detailed balance relates the rates of a particular activation and deactivation
energy transfer process. Detailed balance thus provides a quantitative exact rela-
tion between rate constants that correspond to the same gap. This is unlike the
principle of exponential gap that provides an estimate of how the rate constants
vary when the gap changes. The qualitative implication of detailed balance is
that on a quantum state-to-quantum state basis, the rate constant for the acti-
vation process is always smaller than the rate constant for the reverse deactiva-
tion process. Take as an example the V T process that we started this section
with, A + BC(v = 0) → A + BC(v′ = 1) and the reverse deactivation process,
A + BC(v = 1) → A + BC(v′ = 0). Detailed balance states that at equilibrium
the rates of these two detailed ways of transferring populations between BC(v = 1)
and BC(v = 0) must be equal. This is to be so even though there may be other
processes that can transfer populations, such as transitions in the IR. Therefore,
using the subscript eq to designate concentrations at equilibrium,

k (v = 0 → v = 1) [A] eq [BC(v = 0)]eq

= k (v = 1 → v = 0) [A]eq [BC(v = 1)]eq (9.17)

Detailed balance therefore determines the exact ratio of the two rate constants:

k (v = 0 → v = 1)

k (v = 1 → v = 0)
= [BC(v = 1)]eq

[BC(v = 0)]eq

(= exp(−(Ev=1 − Ev=0)/kBT )<1) (9.18)

The principle of exponential gap tells us that either one of the two rate constants in
Eq. (9.18) is small if the gap in a V T process is large. It does not however imply
that the two rates are equal, meaning that they depend only on the magnitude,
|�E | and not on the sign of the translational release, see Problem J.

9.3 Electronic energy transfer

There is considerable interest in the collision dynamics of electronically excited
species not only due to their practical importance but also because such processes
raise novel theoretical points. Since the electronic excitation energy is usually
quite large, the adiabatic criterion would seem to rule out the efficient conversion
of electronic to vibrational (or translational) energy upon collision. Yet, as we
have already seen, such processes do occur, often with reasonable efficiency. Thus
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an electronically excited mercury atom will induce E–V transfer upon collision,
e.g.

Hg∗ + CO(v = 0) → Hg + CO(v′)

where all CO states with v′ ≤ 9 have been observed via their IR emission. Often,
enough energy is transferred into the vibration to dissociate the bond.9 (The
excitation energy of Hg* is 112 kcal mol−1.) Highly endoergic chemical reactions
can proceed quite readily using electronically excited reactants. The reactions
of excited oxygen or nitrogen atoms and molecules are particularly interesting
because of their contribution to the chemistry of the atmosphere.

Our purpose in this section is to suggest what special features in the electronic
structure of the reagents allow electronically non-adiabatic processes, with their
nominally very high gap, to occur efficiently. The required feature is not invari-
ably present. Many processes are electronically adiabatic. The exponential gap
principle is valid. We will sketch a mechanism that, if present, allows the gap to
be smaller than what you would expect.

9.3.1 Non-adiabatic processes

At this point we already know that the occurrence of non-adiabatic processes10

requires that the adiabaticity parameter ξ , Section 9.2.2, does not have too high
a value. In this section we ask when and why is an electronically non-adiabatic
process efficient even though the gap is seemingly high. In Section 7.0.2 we have
already sketched a possible answer: the actual gap that the nuclei need to bridge
may be quite a lot smaller than the nominal one.11 In this section we return to
this point: what are the special circumstances for which we can expect the gap
to be small, and small compared to what? We point out ahead of time that a key
ingredient in the answer is that the gap will be small in a localized region in the
configuration space of the nuclei. This is not only important conceptually, it also
allows you the option of control. You may want to access or, alternatively, to avoid
this localized domain.

The simplest case for discussing a localized non-adiabatic transition with a
small gap is the model of curve crossing, Section 3.2.4, when there is just one
nuclear coordinate. We turn now to a more quantitative analysis of this model.

9.3.2 Curve crossing

An example of an electronic energy transfer collision that is more efficient than
the high nominal translational exoergicity would suggest on the basis of the
adiabaticity criterion is the process of charge neutralization, e.g., Na+ + I − →
Na + I or the reverse process of “collisional ionization”:

Na + I → Na+ + I−
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Figure 9.11 (Left) Potential energy curves for the covalent (NaI) and ionic (Na+I−)
forms of sodium iodide. �E is the nominal (i.e., asymptotic) energy gap between the
two states, i.e., the difference between the ionization potential of Na and the electron
affinity of I. Thus, from �E0 (eV) ∼= 14.35/Rx (Å) (Eq. (3.18)), Rx ∼= 7 Å. It is known that
for this system the actual electronic energy gap as discussed below is the much
smaller value of ∼= 0.025 eV. Note that the curves shown are “diabatic” ones. The
electronic state is frozen and is not allowed to adjust to the position of the nuclei.
The Born–Oppenheimer or adiabatic states do not cross. (Right) Cross-section for
collisional ionization, in reduced units, logarithmic scale vs. the velocity in reduced
units. The velocity vm is defined in Eq. (9.24). The thresholds are indicated. Points:
experimental. Adapted from Moutinho et al., Physica, 53, 471 (1971) and Baede
(1975).

Figure 9.11 shows experimental results as well as the interaction potentials for
the NaI system. The nominal energy release in the neutralization process is

�E0 = IP(Na) − EA(I) = 5.14 − 3.06 = 2.08 eV

It is evident from the figure that the gap is �E0, the energy required for the
electronic state change when the atoms are far apart. At closer separation there
exists a distance, Rx, where the electronic energy of Na+I− equals that of NaI.
Near the separation Rx the system can change its electronic state with only a very
slight change in the kinetic energy of the nuclei.∗ Such a “switch” in the diabatic

∗ The kinetic energy of the relative motion of the nuclei at the separation R is E – Veff (R). Near Rx,

Veff (R) is the same for both electronic states because the angular momentum is unchanged.
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electronic state, accompanied by only a small change in the kinetic energy of the
nuclei, is precisely what is needed to make the process efficient!

For E → V transfer such as Na∗ + N2(v = 0) → Na + N2(v′ > 0) the quench-
ing probably occurs through a sequence of two such changes. The first switch
is a “harpoon”-type change Na∗ + N2 → Na+ + N−

2 , where N−
2 has a higher

equilibrium separation than N2 so that it is born vibrationally excited, followed
by a “neutralization” process Na+ + N −

2 → Na + N2. If this is the case, the
quenching cross-sections for Na* + M collisions should depend on the nature of
the quencher M. For such diatomics as NO, CO, or N2 the effective cross-section
can be up to 50 Å2, while it is less than l Å2 for quenching of Na∗ by the rare
gases. This is as expected on the basis of a harpoon mechanism where the crossing
distance Rx (Rx (Å) ∼= 14.35/�E0 (eV)) would increase with increasing electron
affinity of M.

The convergence of two potential energy curves so as to allow an efficient
switch of the nuclei between them is known as curve crossing.∗ How can we know
if curve crossing is possible? The only guidance is either physical reasoning or
an appeal to a proper quantum chemical computation or, post factum, from the
nature of the observed results.

9.3.2.1 Diabatic vs. adiabatic
The diabatic and adiabatic descriptions of the electronic states are two comple-
mentary points of view, each of which has its merits and neither one of which
offers a perfect approximation. We have first used these two alternatives in Chapter
7. Here we need to return. The adiabatic description is easier to define. At each
configuration of the atoms we allow the electrons all the time that is needed to
adjust. Technically, we diagonalize the Hamiltonian while keeping the nuclei in
a fixed position. When the nuclei are moving at a finite velocity the electrons no
longer have all the time to adjust. Hence the adiabatic approximation, meaning
that the electrons maintain the same adiabatic state, may fail and the higher the
collision velocity the more likely it is to fail. In the adiabatic description the
electronic states are stationary states as long as the nuclei are stationary. They
are no longer exactly stationary when the nuclei are allowed to move.

In the diabatic description we do not allow the electronic states to adjust.
Therefore the diabatic states do not change as the nuclei move. It is a seemingly
more natural description for a collision. There is however a price to pay. The
diabatic states are not stationary states for the electrons. We first encountered
that in the harpoon mechanism where, owing to the attraction to the halogen
atom, the electron “jumps” over, leading to the covalent (diabatic) state changing

∗ Strictly speaking this is a slightly misleading term. The Born–Oppenheimer or adiabatic curves

do not cross, they only converge and diverge again beyond Rx. Figure 9.11 uses a diabatic picture

where the electronic state is “frozen” as either covalent or ionic. The adiabatic state adjusts to the

change in internuclear distance. For a collision of Na + I, the ground adiabatic state is covalent at

large distances but is primarily ionic for R < Rx.
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to an ionic (diabatic) state. In the diabatic description the electronic states are not
stationary because of electronic coupling terms.

The electrons do typically move faster than the nuclei; vibrational periods
are two or three orders of magnitude longer than electronic periods. So for slow
collisions the adiabatic approximation makes a better starting point in that it does
allow the electrons to fully adjust. But it will fail and this failure is the point of
this section.

*9.3.3 The adiabaticity parameter for curve crossing

When two diabatic potential curves cross there is a finite energy gap �E(R)
between the corresponding adiabatic states; at the “crossing point” Rx the gap is
smallest and we denote it �E(Rx). If the system spends a time τ traversing the
crossing region its energy is indefinite by an amount h/τ . If this indefiniteness
is greater than �E(Rx) the system can efficiently emerge on the curve that is
otherwise excluded. If the uncertainty is less than �E(Rx) the system maintains its
adiabatic state. Thus the condition for adiabatic behavior is that passage through
the crossing zone must be sufficiently slow that τ > h/�E(Rx). The adiabaticity
parameter is therefore

ξ = τ �E(Rx)
/

h (9.19)

From a complementary point of view, h/�E(Rx) is the time for the system to
adjust its electronic state and the adiabaticity parameter can be understood, as
before, see Eq. (9.10), as the ratio of the duration of the perturbation to the
response time of the system.

Equation (9.19) generalizes our earlier result for ξ in two ways. First, the gap
�E(Rx) can be much smaller than the asymptotic (or “nominal”) value of �E
and the relevant time interval τ is not the duration of the entire collision but the
(shorter) time during which the nuclei are in the localized region where the gap
is small. Both factors act so as to reduce the value of the adiabaticity parameter
from what it might otherwise be.

Electronic energy transfer can thus be quite efficient, even for a large nominal
�E, if curve crossing can take place so that there is a range of R values for which
the gap between the adiabatic states, �E(R), is small.

To estimate τ , the duration of the passage through the localized curve cross-
ing, we examine the concrete example of Na + I collision where the switch is
from a covalent NaI potential for R > Rx to an ionic Na+I− form for R < Rx,
Figure 9.11. It is evident that the region where the two potential curves converge
and where ξ , Eq. (9.19), is a minimum, is a very localized region in R, about Rx.
If at all, transitions between the two curves will occur only during the time spent
by the system in the vicinity of Rx. As usual, we can set τ = a/v where a is the
range in R along which the gap between the two potential curves is a narrow one,
v is the radial velocity at Rx (and hence is impact-parameter-dependent).
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An estimate of a is provided by regarding the two diabatic potential curves as
linear functions of R, in the vicinity of Rx. The two straight lines diverge because
of their different slopes, intersecting at Rx. Hence if we expand each potential as
a Taylor series about Rx

V2

V1

Rx

�E(R) = V1(R) − V2(R)

= V1(Rx) + (R − Rx)
dV1

dR

∣∣∣∣
Rx

− V2(Rx) − (R − Rx)
dV2

dR

∣∣∣∣
Rx

we can estimate the range a as the distance on either side of Rx over which the
gap roughly doubles

�E(Rx) = (a/2)

∣∣∣∣dV1

dR
− dV2

dR

∣∣∣∣
Rx

≡ (a/2) |�Fx| (9.20)

|�Fx| is the absolute value of the difference in slopes at Rx. Combining Eqs. (9.19)
and (9.20),

ξ = 2(�E(Rx))2 /hν|�Fx| (9.21)

As before, the adiabaticity parameter scales inversely with the collision velocity.
But the other inputs, namely the nominal gap and the forces at the crossing,
require an appeal to quantum chemistry.

Solving the dynamics for the probability of state changing during a pas-
sage across Rx yields the expected exponential dependence on the adiabaticity
parameter

P = exp(−π2ξ ) (9.22)

We emphasize that P is the probability of a non-adiabatic transition, which means
entering the crossing range on one adiabatic state and exiting on the other adiabatic
state. 1 – P is the probability of a switchover of the nature of the adiabatic state.∗

For a very slow collision, when ξ is very large, a change in the diabatic electronic
state will occur with a high probability upon passage via Rx. In other words, the
passage will be adiabatic. We have already encountered this phenomenon in the
harpoon mechanism (Section 3.2.4), where at about Rx the charge transfer occurs
with essentially unit probability for reactants with thermal velocities.

*9.3.4 The Landau–Zener transition probability

From an experimental viewpoint the important quantity is not the adiabaticity
parameter ξ itself but the probability of an overall change in electronic state
induced by the collision, e.g., Na + I → Na+ + I−. If we could determine this

∗ The adiabatic electronic state changes its character as R varies across Rx. Therefore an adiabatic

passage means a switchover from one diabatic state to another, or a non-diabatic transition. On the

other hand, a non-adiabatic transition means a diabatic behavior.
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probability (as a function of the impact parameter) we could obtain the cross-
section for this collisional ionization process. Of course, our discussion assumes
that the total energy exceeds the endoergicity �E0, Figure 9.11, of the collision.
As the Na and I atoms approach, a curve crossing can occur in the region near Rx

with the probability 1 – P. The two newly formed ions will continue to approach,
governed by the attractive ionic potential, until they reach the turning point of
their motion. They will then start receding from each other. If the two particles
are to separate as ions, then, as they recede across Rx to larger separations, a
change of the adiabatic state must not occur. The probability of forming Na+ + I−

in this way is P(1 – P). Alternatively, if the change did not occur on the way in
(probability P) then, if ions are to be formed, a non-adiabatic transition must
occur on the way out. The overall probability of collisional ionization is then
2P(1 – P).∗

The result for P, Eq. (9.22), can be written as

P = exp(−vm/v) (9.23)

where we have an explicit form for the characteristic velocity vm. In the par-
ticular case of the Na + I collision where the covalent potential is only weakly
R-dependent and V2 = −e2/R (at large R),

|�Fx| = e2/R2
x and vm = πR2

x�E2
x/2h̄e2 (9.24)

The probability of producing ions, 2P(1 − P), cannot exceed 1/2 regardless of
the magnitude of v. When v is small (large ξ , adiabatic collision), P is small
and the behavior is adiabatic. When v is large (low ξ ), 1 – P is small. Thus, there
will be a maximum in the energy dependence of the cross-section for collisional
ionization, as shown in Figure 9.11. From the position of the maximum one can
estimate vm.

*9.3.5 The localized crossing range

The ability of fs laser excitation to prepare localized initial states has been dis-
cussed in Chapter 8. Here we describe a remarkable early experiment that shows
the localization of the region where non-adiabatic transitions are important. The
system is again NaI where, cf. Figure 9.11, the upper adiabatic electronic state,
that near equilibrium is essentially covalent in character and has its shallow mini-
mum much to the right compared with the ground state. A 50 fs UV pulse prepares
a localized state with a fair amount of vibrational energy, at the left turning point
of the upper adiabatic electronic state. This non-stationary localized initial state

∗ Similarly, if the collision does not lead to ions, then either curve crossing failed to occur both on

the way in and on the way out (probability P2) or curve crossing occurs both on the way in and on

the way out, probability (1 − P)2. Checking: (P2 + (1 − P)2) + (2P(1 − P)) = 1.
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Figure 9.12 The ground and excited potentials for NaI with the localized state
created by fs UV excitation shown both initially and as it moves. Right panel: the
probe signals for Na at a finite separation from I and for a Na atom far away as a
function of the delay between the pump and probe pulses [adapted from T. S. Rose,
M. J. Rosker, and A. H. Zewail, J. Chem. Phys. 88, 6672 (1988); see also Zewail (1996)
and C. Jouvet et al., J. Phys. Chem. 101, 2555 (1997)]. This and similar experiments
provide a direct experimental demonstration of the localized region of the
non-adiabatic transition. It took over 50 years for the theoretical ideas of Landau and
Zener to have this direct experimental test.

starts to oscillate in the upper well, much as a classical motion will. The vibra-
tional period is relatively long because the potential is shallow and the reduced
mass is not low.

By a suitable choice of the probe frequency the experiment can probe the Na
atom while it is in the vicinity of I or when the two atoms have separated. Based
on the curve-crossing model we expect the following: on the picosecond time
scale the upper state will be stable except when it transverses the curve-crossing
range as it is moving out. Then it can make a non-adiabatic transition to the
ground state. If such a transition occurs the Na and I atoms are in a covalent
state (the ground adiabatic state for R > Rx) and receding from one another. If
the transition is localized one should detect a covalent Na I pair first after half
a vibrational period and then every vibrational period as is seen experimentally,
Figure 9.12. The probe detuned from the free Na absorption detects the covalent
Na I pair at some Franck–Condon window and the receding motion of the atoms
removes them promptly from that window so the probe spectrum is made up of
spikes. A probe for Na shows a staircase accumulation of Na atoms.
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The results of this experiment can be validated both by changing the vibrational
energy content (and hence the period) of the localized initial state by going to
shorter wavelengths and by changing the system, e.g., to NaBr.

*9.3.6 Donor–acceptor systems and photoinduced
charge separation

Electronic energy transfer is particularly efficient between donors and
acceptors.12 These are pairs of molecules that can be apart or can be held together
by a rigid or a flexible bridge. The donor is optically excited. Instead of fluo-
rescing, it transfers the excitation to the acceptor that is thereby excited. The
signature of the transfer is the fluorescence characteristic of the acceptor. It is
useful to think of the transfer as the (down transition) dipole of the donor cou-
pling to the (up transition) dipole of the acceptor, and to judge its efficiency by
the fluorescence spectrum of the donor overlapping the absorption spectrum of
the acceptor. Restricting the freedom of the molecules to reorient with respect to
one another can therefore enhance the transfer.

An alternative outcome is that the excited donor transfers the excited electron
to the acceptor

D + A → D∗ + A → D+ + A−

Such a photoinduced charge separation is very thoroughly studied13 because it is
a primary step in photosynthesis where a pair of adjacent chlorophyl molecules
acts as the donor. There are many subsequent steps that can prevent the initially
separated charges from being used as a source of energy by keeping the charges
apart. These include back electron transfer, formation of triplet states, etc. It is
therefore of interest to monitor the process in real time. A system exhibiting a
fast and rather high efficiency of charge separation is a carotenoid pigment (Car
for short) covalently linked to the C60 fullerene [H. Imahori et al., Photochem.
Photobiol. 62, 1009 (1995)]. Ultrafast pumping was in a short wavelength where
Car does not absorb and probing was at an absorption of the Car+ species. The rise
time of the absorption was with a time constant of 0.8 ps and the decay occurred
on a much longer (0.5 ns) time scale. With improvements in laser technology it
is becoming possible to probe for finer details, on even shorter times, as we now
discuss.14

*9.3.7 From photons to perception

Understanding vision is a very cross-disciplinary activity.15 But the very first
stage is in our domain. It is a fast light-induced isomerization of a polyene (an
isomer of retinal) linked (by a Schiff base, see Figures 9.13 and 9.14) to an amino
acid inside a bundled protein. Other photobiological processes also occur in



386 State-changing collisions

conjugated organic systems. Therefore, both model compounds and biophysically
interesting molecules (in their natural environment or otherwise) have received
much attention.16 The general trend has been from a more kinetic description
toward an understanding of the dynamics as it unfolds in time. The realization
that many such photochemical processes proceed via conical intersections has
provided an additional motivation for such studies.

9.3.7.1 Ultrafast dynamics in bacteriorhodopsin
We consider the ultrafast dynamics in bacteriorhodopsin (bR), which is a light-
harvesting system. A related class of reactions is electrocyclic17 ring opening or
closure as discussed in Section 8.2.1. Then we turn briefly to quantum chemistry
to recognize that even the simple process of photoassisted rotation about a double
bond is not quite so simple.

Light absorption in retinal proteins results in structural transformations in both
the retinal chromophore (a cis → trans or a trans → cis isomerization) and in
the surrounding protein. It was expected that the primary stage is the transient
rotation about the double bond made possible by light absorption, as shown
for bacteriorhodopsin in Figure 9.13. The initial exit from the Franck–Condon
region to the already partly twisted fluorescent state was taken to proceed in
about 100 fs. Rotation about the bond between carbon atoms 13 and 14, which
brings the molecule to the 13-cis ground state (denoted J in Figure 9.13) is
completed in about 500 fs. On a much longer time scale there is isomerization18

back to the trans form. This one-dimensional view of the photocycle, as shown in
Figure 9.13, turns out to be only a part of the story. The protein seems to respond
to the light absorption on a scale faster than 100 fs. Model compounds in which
either steric hindrance or even outright rigid bridges preclude a facile rotation
about the bond between carbon atoms 13 and 14 upon photoexcitation still show
a similar response of the protein. The primary stage is thus the ultrafast charge
redistribution in the excited state due to the bond stretch. Only somewhat later
does the slower rotation begin the photocycle that finally returns the retinal to its
starting state.

Dynamical computations are not limited by the number of atoms in the problem
but by the plurality of electronic states. Valiant attempts are however being made
and a snapshot of a trajectory of bR linked to the protein is shown in Figure 9.14.

A simpler system that undergoes a similar cycle is photochemical concerted
ring opening in 1,3 cyclohexadiene. Here too one can summarize the essentials
in a one-dimensional view (Figure 9.15), and here too a one-dimensional view is
not the complete story.19

Problems

A. The funnel mechanism for chemical lasers. (a) Assuming fast rotational relax-
ation determine the initial rotational levels for which we can lase in HF on
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covalently, as a Schiff base, to the amino acid lysine
at position 216 of the protein, at the top of the figure.
The energy of the different electronic states is shown
vs. the torsional angle of the bond between carbon
atoms 13 and 14. In the ground electronic state it is a
double bond so rotation about it is strongly hindered.
The high barrier to rotation is shown both for the
native state, all-trans and for the particular isomer,
denoted J, where the configuration about the bond
between carbon atoms 13 and 14 is cis.
Photoexcitation leads to a Franck–Condon region that
can be probed either by its fluorescence (that can be
stimulated) or by further absorption. In the excited
state the bond is weakened and is much less
“double” in character so the barrier to rotation
around the bond is lower. In about 100 fs the
molecule twists into a strongly fluorescing state,
denoted I. This state can be detected by its intense
absorption. Isomerization is completed when state I
makes the transition back to the ground electronic
state in about 500 fs. The return to the ground state
bifurcates to the two isomers. By using model
compounds in which the rotation about the double
bond is mechanically hindered or prevented, the
photocycle can be stopped [adapted from Gai et al.
(1998), Aharoni et al. (2001)].

Figure 9.14 The
instantaneous positions
of the atoms of bR, see
Figure 9.13, and the
surrounding seven-helix
bundle protein. By
allowing the atoms to
move and computing the
instantaneous value of the
gap between the upper
and lower electronic
states, see Figure 9.13, it
is possible to determine
an optimal time for the
trajectory hopping from
the upper to the lower
state [adapted from
Warshel (2002)].
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Figure 9.15 A one-dimensional view of the electronic states and their potentials for
the electrocyclic ring opening of cyclohexadiene. Shown is an optical absorption to
a bright electronic state, 1B, with another dark electronic state, 2A, close by. A
conical intersection allows a facile conversion from the bright to the dark state and a
second conical intersection allows a return to the ground electronic state on which
the cyclic and open ring are two isomers, as shown (estimates for the time of
passage via the intersections are also shown, in femtoseconds). A delayed process
leads to the linear trans isomer. Experimental and computational studies show that
the one-dimensional view, while providing a summary of the essential features,
misses some key details, for example the role of the twist in reaching the second
conical intersection. Such a view, even when another coordinate is included, is
complementary to the description using states that we employed in the picket fence
model in Chapter 7.

the v, j to v − 1, j + 1 levels at 300 K. The rotational constant of HF is 21 cm−1.
(b) How does the answer depend on the ratio of the concentration of HF molecules
in the two vibrational states and how will this ratio change as the laser operates?
(c) Based on your considerations, suggest why the laser emission shifts with time
to higher js, as shown in Figure 9.3.

B. Grade the following three processes in order of their efficiency at
room temperature: I. H + D2(v = 1) → H + D2(v = 0), II. D + H2(v = 1) →
D + H2(v = 0), III. D + HD(v = 1) → D + HD(v = 0). If the temperature is
higher, other channels will contribute. What are they?

C. In a mixture of N2 and CO2 heated by a shock wave, the final relaxation
toward vibrational thermal equilibrium is the same as that in pure CO2 and is
faster than the similar relaxation in shock-heated air. Explain.

D. The vibrational frequencies of the symmetric stretch, bend, and asymmetric
stretch of SO2 are, approximately, 1152, 517, and 1362 cm−1, respectively. Shock-
heated SO2 is found to relax to toward thermal equilibrium with two relaxation
times rather than the single relaxation time as found for CO2 and many other
molecules. (a) Suggest an explanation. ∗(b) Suggest an experiment that will test
your explanation.
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E. Compare the magnitude of the adiabaticity parameter for vibrational and
rotational relaxation of HF at room temperature. The harmonic vibrational fre-
quency of HF is about 3140 cm−1. (It is only a single bond. Why is the frequency
in HF so much higher than the stretch frequencies for SO2 or CO2 or even N2?
The rotational constant of HF is an order of magnitude higher than that of, say,
N2. Why? And how does it affect your considerations about the efficiency of
rotational relaxation)?

∗F. The Landau–Teller temperature dependence, Figure 9.10. (a) Infer from
Section 9.2.2 that the cross-section for vibration to translation energy transfer in an
atom–diatom collision (roughly) scales with the collision velocity as exp(−v0/v).
(We have seen in Section 9.3.3 another case of a non-adiabatic collision with a
similar scaling.) (b) Determine the dependence of the scale factor v0 on the
frequency of the diatomic molecule. (c) Use saddle point integration, see Problem
D of Chapter 3, to derive the Landau–Teller temparature dependence.

∗G. Deviations from the Landau–Teller temperature dependence, Figure 9.10.
Estimate the lifetime of, say, an HCl(v = 0) · HCl(v = 1) van der Waals
dimer, using RRK theory, and argue that at low temperatures it will be long
enough for a sufficient number of “internal collisions” to take place and relax
HCl(v = 1).

H. A hard-sphere model. (a) Develop the hard-sphere model of Problem D
in Chapter 5 for a non-reactive A + BC collinear collision. In this model the
interaction time is infinitesimally short so that energy transfer is efficient. Hence
the model is used to determine the pre-exponential factor for the efficiency of
the collision. (b) The role of the masses. Is it more efficient for A to come from the
direction of the B atom or from the direction of the C atom? (c) Draw a trajectory
for a BC molecule that is initially vibrationally excited. Does the outcome depend
on the phase, cf. Section 5.2.2, of the initial vibration? (d) Under what conditions
will A collide more than once with the B atom? (e) If you are geometrically
minded, show that you can draw a construction that, for a given mass combination,
allows you to determine the collision trajectory as a straight line superimposed
on your drawing. There can be more than one line. What is the physics of the
different lines? (f) Hint for part (e). Show that certain mass combinations, with
a BC molecule that is initially vibrationally cold, will not result in any energy
transfer.

∗I. Super collisions, which, for smaller molecules, are also known as ballistic
collisions. Fisk and Crim (1977), Flynn et al. (1996). See the Ar + CsI example
of H.-J. Loesch and D. R. Herschbach, J. Chem. Phys. 87, 2038 (1972) or the
Ar + KBr results of Fisk et al. Devise a hard-sphere model that will predict a
high conversion of the initial vibrational excitation to translation or vice versa for
Ar + CsF collisions.

J. Detailed balance for energy transfer collisions. It is sometimes loosely stated
that detailed balance implies that the rate constant for a deactivating collision is
larger than the rate constant for the reversed, activating collisions. Even more
loosely it is stated that a reaction is faster in the exothermic direction. (a) Explain
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why this is not unreasonable, particularly so when the gap is much higher than
kBT. There are however important exceptions and you should identify at least
two counter examples. (b) Compare reaction rate constants for pure rotational
energy transfer, A + BC(v, j) → A + BC(v, j ′). (c) Vibrational energy transfer
to or from a vibrationally hot polyatomic molecule P, A+P(Ev) → A + P(E ′

v).
The second exception shows what is meant when we say that a large polyatomic
can act as a heat bath. Suggest other examples.

K. Collisions of the second kind. Electronically excited (2.1 eV) Na∗ atoms are
quenched efficiently by O2, Na∗ + O2 → Na + O2 and much less so by the rare
gases. (a) How would you demonstrate this difference in efficiency by a frequency
domain experiment. (b) Sketch the relevant potentials for the quenching of Na∗

by O2. The electron affinity of O2 is 0.44 eV and the ionization potential of Na
is 5.8 eV.

∗L. Collisions of the second kind. The one-dimensional potentials that you
sketched in Problem K overlook the role of the vibration of O2. Examine this
point in at least one of two ways. (a) Draw potential energy surfaces that are
functions of both the Na O2 distance R and the O O distance r. (b) Draw one-
dimensional potential energy curves where for each curve both the electronic state
of Na and the vibrational state of O2 are fixed (such potentials are diabatic in two
senses). Discuss the dynamics of the quenching and show why we expect that
O2 will be vibrationally excited after a quenching collision. The final vibrational
state distribution in processes in which an electronic state change occurs are often
quite close to the prior limit. Can your considerations above rationalize why this
will be so?

M. The harp model. Highly exoergic reactions of alkali metal dimers with
molecules of high electron affinity (Grice, 1975) produce alkali atoms in many
excited electronic states all the way up to the conservation of energy limit, e.g.,
K2 + Cl → KCl + K∗∗ [W. S. Struve et al., J. Chem. Phys. 62, 404 (1975)]. The
first step is presumably a harpoon process, K2 + Cl → K+

2 + Cl−. Propose a
model for the second step.

N. The Landau–Zener model. Take 0.025 eV as the value of the smallest gap,
�E(Rx), between two adiabatic potentials in the curve-crossing model. When
we discussed harpoon reactions in Section 3.2.4 we took it for granted that for
thermal reactants the system behaved adiabatically, that is, at Rx it jumped with
unit probability from the covalent to the ionic diabatic states. (a) Is this an accurate
assumption? If you need more input, assume that the ionic potential is purely
coulomb and that at long range the covalent potential can be neglected compared
with the ionic. (b) Using data from Figure 9.11 compute the threshold energy
for collisional ionization. In the post-threshold region is collisional ionization a
probable process?

O. The quantum mechanical period of a vibrational motion of a diatomic
molecule. Write the initial (time = 0) wave function as a linear superposition
of two adjacent vibrational states. (a) Solve the Schrödinger time-dependent
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equation by showing that the linear combination ψ(R, t) = cv exp(−iEvt/h̄)
ψv(R) + cv+1 exp(−iEv+1t/h̄)ψv+1(R) satisfies the equation. (b) Compute an
expectation value of, say, the displacement from equilibrium, R, and show that it
changes with time with a period that equals (Ev+1 − Ev)/h̄.

Notes
1 Lasing, which involves a change only in the rotational quantum number, has indeed been

observed [E. Cuellar and G. C. Pimentel, J. Chem. Phys. 71, 1385 (1977)].

2 Quantum effects are important at two levels. First, the obvious one that inelastic collisions

deal with transitions between the discrete internal quantum states of the colliders. This is

clear but even that is not always easy to implement in a computation. Take, for example, the

method of classical trajectories. The products of the collision emerge with a continuous

distribution of the final kinetic energy. This presents two problems. (i) Where do you put

the boundary between inelastic and elastic collisions? Not a trivial issue because the results

will show a large fraction of collisions with very small gaps. So which gaps are to be

defined as effectively equal to zero can significantly change the output. This problem does

not occur for reactive collisions. But for inelastic collisions it is a worry. A secondary

aspect is that one needs to assign the final states to discrete bins. Most practical ways of

doing this carry the penalty that they violate detailed balance because initial and final states

are treated on an unequal footing. (ii) Molecules will exit with less than their zero point of

internal energy. For a polyatomic molecule this energy can be quite large. Then there are

quantum effects in the dynamics.

3 The interpretation of the V V up-pumping distribution as an equilibrium subject to

conservation of the number of vibrational quanta is due to C. E. Treanor, J. W. Rich, and

R. G. Rehm, J. Chem. Phys. 48, 1798 (1968).

4 For energy-rich polyatomics, see Hippler and Troe (1989), Troe (1992), Weston and Flynn

(1992), Flynn et al. (1996), Flynn (2001).

5 By going somewhat higher up in excitation one can provide enough energy for the

isomerization or dissociation. See, for example, V. A. Lobastov et al., J. Phys. Chem. A

105, 11159 (2001).

6 Supercollisions are discussed by Oref and Tardy (1990), Clary et al. (1995), Oref (1995),

Mullin and Schatz (1997).

7 The term “adiabatic” is used in a consistent sense throughout the text. It means no change in

the occupation of the quantum state of the system. If you are good in Stat. Mech. you may

want to show that this is the same sense as used in thermodynamics. Hint: write the mean

energy of the system as 〈E〉 ≡ ∑
i Eipi where i is an index of the possible states. So a change

in the energy is made up of two parts, δ〈E〉 ≡ ∑
i δEi pi + ∑

i Ei δpi . The first term we

are familiar with from mechanics. It is the change in the energies of the states and it is what

we call “work.” The second part is possible if the occupations of the different states change.

It is the part we can “heat.” Note that, as you know, neither “work” nor “heat” are the

differentials of some function. Only their sum is. But in the adiabatic limit “work” is an

exact differential because there is no change in the occupation of the different states.

8 Since τ c > tv the B C bond oscillations are very rapid and the colliding atom A, which

measures time on a τ c scale, sees only the average position of the atom B and cannot probe

the oscillations about the average.
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9 The field began in the 1920s when Cario and Franck discovered how these so-called

collisions of the second kind could be put to practical use, e.g., the Hg∗-sensitized

activation of paraffins. This is due to initiation of chain reactions by radical formation,

Hg∗ + RH → HgH + R or Hg + H + R. Franck was led to look for such processes by

arguments based on detailed balance. For how far the study of this problem has advanced,

see Dagdigian (1997).

10 For the one-dimensional Landau–Zener curve-crossing problem that we discuss, see

Nikitin (1975, 1999), Child (1991), Zhu et al. (2001), Nakamura (2002). The more

general case of crossing of potential energy surfaces is discussed by many authors. Koppel

et al. (1984), Whetten et al. (1985), Lorquet (1996), Yarkony (1996), Ben-Nun et al.

(2000), Baer (2002), Worth and Cederbaum (2004).

11 As we have already seen in Chapter 7, in special cases there can be another option. The

adiabaticity parameter is not small but there are many repeated attempts to make the

change. Then, even if per attempt the probability is low, eventually it may take place.

Radiationless transitions of a polyatomic molecule, Section 7.0.3, provide examples of

this slow route. Recall that in a radiationless transition a molecule dumps a large amount,

�E, of electronic energy into the vibrational manifold of a lower electronic state. The

perturbations are the vibrations of the nuclei so the adiabaticity parameter is ξ = τ �E/h̄

where τ is a vibrational period or h̄/τ is a vibrational spacing. Since such spacings are

small compared with an electronic excitation energy, �E, the adiabaticity parameter is

large. But the nuclei do not cease to vibrate and eventually the transition can take place. If

we are correct then there is a clear prediction: it is those vibrations with the shortest period

that are most effective. This immediately puts the blame on the C H stretch motions and

suggests (as is observed) that deuteration will significantly slow down the rate of

radiationless transitions. There are therefore examples where the actual gap is the nominal

one. It need not be the case that the gap has to be small for a breakdown of the

Born–Oppenheimer to be observable. At the same time we emphasize that radiationless

transitions can also occur via conical intersections and then they are quite facile.

12 Speiser (1996), May (2000).

13 For photo-electron transfer, see Wasielewski (1992), Gust et al. (1993), Bixon and Jortner

(1999), Lin et al. (2002), Ritz et al. (2002).

14 For carotenoids as donors and the role of higher excited states see P. J. Walla et al., J. Phys.

Chem. A 106, 1909 (2002).

15 See, for example, the reports from the colloquium Proc. Natl. Acad. Sci. USA 93 (1996).

16 Mathies et al. (1988), Pollard and Mathies (1992), Lawless et al. (1994), Wang et al.

(1994), Fleming and Cho (1996), Fleming et al. (1997), Bardeen et al. (1998), Ben-Nun

et al. (2000), Haas et al. (2000); Walla et al., J. Phys. Chem. A 106, 1909 (2002). For more

general accounts: Bonacic-Koutecky et al. (1987), Michl and Bonacic-Koutecky (1990),

Turro (1991), Klessinger and Michl (1995). There is, of course, a thriving theoretical

effort (Karplus, 2002) carried out both within the experimental groups and by dynamicists

interested in uncovering details that cannot be easily experimentally probed and in

designing control schemes.

17 In an electrocyclic reaction (Woodward and Hoffmann, 1970) a molecule with a

conjugated system of m π electrons cyclizes to form a ring of m−2 π electrons and one σ

bond. For this transformation to happen, the two ends of the relevant π system must

approach each other in such a way as to enable the end p orbitals to overlap constructively.
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To form a σ bond the two terminal p orbitals need to rotate. When the molecule is

substituted the rotations can be in the same or in opposite directions. This leads to

different stereoisomers and is of much interest to physical organic chemists. Therefore,

such reactions are extensively studied. They are a special case of a pericyclic

isomerization where the transition state is cyclic.

18 In some retinal systems this stage is enzyme-catalysed and in others it is thermally

induced.

19 For a long time, the cis–trans photoisomerization of stilbene through a torsion about the

central C C double bond has served as a model for photoisomerization. Even for this

simple process the interplay of the different electronic states is not uncomplicated and

here too the one-dimensional energy level scheme, which is qualitatively similar to that

shown in Figure 9.15, is not the entire story. As is often the case, the problem begins with

the electronic affairs near the barrier for isomerization on the ground electronic states. The

two p orbitals that make for the ethylenic double bond are rotated away from one another

and the character of the ground state is essentially that of a diradical. It is then about

isoenergetic with the triplet state. The first excited singlet state, S1, increases in energy

toward the twisted configuration and it is a conical intersection with a higher, second

excited state S2 that allows a return of the photoexcited molecule to the ground state

where it bifurcates to the cis and trans isomers. The evidence is that there is more than one

state that can be called the “second” higher singlet state. Which one of the possible states

is lower in energy depends on the region of configuration space. See W.-G. Han et al.

Chem. Phys. Chem. 3, 167 (2002) for a view of this problem.



Chapter 10
Stereodynamics

This chapter explores how the directed nature of chemical bonding affects molec-
ular collisions and chemical reactions. Whereas the concept of size or cross-
section leads to numbers (scalar quantities), the concept of chemical shape leads
to vectors (numbers tied to directions). Consequently, this topic is more mathe-
matically challenging, but its study yields important insights into the nature of
chemical transformations. As expected, just as the size of a molecule depends on
the probe selected to measure this quantity, the chemical shape of a molecule also
depends sensitively on the probe chosen for the measurement. It is important to
stress that the physical shape of a molecule is most commonly determined from
molecular spectroscopy; it is usually expressed in terms of bond angles and bond
lengths. The chemical shape of a molecule refers to the apparent size and shape
of a molecule as experienced by another atom or molecule that collides with it.

10.0.1 The steric factor and early history of stereodynamics

The notion of spatial requirements for a chemical reaction dates to the introduc-
tion of a steric factor p in simple versions of the collision theory of reactions,
Section 3.2.5. This was forced upon the theory by the smaller than expected,
or even much smaller, overall magnitude of the reaction cross-section. Unfortu-
nately, the early theory gave no clue for determining the value of p, which has
largely been treated as an adjustable parameter to make simple collision theory
agree with observation. It was transition state theory that first accounted for the
magnitude of p and, most importantly, showed that p is systematically smaller
when the reactants are structurally more complex, Section 6.1.4.1. Collision
theory with a barrier to reaction that depends on the attack angle can provide
a detailed understanding of the dependence of the steric factor on both the
translational energy and internal excitation of the reactants. For a bimolecular
A + BC abstraction reaction the theoretical result is conveniently represented as,
Eq. (3.36),

p = 1
2 (1 − cos γmax) (10.1)

394
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where γmax is the maximum angle for which reaction is possible. Thus, p corre-
sponds to a solid angle within a cone of opening half-angle γmax. This treatment
leads naturally to the concept of a cone of acceptance1 for the reaction to occur.
Attack angles between the BC bond and the atom A within the cone of acceptance
result in reaction, whereas attack angles greater than γmax do not.

For generations of chemists steric considerations have been an important
aspect in the choice of a synthetic procedure. More recently, organic chemists
have developed computing programs using semi-empirical inter- and intramolec-
ular force fields for the determination of minimum-energy structures, minimum-
energy paths, and transition-state geometries. This so-called “molecular
mechanics” method has been applied to predict regio- and stereoselectivity in
reactions of chiral reagents and to guide the stereospecific synthesis of chiral
products. When we say that chemistry is local, the local steric requirements
for reactivity are foremost in our minds. The short-range atom–atom repulsive
forces play a dominant role in such considerations. In addition, long-range attrac-
tive forces tend to steer the approaching reagents, particularly if they are highly
anisotropic. Because the rotational motion of molecules is usually slow compared
to the time of a collision, it is possible to influence the outcome of a collision, often
dramatically, by orienting one of the reagents with respect to the approach direc-
tion of the other. This idea gave birth to dynamical stereochemistry (Figure 10.1)
and we first need to discuss how an orientation of reagents can be achieved.

10.1 Controlling reagent approach geometry

10.1.1 Preparing oriented molecules in electric fields

Bernstein (1988) conceived the first idea of how to control reagent approach
geometry in a chemical reaction. He proposed to use an electric field to align
the dipole moment of a polar molecule in the laboratory frame. The idea is easy
to grasp. The interaction of the electric dipole moment of the molecule with an
electric field results in a lowest-energy orientation with the dipole moment of the
molecule pointing antiparallel to the electric field direction. But molecules rotate
and further consideration shows that the most favorable case is for the molecule
to precess with its dipole moment opposed to the electric field direction. This
treatment requires that the molecule has a permanent dipole moment (so that
it undergoes a first-order Stark splitting), that is, it should be a symmetric top.
Specifically, Bernstein proposed orienting beams of symmetric-top molecules in
hexapole electric fields. This is how dynamical stereochemistry started.2

For a symmetric-top molecule in the state |JKM〉 where J is the total rotational
angular momentum quantum number of the molecule, K is the projection of J
on the top axis, and M is the projection of J on the electric field direction, the
|JKM〉 state experiences a radial force within a hexapole electric field that is
proportional to the product KM/[J (J + 1)]. Molecules in states for which the



396 Stereodynamics

K + ICH3 KI + CH3

IKI

KI

f

u

Θ/deg
0 30 60 90 120

Figure 10.1 Early days of dynamic stereochemistry. An inhomogeneous electrical
field is used to orient the CH3I molecule so that the I-atom end points in the direction
of the initial relative velocity of an incoming K atom, the f(avorable) case or with the
CH3 end pointing toward the incoming K atom, the u(nfavorable) case. The
difference in reactivity, plotted as the KI signal vs. the (laboratory) scattering angle,
is considerable [adapted from G. Marcelin and P. R. Brooks, Faraday Disc. Chem.
Soc. 55, 318 (1973)]. More detailed experiments can provide a complete mapping of
the reactivity vs. the angle of approach, as shown in Figure 1.5.

product KM is negative are defocused and pushed away from the beam direction,
whereas molecules for which KM is positive are focused. Moreover, the focal
point depends on the value of KM/[J (J + 1)], allowing different |JKM〉 states
to be individually studied (Parker and Bernstein, 1989).

In these experiments we call orientation any situation in which the two ends
of a molecule can be distinguished, and we call alignment the situation in which
we distinguish the sides of a molecule from its ends, but in which the two ends
cannot be told apart. Again, the idea of a “cone of acceptance” through which
reactive collision trajectories must pass in order to access the transition state
is a key early concept in interpreting these experiments with oriented reagents.
Reaction is possible only when the angles of approach and the impact parameter
lie within the angular range of the cone of acceptance. Those that fall outside this
cone do not cause reaction. Thus, the “chemical shape” of the reagent molecules
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is conferred in part by the anisotropy of the interaction potential. But the cone of
acceptance is not simply geometrical but depends also on the collision energy and
the internal motions of the reagents. As might be expected, the cone of acceptance
usually widens as the collision energy increases from the threshold sufficient to
permit reaction.

Orientation of polar molecules that are not symmetric-top molecules, such as
the molecule HCl, is possible with homogeneous electric fields via the second-
order Stark effect. But for commonly populated rotational states, the sizes of
the electric fields required to make an appreciable orientation are prohibitive.
As a polar molecule with a second-order Stark splitting rotates in an applied
electric field, it slows down when the dipole moment opposes the electric field
direction but speeds up when the dipole moment points along the electric field
direction. At extremely high electric fields, the polar molecules line up parallel
to the field, and they execute frustrated (incomplete) rotations, called librations,
about the field direction.3 For significant orientation to be achieved it is nec-
essary for the second-order Stark splitting energy (between the electric dipole
moment of the molecule and the applied electric field) to be larger than the rota-
tional energy of the molecule. Under such conditions, the molecules are said
to be in pendular states, which are not characterized by one rotational quan-
tum number j but by a mixture of rotational states. Because thermal molecular
rotation resists orientation by the applied electric field, the idea of orienting
molecules by brute force application of a large electric field was not pursued
until experiments4 showed that supersonic cooling of polar molecules in molecu-
lar beams, which populates only the lowest rotational levels, makes this approach
feasible.

A particularly illuminating example of what can be learned by brute force
orientation is the study of the reaction of potassium atoms with oriented iodine
monochloride.5 The direction of the orienting field was reversed so that the reac-
tivity of K attack on the I-end could be compared to attack on the Cl-end of ICl.
The potassium halide reaction product is forward-scattered for both orientations,
that is, in the same direction as the incoming K atom, but attack on the I-end
of ICl yields KCl whereas attack on the Cl-end of ICl yields KI. The velocity
distribution of the KCl product, however, shows both fast and slow components,
but the KI product has only one velocity component. It is thought that the reac-
tion proceeds by a harpoon mechanism in which the K atom transfers an electron
to ICl, which dissociates into a neutral halogen atom and a negatively charged
halogen anion. The K+ then picks up the X− to yield the KX product. ICl disso-
ciates to I + Cl− on its ground-state potential energy surface with little release of
translational energy into these fragments. ICl dissociates from an excited state to
yield I + Cl− with significant translational energy release into these fragments.
ICl also dissociates from an excited state to yield I− + Cl. Thus, the reaction of K
with oriented ICl reveals a rich chemistry involving reactions on more than one
potential energy surface. The attack of K on the Cl− end of ICl to form KI has a
cone of acceptance with an estimated apex half-angle of 40◦, whereas attack of
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Figure 10.2 Relation
between the transition
dipole moment µ, the
internuclear axis r, and
the rotational angular
momentum j of a
diatomic molecule, in the
high-j limit. Note that µ is
perpendicular to j for
P- or R-branch excitation,
whereas µ is parallel to j
for Q-branch excitation.

K on the much larger I-end of ICl to form KCl has an apex half-angle of about
100◦.

10.1.2 Preparing aligned molecules with polarized radiation

Just as an applied electric field can be used to control the reagent approach
geometry by its interaction with the molecule’s dipole moment, it is also possible
to use the interaction of polarized radiation with the molecule’s transition dipole
moment when the molecule absorbs radiation (Zare, 1972, 1982). In this case,
however, the molecule becomes aligned with respect to the electric field of the
beam of radiation. The origin of the alignment effect is the transition probability
as a function of the rotationally averaged position of the molecule with respect to
the electric vector of the light beam. By symmetry, the transition dipole moment
points in only certain directions with respect to the rotational angular momentum
vector j. For a diatomic molecule, transitions may be characterized as parallel or
perpendicular, depending on whether the angular momentum projection upon the
internuclear axis remains unchanged as in a �–� transition or changes by one unit
as in a �–� or a �–� transition. In the high-j limit, which is rapidly approached
with increasing J, the internuclear axis r is at right angles to the rotational angular
momentum vector j. An electric dipole allowed transition causes the rotational
quantum number j to change at most by one unit, that is, �j = 0, or ±1. A
transition in which �j = −1 is called a P-branch member, �j = 0 a Q-branch
member, and �j = +1 an R-branch member. Moreover, the transition dipole
moment must lie either along the internuclear axis r, perpendicular to j for a
parallel transition, or must lie perpendicular to the internuclear axis r, either
along j for a Q-branch transition or perpendicular to j for an R- or P-branch
transition. These three different possibilities are pictured in Figure 10.2.
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The transition probability is proportional to |µ · E|2 = |µ|2 |E|2 cos 2θ ,

Figure 10.3 Collision
with an aligned diatomic
molecule in which the
most likely alignment is
(A) face-on and (B)
edge-on to the plane of
rotation of the diatomic
molecule. As an example,
for Sr + HF, face-on attack
was favored at low
collision energies but
edge-on attack at higher
collision energies
[H. J. Loesch and F.
Stienkemeier, J. Chem.
Phys. 100, 740, 4308
(1994)]. At low collision
energies the
transition-state bend
angle is estimated to be
about 70◦, and clearly
reflects the divalent
character of the Sr atom.
On the other hand, the
reaction of K + HF(v = 1,j)
showed a clear preference
for edge-on attack, as
would be expected for a
favored collinear
approach geometry. Thus
the chemical shape of
HF(v = 1, j) varies
markedly depending on
whether it is probed by
collisions with Sr or K
atoms.

where E is the electric vector of the light beam, and θ is the angle between µ

and E. Figure 10.2 shows how the location of the dipole moment µ is related to
the location of the rotational angular momentum vector j. The excitation process
favors molecules with their transition dipole moments µ along E. Therefore,
the absorption of light selects molecules with j vectors pointing preferentially
in some direction. In the high-j limit j is perpendicular to the internuclear axis
r, and thus the absorption of light chooses preferential directions for the plane
of rotation of the diatomic molecule. For electromagnetic radiation the electric
field E oscillates in time so the direction of the internuclear axis r is selected but
not the signed sense of the internuclear axis, that is, the light causes alignment
but not orientation. Consequently, by preparing vibrationally or electronically
excited molecules by the absorption of a beam of linearly polarized light (Zare,
1982), collisions can be studied in which the reagent target is struck primarily
either face-on or edge-on with respect to the plane of rotation,6 as shown in
Figure 10.3.

10.1.3 Electronic orbital control

Not only is it possible to control the nuclear framework in a reactive encounter
by the absorption of a beam of plane polarized radiation, it is also possible to
control the direction of the electron charge cloud for open-shell reagents. For
example,7 Rettner and Zare prepared excited calcium atoms [Ca 3s3p 1P] in
which the p orbital pointed either along the approach direction or perpendicular
to the approach direction of the Ca atom to various halogen-containing reactants.
In a beam-gas scattering geometry they found that the total chemiluminescence
cross-section for the Ca(1P) + HCl reaction was insensitive to Ca(1P) alignment,
but that the branching ratio into the electronic excited states CaCl (A2�) and CaCl
(B2�+) depended markedly on alignment, with parallel approach of the p orbital
favoring production of the CaCl B2�+ state whereas perpendicular approach of
the p orbital favored the CaCl A2� state. These findings are readily interpreted in
terms of an electron jump model (harpoon mechanism) in which the symmetry
of the reagents is preserved during the electron transfer. These results led to
the notion of orbital following in a chemical reaction, in which the direction
of the p orbital becomes locked onto the target for large impact parameters so
that the initial symmetry is maintained. Figure 10.4 illustrates this behavior. The
experimental results shown imply that the Ca(1P)+HCl reaction is predominantly
adiabatic in nature.

It is also possible to apply the same idea of using radiation to control the
electron charge distribution in open-shell molecules. For example, the lithium
dimer (Li2) has a closed-shell electronic structure in its X1�+

g ground state in
which both valence electrons are spin paired in the same σ molecular orbital.
With visible radiation, Li2 is readily excited to its A1� state in which one electron
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Figure 10.4 Orbital following. (a) At small impact parameters, the parallel approach
of the p orbital to the spherical target, denoted as σ , transforms smoothly to parallel
body-fixed alignment of the p orbital, resulting in the formation of a � state. (b) At
large impact parameters, the parallel alignment in the center of mass can give rise to
perpendicular body-fixed alignment of the p orbital, yielding a � state for
non-adiabatic behavior, or (c) can yield a � state for adiabatic behavior if orbital
following occurs. [Adapted from C. T. Rettner and R. N. Zare, J. Chem. Phys. 77, 2416
(1982); for orbital following in atomic collisions see Hertel et al. (1985), Campbell
et al. (1988).]

remains in the σ molecular orbital and the other is promoted to a π molecular
orbital. According to symmetry,8 the electronic charge cloud in the high-j limit
either lies perpendicular to the internuclear axis r and along the rotational angular
momentum vector j or perpendicular to j as well. The former is called an A′′

�-doublet level and is antisymmetric to reflection in the plane of rotation, whereas
the latter is called an A′ �-doublet level and is symmetric to reflection in the
plane of rotation. Despite promising beginnings,9 the collisions of electronically
aligned molecules remains a largely unexplored topic.

An experiment that similarly shows the differential reactivity of an aligned
electronic orbital is the photodissociation of the T-shaped van der Waals dimer
Hg∗·H2. The Hg 61S0 → 61P1 transition, where a single valence electron pro-
moted to a p orbital, is split by the close presence of H2 because now the
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Figure 10.5 Nodal structure of the two possible T-shaped van der Waals dimers
Hg∗ ·H2. The different shading indicates opposite phases of the orbital. The
lower-energy 6s6pπ Hg configuration dissociates reactively because the p
orbital has a favorable overlap with the empty antibonding σ orbital of H2

[adapted from Jouvet et al. (1987), Simons (1987)]. It is also possible to use the
promoted p electron as a harpoon starting with Hg·X2 van der Waals bound dimers,
X halogen.

atom is not in a spherical environment. Excitation to the red of the atomic tran-
sition makes for a p orbital oriented along the H2 bond, a 6s6pπ configuration,
Figure 10.5. This p electron effectively interacts with the σ antibonding orbital
of H2 as seen from the nodal structure exhibited in the figure and the complex
dissociates reactively. Excitation to the blue of the atomic transition makes for
a p orbital oriented perpendicular to the H2 bond, a 6s6pσ configuration. This
orbital interacts repulsively with either the σ bonding or antibonding orbital of
H2 and so its energy is higher. The complex then dissociates non-reactively as
detected by observation of the Hg fluorescence.

Although the different alignment studies have shown that reaction rates can
be changed less than an order of magnitude, they do provide an impressive probe
of the three-dimensional nature (architecture) of the reaction pathway.

The most general form of optical preparation of the reagents is to use a radiation
field whose spatial and temporal characteristics are continuously tuned (chirped)
through the reactive encounter. A note of caution is in order, however. Although
optical methods can be highly selective, the degree of orientation or alignment
initially achieved may not always be well conserved during the time between the
preparation step and the collisional encounter. The reason for this lack of fidelity
is the presence of nuclear spins of the atoms in the selected reagent. These act
as randomly oriented flywheels whose weak coupling to the rest of the molecule
(through hyperfine interactions) acts to reduce whatever initial orientation and
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alignment was achieved. If the j level of the molecule is large compared to the
nuclear spin I, the effect is small.10

10.2 Analyzing product polarization

If collisions are studied in a bulb so that the distribution of directions for colli-
sions is uniform, then a measurement of the products cannot be expected to yield
directional information about individual collisions. If the distribution of direc-
tions for collision is restricted, however, as in beam-gas scattering experiments, or
well defined as in crossed-beam scattering experiments, or in some photoinitiated
studies (see below), then the products of the reaction are, in general, polarized. We
call a distribution polarized whenever the distribution is described as containing
orientation or alignment or both. Polarized products can be measured in much the
same way that polarized reagents are prepared, either by using applied electric
fields to cause deflection of the polarized products or using polarized light to
probe the products. In what follows, we highlight a few of these experiments and
results.

Herschbach and co-workers were the first to observe product alignment in
various chemical reactions. They used an inhomogeneous electric field as an
analyzer. One system of particular interest is the reaction K + HBr → KBr + H.
The resulting KBr product was strongly rotationally aligned with its rotational
angular momentum j pointing perpendicular to the relative velocity vector v of the
collision. This finding is a consequence of the choice of masses for reactants and
products and is referred to as a kinematic effect or a kinematic constraint. This
behavior happens in any reaction in which a heavy atom H strikes a heavy–light
reactant H′L to form a heavy–heavy product HH′ and a light collision partner
L. To understand why, we need to consider briefly what factors control collision
outcome.

10.2.1 Conservation of angular momentum

The possible sates of the products may be limited not just by the conservation of
energy but also by the conservation of total angular momentum. In the simplest
case of an atom–diatom collision the total angular momentum J is the vector
sum of the orbital angular momentum L (Section 4.1.1) and the rotor’s angular
momentum j (assuming that the atom is a closed shell or its angular momentum
can be ignored):

J = L + j (10.2a)

The two components of J need not point in the same direction and so its mag-
nitude J satisfies the triangular inequality, |L − j | ≤ J ≤ L + j . How high J
can reach in a specific reactive collision depends on the system. For the F + H2

system the reduced mass µ is atypically low and the reaction cross-section in
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the post-threshold regime is small (≈ 2 Å2) so the range of impact parameters
that contribute to the reactive collisions is small. Hence the range of L = µvb is
unusually constricted. The H2 molecules have large rotational spacings. Hence, at
thermal equilibrium, the most probable j values for H2 are also atypically small. It
follows that the possible range of J values is quite limited. Estimates suggest that
J ≤ 30h, as compared to a range of hundreds for usual heavy-particle collisions
with large reaction cross-sections (for example, K + Br2, where J ≤ 700h).

The total angular momentum can also be written in terms of the products’
angular momenta

J = L′ + j′ (10.2b)

where L ′ = µ′v′b′. For the F + H2 reaction the reduced mass of the recoiling
products µ′ is even smaller than the reduced mass of the incoming reactants µ

so the range of L ′ is also limited. This reduction in the magnitude of the product
orbital angular momentum is particularly the case when the reaction releases
most of the exoergicity into vibration so that v′ is small. For the F + H2 reaction
we therefore expect that the range of HF rotational angular momentum will be
limited.

An opposite example, where the product rotational excitation is high, is the
family of reactions where the departing atom is significantly less heavy than the
other two. The reaction

K + HBr → KBr + H

is an extreme but not unusual example. Here the initial reduced mass is
quite high so the L values for which reaction is possible can be large and
j 	 L so that to good approximation J ≈ L. The relative motion of the reagents
controls almost completely the total angular momentum. The reaction is not
very exoergic and the magnitude of the product orbital angular momentum L ′ is
small, especially when it is realized that µ′ 	 µ so that L ′ 	 L . By conservation
of angular momentum, the angular momentum of the reactants must equal the
angular momentum of the products of a reactive collision. It thus follows that to
good approximation j′ = L. Essentially all the orbital angular momentum from
the approaching reagents becomes rotational angular momentum of the diatomic
product. This result also implies that the rotational angular momentum of the
HBr product points along the orbital angular momentum of the reactant. Con-
sequently, j′ is perpendicular to the relative velocity vector v. This alignment
effect is also seen optically (Orr-Ewing and Zare, 1994), either in the polarized
character of the emission if the reaction products are excited or by studying the
dependence of the product fluorescence as a function of the polarization of the
excitation source.

An even more extreme example of a kinematically constrained heavy plus
heavy–light reaction system is that of Ba + HI → BaI + H. Recall that for
this mass combination j′ ≈ L and L = µvb. It follows that the rotational state
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Figure 10.6 Left panel: opacity function, P(b), for the Ba + HI → BaI(v = 0) + H
reaction inferred from the measured rotational distribution of BaI in its ground
vibrational state, at different collision energies, as shown. The reaction is exoergic
and populates BaI up to quite high vibrational states [adapted from K. Kalogerakis
and R. N. Zare, J. Chem. Phys. 104, 7947 (1996)]. The result requires comment on
both the low and high ends of the b scale. As is the case for other reactions, the peak
of the rotational distribution for a given v shifts to lower energies as v increases. The
kinematic correlation L →j ′ means that opacity functions for formation of BaI(v) for
higher v values will peak at lower impact parameters. The upper cutoff on the b
value that leads to reaction is expected to be due to the centrifugal barrier,
Section 3.2.6, and this is indeed the case at lower collision energies, right panel. At
higher energies, j ′max does increase but bmax ∝ L max/

√
ET decreases, as shown in

the right panel. It shows the cutoff on b values that lead to reaction owing to the
centrifugal barrier, solid line, and the conservation of energy limit on j ′

max, dashed
line. Another kinematically dominated example is the H + HI → HI + H reaction (Aker
and Valentini, 1993), where the exchanged atom is heaviest. Equation (10.3) below
enables us to examine the role of the masses in the partitioning of the total angular
momentum.

distribution of BaI reflects the distribution of impact parameters that contribute
to the reactive collisions. The products’ j′ distribution should thus mimic the
incoming distribution of impact parameters in the reactive collision, 2πbP(b)/σ R,
which is likely to peak toward high b values. The choice of impact parameters
cannot be controlled. Nevertheless, measurement of the product rotational state j′

distribution for this reaction maps directly onto the impact parameter distribution
that caused reaction. By this means the opacity function P(b) for this reaction
was derived, Figure 10.6.

The correlation j′ ∼= L just discussed for the Ba + HI reaction is valid irre-
spective of the precise details of the forces that operate during the collision.
It is an example of a kinematic constraint. The very description of the motion
imposes the result. In Section*10.2.2 we show that for any mass combination the
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transformation from reactants to products in an atom–diatom A + BC → AB +
C reaction is of the form11

j′ = L sin2 β + j cos2 β + d cos2 β

L′ = L cos2 β + j sin2 β − d cos2 β
(10.3)

Here d is a vector that does depend on the dynamics and β is the mass-dependent
angle, cos2 β = mAmC/(mA + mB)(mC + mB) of Appendix 5.B. Equation (10.3)
is readily seen to conserve the total angular momentum j′ + L′ = j + L. The
kinematic constraints discussed earlier are for cos β → 0, which is the case for
a light ejected atom C or for a heavy exchanged atom B. The behavior in the
opposite extreme, cos β → 1, is also simple, as we already saw in Chapter 1 for
a light exchanged atom. In Section *10.2.2 we shall refer to cos β → 1 as the
stripping limit. For every type of collision, kinematic considerations govern, at
least in part, the detailed outcome.

*10.2.2 Kinematic models

Models seek to bypass the need for solving the classical equations of motion.
By making plausible assumptions (for example, in Section 3.2) we are to pro-
vide useful guidelines that can be tested. The spectator limit (Section 1.2) is an
example of a simple model that correlates the states of the products with those of
the reactants. We seek here to examine it in some further detail and to incorpo-
rate in the model the possibility of forces operating during the collision. To retain
the simplicity of the model, we shall assume that the switching of partners is
very rapid, i.e., that the forces are impulsive. As an example, consider the H +
Cl2 → HCl + Cl reaction. In the c.m. system, the light H atom approaches Cl2
very rapidly. As soon as the H atom is within the range of chemical forces, the
HCl bond is formed, while the Cl atoms repel one another because the electron
from the H atom goes into an orbital that is antibonding between the Cl atoms,
Section 5.1.5.1. It is this “instant” product repulsion that must be incorporated in
the model. The resulting, so-called DIPR (Direct Interaction Product Repulsion)
model12 is just one of several that can be developed on the basis of our derivation
below.

The starting point is the set of equations (B.5.1) for the coordinate of relative
motion R and the internal coordinate r that we scale in terms of the masses and
transform to the coordinates for the products. The transformation is very simple
if the exchanged atom is rather light or if it is rather heavy. In the general case,
using Problem A, the transformation is

Q′
1 = cos βQ1 − sin βQ2

Q′
2 = sin βQ1 + cos βQ2

(10.4)

The result is exact and can be generalized to more than three atoms, Problem B.
The transformation, Eq. (10.4), remains exact if we differentiate the coordinates
with respect to time. The velocities at a given time t are therefore related by the
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same transformation. We now make the key approximation that the reaction is
sudden. The atoms come in with their original velocities and promptly exit as
products with their own final velocities. We completely neglect any forces that
might have acted so that, using a dot to denote the time derivative, we relate the
initial and final velocities by

Q̇′
1 = cos βQ̇1 − sin βQ̇2

Q̇′
2 = sin βQ̇1 + cos βQ̇2

(10.5)

This result, while only valid in the sudden approximation, is rather neat. Knowing
the final velocities we can compute every property of the products and Eqs. (10.3)
are derived from this result. All we need for application of Eqs. (10.5) are the
initial velocities and the masses.

There is one snag. The result (Eq. (10.5)) cannot possibly be the whole story,
if only for the simple reason that it does not necessarily conserve the total energy.
In Problem A you are asked to show that what (Eq. (10.5)) conserves is the kinetic
energy. This failure is to be expected; we completely neglected the role of the
forces so of course it is the kinetic energy that is conserved. Exoergic reactions,
where the potential energy changes by a large amount, require a more refined treat-
ment. Before we do so, let us see the angular momentum correlations. With the
definition L = µR × Ṙ, where Q1 = aR, a = √

µ, L = Q × Q̇, and similarly
for j, L′, and j′, Eq. (10.3) is readily derived with d = tan β(Q1 × Q̇2 + Q2 ×
Q̇1). Checking, we see that the approximation (Eq. (10.3)) does conserve the
total angular momentum!

A special case of our consideration is the spectator limit. Here the old bond
has no energy and so Q̇2 = 0. Because ET = Q̇2/2 (and similarly for E ′

T): E ′
T =

cos2 βET. In the DIPR model, one modifies the basic approximation by assuming
that bond switching is accompanied by adding a sudden repulsion. This repulsion
imparts a large extra velocity, say q, along the old bond Q2, so that

Q̇′
1 = cos βQ̇1 − sin βq (10.6)

Hence the products’ relative velocity (i.e., Q̇1) has a component along the direc-
tion of the old bond. For a light atom attack (sin β → 1), that component can
dominate so the products’ angular distribution reflects the distribution of the ori-
entation of the old bond (with respect to the initial velocity) at the instant of
reaction.

Problem B derives the transformation between the coordinates suitable for
the reactants and products in the four-center AB + CD → AC + BD reaction
and hence shows that reactant vibration is the primary energy needed in the
kinematic limit.

Kinematic considerations are also useful for inelastic collisions.13 For exam-
ple, when large changes in the rotational angular momentum occur in an
A + BC( j) collision, these changes are often caused by off-center collisions with
the inner repulsive core of the BC molecule that is ellipsoidal in shape. Assuming
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such a localized transition, the change in angular momentum is �L = µR × �Ṙ.
Conservation of total angular momentum requires that �j = −�L. This relation
has a clear observable implication about �L and �Ṙ, where �Ṙ is the change
in the relative velocity, which is a vector in the plane defined by the initial and
final velocity vectors. The change in BC angular momentum is to be oriented
perpendicular to that plane. Is it? We return to this question later.

*10.2.3 The degree of orientation and alignment

Before proceeding, we take time out for a rather mathematical interlude. Stereo-
dynamics deals with vectors, and these have both a magnitude and a direction.
Ideally, we want to know the complete distribution of the possible directions of the
vector as, for example, in an angular distribution after a collision, where we want
to know how the final velocity is distributed with respect to the initial direction
of approach. Orientation and alignment are the technical terms that are used to
describe deviations from a purely random direction in space. In this section we
want to express more precisely how to characterize orientation and alignment.
This treatment leads naturally to multipole moments, which serve as a basis in
which the distribution of oriented and aligned molecules can be expanded.

Z

M
J =[J(J+1)]1/2 

q

Figure 10.7 Vector model
for the state |JM 〉. The
angular momentum
vector J precesses about
the Z axis at a fixed angle
cos θ = M/[J (J + 1)]1/2

making a projection M on
the Z axis.

Consider a molecular distribution having the total angular momentum J. Recall
that, according to quantum mechanics, J can only take on integral (or half-
integral) values, and the possible orientations of J are quantized. Specifically
only (2J + 1) different J orientations can exist, denoted by the magnetic quantum
number M, which ranges from M = −J to M = +J in unit steps, where J is
the rotational quantum number. The wave functions are denoted by |JM〉 and are
characterized by the total angular momentum quantum number J and its projec-
tion M on the axis of quantization, which we choose to be the Z axis. In the limit
of high J values, the J vector of length

√
J (J + 1) can be regarded to precess

about the Z axis making a constant projection M, as shown in Figure 10.7 where
the cosine of the included angle θ satisfies the relation cos θ = M/[J(J + 1)]1/2.
Thus, the operators for the square of the total angular momentum J2 and the
projection JZ (of J on the Z axis) have the expectation values

〈JM |J2|JM〉 = 〈J2〉 = J (J + 1) (10.7)

and

〈JM |JZ |JM〉 = 〈JZ〉 = M (10.8)

We are interested in describing the distribution of J vectors. For simplicity and
in agreement with many common situations, we will assume that the J vector
distribution has cylindrical symmetry about the Z axis. For a system with such
axial symmetry, the J distribution is simply specified by the occupation of states
with the fixed possible projections of J on the Z axis. To make this discussion
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less abstract, let us consider a molecule in a particular rotational level J = 2.
Then a five-dimensional vector

N =




N2

N1

N0

N−1

N−2


 (10.9)

represents the states of such a system. NM is the number of molecules in the
state |JM〉. This vector can of course be expanded as a linear combination of five
“Cartesian” basis vectors, Ci , i = −2, −1, . . . , 2:

C2 =




1
0
0
0
0


 , C1 =




0
1
0
0
0


 , C0 =




0
0
1
0
0


 , C−1 =




0
0
0
1
0


 , C−2 =




0
0
0
0
1


 (10.10)

Explicitly,

N = N2




1
0
0
0
0


 + N1




0
1
0
0
0


 + N0




0
0
1
0
0


 + N−1




0
0
0
1
0


 + N−2




0
0
0
0
1


 (10.11)

The Cartesian basis vectors Ci have the property of satisfying the orthonormality
condition, namely, Ci·Cj = δij, that is, the dot product of any Cartesian vector
with another vanishes whereas the dot product of any Cartesian vector with itself
is unity.

To bring out the symmetry character, however, it is much more convenient
to introduce spherical basis vectors that transform under rotation like multipole
moments, that is monopole, dipole, quadupole, etc. The spherical basis vectors
are defined by

T0 = 1√
5




1
1
1
1
1


 , T1 = 1√

10




2
1
0

−1
−2


 , T2 = 1√

14




2
−1
−2
−1
2




T3 = 1√
10




1
−2
0
2

−1


 , T4 = 1√

70




1
−4
6

−4
1


 (10.12)

where the numerical factors in front insure that they are normalized. The spherical
basis vectors behave under rotation like spherical harmonics YLM(θ ,φ) but with
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M = 0 because there is no φ-dependence owing to the assumed axial symmetry of
the problem with respect to the Z axis. Thus, the spherical basis vectors transform
under rotation as the Legendre polynomials PL (cos θ ), see Eq. (10.23) below,
where classically θ is the angle between J and the Z axis, see Figure 10.7. The
spherical basis vectors also satisfy the orthonormality condition, Ti · Tj = δij.
Then N may be expanded in terms of the spherical basis set as

N =
4∑

L=0

nL TL (10.13)

where the coefficients nL =TL · N represent multipole moments of order 2L of
the distribution N.

Specifically, for L = 0, the monopole moment is given by

n0 = 1√
5

(N2 + N1 + N0 + N−1 + N−2) (10.14)

This quantity is proportional to the total number of molecules with J = 2, that is,
the population of the J = 2 system summed over all different M values. All systems
must possess some overall population; hence every distribution has a monopole
moment. If the system has only a monopole moment, then the J distribution
is uniformly distributed in space and the system is said to be unpolarized. If
higher-order multipole moments exist, however, the system is polarized.

The dipole moment, L = 1, is given by

n1 = 1√
10

(2N2 + N1 − N−1 − 2N−2) (10.15)

which in terms of the expectation value of the JZ operator can be written

n1 = 1√
2

n0〈JZ〉 (10.16)

This term is known as the orientation. Note that the orientation of a system
requires an imbalance in the number of molecules in the state |JM〉 compared to
those in the state |J − M〉. In other words, the distribution of J vectors does not
have reflection symmetry in a plane perpendicular to the Z axis. Thus, the system
has a head and a tail with respect to the Z axis. Orientation is often reported as
the value of

O (1) = 〈JZ 〉/J = P1(Ĵ · Ẑ) (10.17)

The range of variations of O(1) is from −1 to 1 and O(1) = 0 for a randomly
oriented molecule.

For L = 2, the quadrupole moment

n2 = 1√
14

(2N2 − N1 − 2N0 − N−1 + 2N−2) (10.18)

is called the alignment. An examination of its form shows that the alignment is
positive if J points more along the quantization axis Z than perpendicular to it,



410 Stereodynamics

Figure 10.8 Orientation and alignment: (a) and (b) examples of pure orientation of
positive and negative sign; (c) and (d) examples of pure alignment of positive and
negative sign.

whereas the alignment is negative for the reverse situation. The alignment is often
reported using the parameter

A(2) = 2P2(Ĵ · Ẑ) =
(

3
〈
J 2

Z

〉
− J (J + 1)

)/
J (J + 1) (10.19)

where P2 is the second Legendre moment. The range in variations of A(2) is
from +2 to –1 where A(2) = 0 for a randomly oriented molecule. A positive value
of A(2) shows a preference for polar regions whereas a negative value of A(2) shows
a preference for equatorial regions. The n3 term represents the octopole moment,
and the n4 term represents the hexadecapole term. The odd-order multipoles
contribute to defining the orientation and the even-order multipoles for L > 0
to the alignment. It is possible for the J distribution in a system to have both
orientation and alignment at the same time. If the system is axially symmetric
and has only orientation, then its J distribution is defined by a distribution of
single-headed arrows that point either preferentially parallel to the Z axis (positive
orientation) or antiparallel to the Z axis (negative orientation). If the system is
axially symmetric and has only alignment, then its J distribution is defined by
a distribution of double-headed arrows that cluster either close to the Z axis
(positive alignment) or cluster in a direction perpendicular to the Z axis (negative
alignment). Figure 10.8 pictures these four situations. If a system is isotropic, then
it is unpolarized, and all M states are equally populated. If a system is anisotropic,
then it is polarized, and the M states are not equally populated.

As the rotational quantum number J becomes large, we approach the classical
correspondence limit, and each nL expansion coefficient becomes the average
value of the Legendre polynomial 〈PL (Ĵ · Ẑ)〉, that is, the Lth classical multipole
moment for the angular momentum distribution.

So far, we have restricted our attention to systems having axial symmetry. For
example, in a crossed-beam experiment, the collision system has axial symmetry
about the relative velocity vector v. If we observe the products scattered into a
particular solid angle element, however, we break the axial symmetry and the
system no longer possesses a cylindrically symmetric J distribution. Then
the description of the polarization of the system is more complex. It depends on
the choice of the X and Y axes. As a consequence, we have additional polarization
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Figure 10.9 The essence of an experiment detecting the sense (clockwise or
anticlockwise) of NO rotation in a given internal quantum state and scattering angle.
The shading shows an NO state-specific experimental result at different scattering
directions, ⊗ for clockwise, •© for anticlockwise [adapted from Lorenz et al. (2001);
see also Crim (2001)]. Note the cylindrical symmetry about the initial velocity and
the variation of the orientation with scattering angle.

parameters, which, in the high-J limit, become the average values of spherical
harmonics.

10.2.4 Inelastic collisions

One particularly powerful means of observing products of a collision is by ion
imaging in which each product is converted to an ion by some carefully chosen
multiphoton ionization process, Section 7.1.3.1. By varying the degree of polar-
ization of the ionizing radiation we learn about the degree of polarization of the
product. A striking example is shown in Figure 10.9.

At the high level of final state resolution provided by such experiments we
can discern quantal interference effects. The more prominent feature for inelastic
excitation is a rotational rainbow that arises by a mechanism similar to the intense
scattering of the final velocity into certain directions (Section 2.2.5). Here too, the
rainbow arises from different trajectories scattered into the same final state except
that the state is specified not only by the direction of v′ but also by the rotational
state of the molecule, NO in the case of Figure 10.9. This is a stereodynamic
effect because the final state is determined not only by the impact parameter
but also by the angle of approach, as shown for scattering by a hard ellipsoid in
Figure 10.10.
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θ = +60
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Figure 10.10 Scattering of an atom off a hard ellipsoid for a given impact parameter
and angle of approach, γ . The scattering angle is θ . The recoil momentum �p

corresponds to a change �j = R × �p in the rotational angular momentum of the
ellipsoid. The two panels correspond to two different impact parameters that lead to
scattering into the same final state.

For a given θ , as γ is varied �j will pass through a maximum. This behavior is
the origin of the stereodynamic rainbow: classical trajectories of different initial
b and γ accumulate into the same angular range.14 When we add an attractive
part to the potential, it is also possible for the scattering angles to go through an
extremum.

10.2.5 Surface scattering

The scattering of N2 from the surface of a silver crystal is a particularly interesting
example of a rotational rainbow, which becomes more pronounced with increasing
collision energy. The broad excess population at high j is very apparent at the
highest collision energy, Figure 10.11.

The scattered N2 from the nominally flat 111 surface of Ag displays both
alignment and orientation. The alignment increases with rotational excitation and
approaches the limiting value for J being at right angles to the surface normal. It
closely follows the expectations for an ellipsoid (American football) bouncing off
a hard wall. The degree of orientation is large and the sense of orientation changes
sign for the same J state, depending, in general, on whether the molecule is scat-
tered at angles less than or greater than the specular scattering angle in which the
angle of incidence equals the angle of scattering, both measured with respect to the
surface normal. Understanding the observed orientation requires a modification
of the simple model that assumes a flat surface. Rather we must recognize that the
face of a crystal is not flat but is corrugated, reflecting the atomic structure of the
solid. The major experimental features can be reproduced qualitatively by an ellip-
soid scattering from a flat surface to which a tangential frictional force is added
to represent the laterally averaged in-plane surface forces. The striking changes
of sign in the orientation result from a splitting of the rotational rainbow by these
in-plane forces. In other words, to an incoming N2 molecule, the Ag(111) sur-
face close-up is not perfectly flat. We will have more to say on this in Chapter 12.
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j(j+1)

Figure 10.11 The logarithm of the N2 rotational population (corrected for nuclear
spin statistics) is plotted against j(j + 1), which is proportional to rotational energy,
for inelastic scattering of N2 from the 111 surface of a silver crystal as a function of
incident beam energy for an incident scattering angle of 15◦ and a final scattering
angle of 20◦, close to the specular direction. The N2 beam is supersonically cooled
and has a rotational distribution that peaks at j = 0 and does not extend beyond
j = 3. The surface temperature is 90 K [adapted from G. O. Sitz, A. C. Kummel, and
R. N. Zare, J. Chem. Phys. 89, 2558 (1988)].

There we shall also discuss the anisotropic steering forces between the molecule
and the surface. Experimental evidence shows that the escaping NO molecules
with large j from a Pt surface are found to exhibit a clear preference for align-
ment with A(2) > 0, that is, for helicopter motion in which the rotational angular
momentum j points along the escape velocity. This shows that just before they
escape, the NO molecules have a preference for surface in-plane rotation. We shall
come to interpret this as showing a preference for NO molecules adsorbed on the
surface to be oriented with the N end attached to the surface. An out-of-plane
rotation would bring the repulsive O end of NO closer to the surface.

10.2.6 Bimolecular reactions

Let us return now to elementary molecular reactions. For example, consider a
beam-target gas arrangement with a chemiluminescent exchange reaction where
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the light emitted is monitored at right angles to the beam

A + BC → AB ∗ + C
↓ hν

AB

Initially, j (the angular momentum of BC) is randomly (i.e., spherically symmetri-
cally) distributed, whereas the orbital angular momentum of the reagent approach,
L, is randomly distributed in a plane perpendicular to the initial relative velocity
vector v. For simplicity, consider a reaction where many partial waves contribute,
so that j 	 L , and that, e.g., because C is a light atom, AB∗ is formed at high
rotational excitation, so that j ′ � L ′. Conservation of total angular momentum
implies that for our assumed conditions, j′ ≈ L; j′ will then be nearly parallel
to L and hence confined in a plane perpendicular to the initial relative velocity.
The AB product is fully aligned, with 〈(ĵ′ · k̂)2〉 ≈ 0, that is A(2) ≈ −1. The rota-
tional alignment of AB is measured by the polarization of the emitted light with
results showing the approach to a pure spectator limit at higher collision energies
(Figure 10.12).

10.2.6.1 PHOTOLOC
Reactions producing ground electronic state products can equally well lead to
product alignment, and observation of this alignment is most readily accom-
plished by optical means, such as laser-induced fluorescence or resonance-
enhanced multiphoton ionization. This is illustrated by the reaction of ground-
state chlorine atoms (2 P3/2) with vibrationally excited CH4 having one quan-
tum in the C H asymmetric stretch ν3 and C H stretch excited CD3H. The
experiment is carried out using the so-called PHOTOLOC technique (Alexander
et al., 1998; Simons, 1999), which stands for photoinitiated bimolecular reac-
tion analyzed using the law of cosines. In this experiment, Cl2 and methane are
co-expanded into a vacuum chamber and ground-state Cl atoms are generated
by photolysis of Cl2. Hence, to good approximation, the collision energy is com-
pletely controlled by the choice of photolysis wavelength. Either the HCl or the
CH3 products are detected in a quantum-state-specific manner by resonance-
enhanced multiphoton ionization. The experiment fixes the speed of the collision
in the center of mass and the speed at which a reactant departs in the center of
mass in a specific quantum state. A measurement is then performed to determine
from time of flight the speed distribution in the laboratory frame of the reaction
product. Knowledge of all three speeds is equivalent to knowing three sides of
a triangle from which the angles of the triangle may be found using the law of
cosines. Specifically, the speed distribution in the laboratory is used to determine
the distribution in scattering angles in the center of mass, that is, the differential
cross-section. The reactants are also selected in that an infrared laser prepares
vibrationally excited methane. The infrared wavelength is chosen to cause the
methane to have one quantum of vibration in its asymmetric stretch, denoted as
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Figure 10.12 Rotational alignment coefficient of the XeX∗ product vs. the collision
energy for the reaction of a fast Xe∗ (3P2) beam with HX, X = Cl, Br, I. The dashed
horizontal lines represent the maximum theoretical limit on the alignment [adapted
from Simons (1987)]. The deviations of the experimental results from the spectator
limit can be accounted for if there is a repulsive release of the exoergicity. Such an
impulse can contribute significantly when the ejected atom is light and if the
transition state is not collinear. With the available understanding of kinematic
effects, experimental conditions can be chosen such that dynamical features arising
from forces operating during the collision process can dominate.

CH4(ν3 = 1). By observing how the scattering signal changes with the infrared
laser on and off, it is possible to extract only those reactive collisions of the form

Cl
(

2P3/2

)
+ CH4(ν3 = 1) → HCl(v′, j ′) + CH3

Shown in Figure 10.13 is the differential cross-section obtained for various
HCl (v′ = 1, j′) product states.

In contrast, the reaction of ground-state Cl with vibrationally unexcited CH4

shows primarily backward-scattered HCl products, suggesting a preference for
a linear Cl H C arrangement in the transition state region. The reaction with
vibrationally unexcited CH4 is believed to result from small impact parameters
and for approach geometries in which the Cl atom lines up with a C H bond.
The effect of vibrational excitation of the methane is to allow reaction for a
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Figure 10.13 Angular
distribution of HCl(v ′ = 1,
j ′) products from the
reaction of ground-state
Cl atoms with methane
(CH4) excited with one
quantum in the
asymmetric stretch
vibration. With increasing
rotational excitation of the
product, the angular
distribution moves from
predominantly forward
(cos θ = + 1) to backward
(cos θ = −1) scattering.

wider range of impact parameters, and hence to increase the cone of acceptance
for reaction. Experiments show a factor of 30 or more increase in the reaction
cross-section. This is consistent with the fact that many more collisions occur at
larger impact parameters and suggests that the barrier to reaction is later along
the reaction coordinate, Section 5.1. In particular, the production of HCl(v′ = 1,
low j′) seems to involve a peripheral reaction mechanism, resulting in forward
scattering.

10.2.6.2 Peripheral dynamics
Peripheral dynamics is the pictorial term for describing steric hindrance by the
central atom (or group). The impact parameter is the miss-distance with respect
to the center of mass. Hence, unlike what is often the case, here low-impact-
parameter collisions are unfavorable because they tend to direct the attacking atom
toward the wrong target. Reaction is thus preferred for higher impact parameters
that sample the periphery of the central atom. Figure 10.14 shows the case of the
H + HI → H2 + I collision as an example.

Peripheral dynamics, as a higher-impact-parameter collision, is characterized
by more forward scattering of the product. This tendency is often augmented
by a repulsion of the products along the old bond. There are other examples
where obvious steric requirements indicate peripheral dynamics. The origin of the
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Figure 10.14 H + HI collisions at a large impact parameter b (top row) and a low b
(bottom row) but for different orientations of HI. Left: reactive. The H H approach
occurs with a low impact parameter so that the chemical interaction between these
two atoms can be expressed. Right: non-reactive. The H H approach occurs with a
higher impact parameter, almost as high as b itself [adapted from Aker and Valentini
(1993)]. Because the impact parameter for the H H approach can span the range
from 0 to b, reaction is also possible at low b values. However, there are more
collisions at higher bs so it is reaction at the largest bs that determines the reaction
cross-section.

requirements can however be dynamical in origin. Consider an exoergic reaction
leading to a highly internally excited state of the product, e.g., F + H2 → H +
HF(v′ = 3). There is little translational energy for the products to separate. Now
imagine the reaction trajectory running in the opposite direction. Unless it is a
peripheral approach of H H, reaction will not be favored.

Returning to the Cl + CH4(ν3 = 1) reaction, the forward-scattered HCl(v′ = 1,
low j′) products arise from collisions with large impact parameters and go through
a transition state that has an approach geometry in which the Cl atom moves nearly
perpendicular to the C H bond under attack. Varying the polarization direction
of the infrared excitation laser so that it prepares the vibrationally excited methane
in different collision geometries, we can test this proposed mechanism. To make
the analysis more clear cut, experiments were performed for the reaction of
vibrationally excited CH3D with Cl with the vibrationally excited C H bond
alternately parallel and perpendicular to the direction of motion of the Cl atom.
The production of a forward-scattered HCl(v′ = 1, j′) product is substantially
larger for side-on than end-on attack of the C H bond. The experiments thus
confirm that the forward-scattered HCl(v′ = 1, j′) product originates from a
peripheral reaction mechanism.
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uDCl
J′

j′

Figure 10.15 A pictorial representation of the preferential alignment of the DCl
angular momentum in the Cl + CD4 reaction [adapted from T. P. Rakitzis et al.,
J. Chem. Phys. 107, 9392 (1997)]. The strong repulsion of the products from one
another is one of the reasons that allow us to approximate the angular distribution
of the products as that of hard spheres.

Glancing

Peripheral

Rebound

Figure 10.16 A pictorial interpretation of the results in terms of the initial impact
parameter for the collision of Cl + CH4(ν3 = 1). [The results, adapted from A. J.
Orr-Ewing et al., J. Chem. Phys. 106, 5961 (1997), are based on the hard-sphere
relation between final scattering angle and initial impact parameter. See also
Section 4.4.3 and Alexander and Zare (1998).]

The HCl(v′ = 1, j′ = 1) product, which is predominantly forward scattered,
could be studied in full detail because the rotational angular momentum has such
a small value. Its rotational angular momentum was found to lie preferentially
perpendicular to the products’ relative velocity v′, as is consistent with a late
barrier meaning that the rotation of the products is determined as they separate,
Figure 10.15.

For a hard-sphere collision, the scattering angle θ varies with the impact
parameter b according to cos θ = (2b2/d2) −1, where d is the distance between
the hard-sphere centers at the point of contact. With this relationship the reac-
tivity can be mapped as a function of impact parameter using the measured dif-
ferential cross-section data. The results and their interpretation are displayed in
Figure 10.16.
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This example is remarkable in terms of how much detailed information is
revealed about the transition state region from a study of the reaction stereo-
dynamics.

10.3 Vector correlations

As we have seen, the vector properties of molecular collisions offer much richer
information than that provided by scalar properties, such as the total cross-section
of a reaction or the energy content of the reaction products. To illustrate this point,
consider a simple atom-transfer reaction, which will be abstractly written as A +
BC → AB + C. For this process, we can readily identify four vectors. These are
the initial relative velocity v of the reagents (A, BC), the final relative velocity v′

of the products (AB, C), the initial rotational angular momentum of the reagent
molecule BC, denoted by j, and the final rotational angular momentum of the
product molecule AB, denoted by j′. Here we have assumed, for simplicity, that
no photons are emitted or absorbed in the collision process, and that electronic or
nuclear spin angular momenta are non-existent or are randomly oriented and do
not couple to other angular momenta present. A simple example of such a case
would be the atom-transfer reaction O + CS → CO + S.

Of these four vectors, there are six different combinations, two at a time.
Each combination describes a vector correlation. Specifically, the correlation of
v with v′ is the differential cross-section (angular distribution of the products)
and j with j′ the rotational tilt of the reagent molecule compared with that of the
product molecule. In addition, v with j′ and v′ with j′ tells us about the product
polarization with respect to the initial and final scattering directions. Similarly,
v with j and v′ with j tells us about the reagent polarization with respect to
the initial and final scattering directions. We can also go on to define triple
vector correlations, such as v, v′, j and v, v′, j′, which give information on how
the differential cross-section depends on the polarization of the reagent or the
polarization of the product, respectively. Of course, there is only one four-vector
correlation, which contains a full description of the directional character of the
scattering dynamics. The experimental measurement of these quantities requires
that more than one quantity be measured at the same time, that is, that some type of
coincidence measurement be made. As might be expected, such measurements
of two or more quantities are more demanding than the observation of scalar
properties. Consequently, vector correlations represent a largely untapped source
of information about the scattering dynamics.

10.3.1 v, v′ correlation

Let us consider in more detail just one of these vector correlations, namely, that
between v and v′. We shall consider here only a classical treatment in which no
distinctions are made between quantized and unquantized vectors and in which
we regard the angular momentum to be large. In the absence of external fields,
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vector properties of reactions are independent of the coordinate frame chosen to
describe them. For two unit vectors â and b̂, only the angle θ between the vectors
is invariant to a change of coordinates. Consequently, the vector correlation may
be expressed solely in terms of this angle. In particular, the vector correlation
between v and v′, which is the differential cross-section, may be expressed in the
complete set of Legendre polynomials:

I (θ ) =
∑

l

al Pl (cos θ ) (10.20)

where

al =
2π∫

0

dφ

π∫
0

Pl (cos θ )I (θ ) sin θ dθ

/ 2π∫
0

dφ

π∫
0

I (θ ) sin θdθ (10.21)

and the integration is over the solid angle element sin θ dθ dφ. We see that a0 =
1 and in general, because of the orthogonality of the Legendre polynomials

al = (2l + 1)〈Pl (cos θ )〉 = (2l + 1)〈Pl (â · b̂)〉 (10.22)

Here the brackets 〈. . .〉 mean an average over the quantity inside the brackets
weighted by the differential cross-section I(θ ), where the differential cross-section
is normalized so that its average over all solid angles equals unity.

The Legendre polynomials are so important to this development that it is
worth reminding ourselves of some of their properties. The first few Legendre
polynomials, as plotted in Figure 10.17, are

P0(cos θ ) = 1, P1(cos θ ) = cos θ, P2(cos θ ) = (3 cos2 θ − 1)/2

P3(cos θ ) = (5 cos3 θ − 3 cos θ )/2, etc. (10.23)

Note that the Legendre polynomial Pl(cos θ ) is a polynomial in even or odd
powers of the argument cos θ depending on whether l is even or odd, see
Figure 10.4.
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In discussing vector correlations it is often useful to invoke the spherical
harmonic addition theorem:

Pl (â · b̂) =
∑

m

Y ∗
lm(θa, φa)Ylm(θb, φb)

= Pl (â · ẑ)Pl (b̂ · ẑ) + 2
l∑

m=1

(l − m)!

(l + m)!
Pm

l (â · ẑ)

×Pm
l (b̂ · ẑ) cos(m(φa − φb)) (10.24)

Here φa and φb are the azimuthal angles of the unit vectors â and b̂. Consequently,
the quantity (φa − φb) is the dihedral angle between the plane containing the
vectors â and ẑ and the plane containing b̂ and ẑ. It is easy to see that an average
over the azimuthal angles will remove the second term. Hence, from Eq. (10.22)

al = (2l + 1)〈Pl (v̂ · ẑ)〉〈Pl (v̂
′ · ẑ)〉 (10.25)

10.3.1.1 The collision complex
Consider the special case in which the reactants form a long-lived collision com-
plex, whose duration is sufficient so that the system has no memory of the initial
directions of the vectors. Then the breakup of the complex is independent of its
formation so that the dihedral angle between the (v, J) and (v′, J) planes will be
randomly distributed. Application of the spherical harmonic addition theorem
yields

〈Pn(v · v′)〉 = 〈Pn(v · J)Pn(v′ · J)〉 (10.26)

Let us examine some special cases that give us much insight. The first is the
situation in which both the reagents and the products have no internal angular
momentum. Then the total angular momentum of the collision system, J, must
coincide with the orbital angular momentum of the approaching reagents L, which
by conservation of angular momentum must also coincide with the orbital angular
momentum L′ of the products: J = L = L′. The magnitudes of the vectors are
therefore given by the product of the reduced mass, the impact parameter, and the
relative velocity magnitude (speed) of the collision partners. It also follows that
the direction of J is perpendicular to both v and v′. We choose J to be along the
z axis. Then

al = (2l + 1)[Pl (0)]2 (10.27)

The Legendre polynomials have the property that Pl(0) vanishes when l is odd.
Hence, for this condition, the differential cross-section, Eq. (10.20)

I (θ) =
∑

l

(2l + 1)[Pl (0)]2 Pl (cos θ ) (10.28)

is symmetric about π/2, that is, shows equal forward–backward peaking. Problem
D of Chapter 4 shows that I(θ ) is proportional to 1/sin θ , that is, it peaks at
θ = 0 and π (which are the poles), and reaches a minimum for θ = π/2 (which
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is the equator). In the more general case the reactants and the products each
have rotational angular momentum j and j′. Ordinarily, the direction of j is ran-
dom (unpolarized) and the direction of j′ is unobserved. The spherical harmonic
addition theorem may be used again to perform the appropriate averages over
the random distribution of j and the unobserved distribution of j′. Because the
random orientation of j ensures that the dihedral angle between the (v, L) plane
and the (L, J) plane is randomly distributed, we have for the entrance channel

〈Pn(v̂ · Ĵ)〉 = Pn(v̂ · L̂)〈Pn(L̂ · Ĵ)〉
= Pn(0)〈Pn(L̂ · Ĵ)〉 (10.29)

For the exit channel an analogous formula holds involving L′. Thus,

an = [Pn(0)]2〈Pn(L̂ · Ĵ)〉〈Pn(L̂ · Ĵ)〉 (10.30)

It follows once again that the breakup of a long-lived complex must show forward–
backward scattering symmetry.

10.3.1.2 Photodissociation
Another commonly encountered vector correlation is the angular distribution
of photofragments. This correlation involves the correlation between the recoil
velocity v of the photofragment with respect to the electric vector E of a beam
of light that causes the photolysis. Already in Chapter 7 we used the angular
distribution of the general form

I (θ ) = σ

4π
[1 + β P2(cos θ )] (10.31)

where θ is the angle between v and E, P2 is the second Legendre polynomial,
σ is the photodissociation cross-section, and β is what we called the asymmetry
parameter. Another related correlation is the direction of the internal angular
momentum of the photofragment with respect to its recoil velocity. It might be
expected that linearly polarized light could only cause alignment. This expectation
is correct for either a parallel transition or a perpendicular transition. But if both
a parallel transition and a perpendicular transition lead to the same final states
of the separated photofragments, then interference is possible and orientation of
the photofragments can occur.15 A particularly striking example is displayed in
the photodissociation of ICl by a beam of linearly polarized light, as discussed
in Section 7.1.2.3.

Another example of the power of vector correlations to reveal dynamic behav-
ior is the photolysis of glyoxal.16 Three photolysis channels appear to participate,
and in order of decreasing importance these are

CHOCHO
hν−−−−−−−−→




H2CO + CO
CO + CO + H2

HCOH + CO

By carefully measuring the Doppler line widths of the CO and H2 photofragments,
it is found that the CO departs with a recoil velocity v that is predominantly
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perpendicular to its rotational angular momentum j. This result implies that the
formation of CO is primarily from the dissociation of a planar geometry. The
production of H2 might at first seem quite surprising. The ground-state geometry
of glyoxal places the two H atoms on opposite sides of the central C C bond
(trans or E configuration). How then does H2 form? Measurement of the H2

Doppler profile shows that its recoil velocity v is parallel to its rotational angular
momentum vector j. It seems that in the excited state glyoxal isomerizes to
form the cis or Z configuration by rotation about the C C bond. If the two
CO fragments push off the H2 fragment in the planar configuration (asymmetric
breakup of the planar excited state), the resulting torque would spin the H2 so that
j is predominantly perpendicular to v, contrary to what is observed. On the other
hand, out-of-plane motion in the transition state, such as torsion about the C C
bond, would cause j to be predominantly parallel to v, as is found experimentally.
Thus, for this process in which glyoxal falls apart into three fragments in a
concerted manner, we are still able to learn about how this dissociation occurs in
detail.

It is anticipated that future experiments in photodissociation dynamics as well
as inelastic and reactive collisions will involve coincidence measurements17 in
which vector quantities of more than one fragment are simultaneously measured.
Such measurement would provide a wealth of detailed information on the nature
of the transition state region. Many such experiments were unrealized because
of the poor signal-to-noise considerations. With the advent of laser light sources
with high repetition rates, however, coincidence measurements are becoming
quite feasible.

Problems

A. Transformation of coordinates from reactants to products for an atom–diatom,
A + BC → AB + C reaction. (a) By drawing the ABC triangle and locating the
position of the center of mass of AB and BC show that the transformation is(

R′

r′

)
=

(
mA/mAB (mAmC/mBCmAB) − 1

1 mC/mBC

) (
R
r

)

Here R is the position vector from A to BC while r is the internal coordinate
for BC. The primes denote products. mAB = mA + mB [F. T. Smith, J. Chem.
Phys. 51, 1352, (1959)]. (b) Hence derive the transformation Eq. (10.4) between
the mass-skewed coordinates Q. (c) Using either transformation verify that it
conserves the kinetic energy. (d) Using either transformation derive Eq. (10.3)
for the transformation of the angular momenta in the collision [I. R. Elsun and
R. G. Gordon, J. Chem. Phys. 76, 3009 (1982)]. (e) How is the initial kinetic
energy of the approach motion of the reactants partitioned in the products? (f) If
you like handling matrices show that the transformation is just a rotation of the
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coordinates by our ubiquitous angle β. From a mathematical point of view all the
conservation laws follow from the transformation being an orthogonal one.

B. Transformation of coordinates from reactants to products for a diatom–
diatom, AB + CD → AC + BD reaction. (a) As in Problem A but for the
four-atom case:


 rAC

rBD

R′


 =




mB

mAB

mD

mCD
1

mA

mAB

mC

mCD
−1

mAmB M

mABmACmBD
− mCmD M

mCDmACmBD

mAmD − mBmC

mACmBD





 rAB

rCD

R




(b) Show that in the kinematic limit, for an A2 + B2 → AB + AB reaction, the
kinetic energy of the approach motion is not converted into a kinetic energy for
the separation of products. Only vibrational energy of the reactants can help the
products to separate from one another. Does that ring a bell? (c) Where does
the initial kinetic energy of the relative motion of the reactants go to? (d) Derive
the transformation for the A + BCD → AB + CD reaction [check against T. Raz
and R. D. Levine, Chem. Phys. Lett. 246, 405 (1995)].

C. It is suggested that the cross-section for the H + LiCl → HCl + Li reaction
will increase, roughly linearly, with the initial rotational energy of LiCl. What is
the physical reason?

D. With laser detection of products one can examine the polarization of prod-
ucts in specified internal levels. Say we examine the H + LiCl reaction where
almost all the available energy is in the internal excitation of HCl and little energy
is available for the relative translation. Will the angular momentum of HCl be
preferentially polarized, and if so, how?

E. The K + HBr → KBr + H reaction is exoergic by about 18 kJ mol−1. In
an early experiment, at a collision velocity of 1500 m s−1, the mean rotational
energy of the KBr product was measured to be about 5 kJ mol−1. (a) Why did
D. A. Case and D. R. Herschbach, Mol. Phys. 30, 1537 (1976) expect that the
angular momentum vector of KBr would be aligned perpendicular to the initial
velocity vector? (b) Estimate the reaction cross-section. The rotational constant
of KBr is 0.08 cm−1.

F. Brute force orientation requires cold molecules. Consider a dilute gas of
diatomic molecules with a permanent dipole moment µ in an electrical field E.
The interaction energy of an individual molecule with the field is −µE cos θ

where θ is the angle between the dipole and the field. In the ground state the gas
is fully oriented but the thermal motion allows the occupation of higher-energy
states where the dipole does not quite point out in the direction of the field.
(a) Using the dimensionless variables x ≡ cos θ , a ≡ µE/kBT show that

〈cos θ〉 ≡
∫ 1

−1
x exp(ax)dx

/∫ 1

−1
exp(ax)dx = coth(a) − 1/a →

{
a/3, a 	 1
1, a � 1
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(b) Take an extreme case, a dipole due to a charge of an electron separated by an
atomic unit. What is the electrical field (V cm−1) required to achieve a significant
orientation at room temperature? At 10 K?

F. The DIPR model. The model improves on the simple kinematic limit for
direct reactions by adding repulsion between the products. See P. Kuntz, Trans.
Faraday Soc. 66, 2980 (1970) for a detailed analytical treatment and Truhlar
and Muckerman (1979) for a review. Here we just consider the instantaneous
product repulsion. (a) Show that you can add an impulse along both the products’
separation coordinates by modifying the equation in Problem A to(

Ṙ′

ṙ′

)
=

(
mA/mAB (mAmC/mBCmAB) − 1

1 mC/mBC

) (
Ṙ
ṙ

)
+

(
qR′

qr ′

)

where the dots indicate a time derivative. (b) Derive Eq. (10.6) and the vibrational
energy of the products. (c) How is the angular momentum disposal, Eq. (10.4),
modified? (d) Discuss the v − j and v − j′ vector correlations, Section 10.2, in
the kinematic limit.

Notes
1 The cone of acceptance plays a key role in describing steric effects in collisions, and many

further extensions and modifications have appeared in the literature, see for example Levine

(1990), Orr-Ewing (1996), Alexander et al. (1998), Simons (1999). For a general overview

of earlier dynamical stereochemistry, see Bernstein (1988).

2 Using this approach, Brooks and Marcelin successfully carried out such an experiment,

Figure 10.1, with many subsequent studies exploring and exploiting this effect (Bernstein,

1982; Stolte, 1982, 1988; Harren et al., 1991), including for scattering of oriented

molecules off surfaces, Kuipers et al. (1988).

3 On pendular states, see B. Friedrich and D. R. Herschbach, Nature 353, 412 (1991); A.

Durand, J. C. Loison, and J. Vigué, J. Chem. Phys. 102, 7046 (1994). See Problem E.

4 For brute force experiments using cold molecules, see H. J. Loesch and A. Remscheid,

J. Chem. Phys. 93, 4779 (1990); and J. J. van Leuken et al., J. Phys. Chem. 99, 4360 (1995).

5 H. J. Loesch and J. Möller, J. Chem. Phys. 97, 9016 (1992); H. J. Loesch and J. Möller,

J. Phys. Chem. 97, 2158 (1993).

6 Early beam-gas experiments seemed to find no unambiguous effect, which may be a

consequence of thermal averaging washing the degree of alignment that may be prepared in

the collision frame [J. A. Kettleborough and K. G. McKendrick, J. Phys. Chem. 95, 8255

(1991)]. Under crossed-beam conditions, however, Loesch and co-workers observed small

but unmistakable alignment effects in the reactions of Sr + HF(v = 1, j) [H. J. Loesch and

F. Stienkemeier, J. Chem. Phys. 100, 740, 4308 (1994)] and K + HF(v = 1, j) (Loesch,

1995). Optical preparation of aligned reagents can also be achieved through the interaction

of the molecule’s polarization anisotropy with intense electric fields of pulsed lasers, both

on resonance and off resonance. For example, using stimulated Raman pumping, Zacharias

and co-workers [R. Dopheide and H. Zacharias, J. Chem. Phys. 99, 4864 (1993); J. B.

Halpern, R. Dopheide, and H. Zacharias, J. Phys. Chem. 99, 13611 (1995)] studied the

inelastic collisions of, aligned acetylene prepared by stimulated Raman pumping, and Sitz
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and Farrow [G. O. Sitz and R. L. Farrow, J. Chem. Phys. 101, 4682 (1994)] prepared

aligned N2 molecules for surface scattering. Optical preparation of aligned reagents may

also be achieved by photofragmentation, either by photodissociation into neutral

fragments or by photoionization into charged fragments. For example, J. N. Greeley, J. S.

Martin, J. R. Morris, and D. C. Jacobs, J. Chem. Phys. 102, 4996 (1995) studied collisions

of fast NO+ with the (111) face of single-crystal silver, in which the NO+ is prepared by

resonance-enhanced multiphoton ionization. The polarization of the radiation is used to

select whether the NO+ ion preferentially collides with its plane of rotation face on or

edge on with respect to the surface.

7 For the beginning of orbital control, see C. T. Rettner and R. N. Zare, J. Chem. Phys. 77,

2416 (1982). Since then, many related studies have been carried out, almost exclusively

with orbitally aligned atoms of the alkaline earths and mercury. See Simons (1987) for a

review. A. G. Suits et al., J. Chem. Phys. 95, 8178 (1991) and A. G. Suits et al., J. Chem.

Phys. 96, 2777 (1992) have prepared orbitally aligned Ba (1P) atoms that collided, in a

crossed-beam configuration, with O3, NO2, and Br2. In the reaction with NO2, the

formation of Ba+ was found to vary by more than a factor of two as the alignment of the

p orbital was altered.

8 On � doublets, see Zare (1988, pp. 308–310).

9 Ch. Ottinger, R. Velasco, and R. N. Zare, J. Chem. Phys. 52, 1636 (1970) showed that

collisions with A′ and A′′ �-doublet levels of a 1� state behave quite differently. T. L. D.

Collins et al., J. Chem. Phys. 102, 4419 (1995) have studied in detail the inelastic

collisions of Li2 A1� with Xe.

10 A fuller treatment of hyperfine depolarization may be found in Zare (1988), pp. 239–241.

11 I. R. Elsum and R. G. Gordon, J. Chem. Phys. 76, 3009 (1982).

12 A detailed account of the DIPR model P. Kuntz, Trans. Faraday Soc. 66, 2980 (1970).

13 On rotational energy transfer, see Parmenter et al. (1997), McCaffery and Marsh (2001).

14 This behavior is the same type of rainbow as for structureless particles [see W. Schepper,

U. Ross, and D. Beck, Z. Phys. A 290, 131 (1979), H. J. Korsch and R. Schinke, J. Chem.

Phys. 75, 3850 (1981) and Murrell and Bosanac (1989)]. Rainbows are also observed in

the scattering of diatomic molecules from flat surfaces [A. W. Kleyn, A. C. Luntz, and

D. J. Auerbach, Phys. Rev. Lett. 47, 1169 (1981)].

15 A. J. Alexander and R. N. Zare, Acc. Chem. Res. 33, 199 (2000) review this type of

behavior, which is found to occur in many dissociation processes.

16 L. M. Dobeck et al., J. Phys. Chem. 103, 10312 (1999); I. Burak et al., J. Chem. Phys. 86,

1258 (1987).

17 Coincidence experiments, see Continetti (2001), Hayden (2002), are likely to become

more common.



Chapter 11
Dynamics in the condensed phase

The presence of a solvent interacting with a system throughout its evolution from
reactants to products brings about qualitative changes from the corresponding
gas-phase reaction. There are changes in both the reaction rate and the dynamics.
The energetic effects due to the solvent reflect the electronic reorganization that
takes place as the system transverses the reaction path.∗ The SN2 ion–molecule
reaction, shown in Figure 11.1 for the generic X− + CH3X exchange reaction,
provides an example in which the charge delocalization in the transition-state
region causes qualitative changes in the energy profile along the reaction coordi-
nate when the reaction is in the presence of a polar solvent. As becomes clear in
this chapter, even the reaction coordinate itself is not exactly the same in solution
as it is in the gas phase, because the solvent adaptation to the changing system
must also be considered.

A solute molecule at room temperature undergoes of the order of 1013 col-
lisions per second with solvent molecules. The solvent can therefore hinder the
large-amplitude motions that often accompany chemical transformations (e.g.,
as in a twist isomerization, Figure 11.14). The cage effect, where the solvent
hinders the separation of the products, Figure 1.8, or the approach of the reac-
tants, was one of the first examples of the role of the solvent. The cage effect
remains a major difference between gas-phase and solution dynamics. There
can also be dynamical effects. They occur first and foremost because, not as in
the gas phase, the solvent must provide the energy for a reaction to take place
and must drain the energy from the nascent products. These couplings can be
strong enough to make the solvent motion part of the definition of the reaction
coordinate.∗∗

∗ Organic chemists call this concept the Hughes–Ingold proposition: polar solvents assist reactions

that generate charge or increase charge separation. The opposite is true for reactions in which

charge is annihilated or charge separation is reduced.
∗∗ We sometimes describe this by saying that the solvent motions cause the barrier to fluctuate. When

we discuss charge transfer in Section 11.1.2, the solvent motion is the reaction coordinate.
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Figure 11.1 The energy profile along the reaction path for a symmetric SN2 reaction
in the gas phase is contrasted with that in a solvent having a high dielectric constant
such as water. The qualitative argument for the change seen in the figure is clear: in
the gas phase a fairly deep well occurs in the reactants’ or products’ valley arising
from the strong ion–molecule attractive force. There is a barrier to atom exchange,
owing to the planarity of the CH3 group in the transition state, see Figure 5.21, but
owing to the strong forces in the entrance valley this barrier is lowered with respect
to the energy of the reactants. In solution the localized charge on the reactant or
product ion leads to considerable stabilization. In the transition state the charge is
delocalized and so its solvation energy is not as high as that of the more compact
ionic reactant or product. In Section 11.1.1 we discuss a simple model that
quantitatively relates the stabilization energy to the size of the solvated ion. The rate
of such reactions can be studied by isotopic labeling,1 35Cl− +CH3

37 Cl → 37Cl−

+CH3
35Cl. For asymmetric SN2 reactions, say Br− + CH3Cl, the picture is more

complicated because the reactant and product ions are not identical. When the CH3

group is substituted, the transition state is bulkier and the model of Section 11.1.1
suggests that it will be even less stabilized by solvation. The barrier to reaction in
solution will therefore be higher, quite apart from any steric requirements due to the
bulkier central group. For substitution reactions at metal ions, where the charge is
localized on the metal, our considerations suggest that the energy profile will look
rather the same as in the gas phase and in solution.

11.0.1 Many facets of the solvent

Why do we need different ways to look at a solvent? Can we present a unified
picture? Because a solvent plays an interesting role when not weakly coupled to
the reactants, it is common to regard reactants and their solvation shells together
as one system. Trajectory simulations can easily keep track of the motion of all
atoms, including those of the solvent, during the reaction, see Figure 5.23. So if
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we consider solvent and solute together, dynamics in the condensed phase does
not differ from any other many-atom system.2 But we seek to understand and
interpret this dynamics in simple terms. In particular, to discuss the effect of,
say, changing the solvent, we need to think in terms of reactants and separately
of their immediate surroundings. This will not always be possible and we must
be prepared to think differently about different aspects of the dynamics. The
primary consideration is that of the time scale of the process under discussion.
On very short time scales the solvent is effectively frozen; that is, it does not
move appreciably. It takes time for a solvent to respond. For example, consider
an atomic solvent in thermal equilibrium and then kick one atom. It takes time
for the immediate neighbors to even recognize that the equilibrium has been
disturbed. After the first collision between the disturbed atom and its neighbors,
the excess energy needs to be spread further. How the energy spreads depends
on the range and strength of the forces; is it a weakly bound liquid, an associated
liquid, a glass, or a solid? Similarly it can take the reactants some time to probe
what kind of solvated environment is present around them. On our own human
time scale we have no trouble telling if a macroscopic system is rigid as a solid or
floppy as a fluid, but for reactants descending from a barrier only a very limited
time is available.∗

We can therefore envisage that barrier-crossing dynamics spans a wide range
of behaviors – from a rather diffusive motion along the reaction path3 to a fully
“ballistic” motion where the solvent cannot respond fast enough and is effectively
frozen while the system transverses the barrier. Of course, the manner in which
reactants acquire the energy necessary to overcome the barrier differs for different
regimes. In a diffusive regime, the reactive system gains and loses small amounts
of energy, undergoing a kind of random walk in its energy content until it manages
to scale the barrier. To imagine the opposite limit, consider the products rapidly
descending from the barrier, separating from one another at an increasing pace,
repelled by their potential. During this fast descent the solvent has hardly the
time to move. At the foothills of the barrier the products must run into the nearly
stationary solvent molecules. The hot nascent products will therefore be rapidly
decelerated there. Now consider the same dynamics but reversed in time. To
scale the barrier the reactants acquire the needed energy in one or a few impulses
delivered by the solvent at the foothills of the barrier.4

The time scale is a factor in another way. A polyatomic solvent has a range
of frequencies with which it can respond because the solvent’s intramolecular
vibrations can be coupled, even if indirectly, to the solute. The translations and

∗ For special materials or if we can manage a fast probe, we can have trouble deciding between a

solid and a liquid. Toy stores sell plastic balls that are as malleable as plasticine and can be shaped

by a gentle slow pressure but that rebound as a new tennis ball when thrown hard at the floor. The

same situation is familiar to a diver who jumps from a board into a pool: too high a jump and the

water responds rather rigidly. The limit of a fast perturbation corresponds to the sudden regime of

Chapter 9.
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rotations are certainly coupled, because they are almost always the first way the
solvent adjusts to changes in the solute. So the very same solvent can exhibit
different dynamics for different solutes or even for different excitations of the
same solute.

11.1 Solvation

We are considering both the equilibrium and the dynamics of solvation. Equi-
librium here means constrained equilibrium as we hold the reactants at a given
point along the reaction coordinate and allow all other degrees of freedom, both
of the reactants and of the solvent, to adjust thermally. Thereby we can map a free
energy profile along the reaction coordinate and compare it to the profile in the
gas phase, as in Figure 11.1. To apply transition state theory to compare gas and
condensed phase reactivity we need the energy difference between the solvated
and the isolated transition states and the corresponding difference between the
solvated and isolated reactants. It is the difference of these two differences that
determines to what extent solvation causes the activation energy and hence the
rate constant to differ from the gas-phase value.

We begin below with the energetic cost of solvation. We should not forget,
however, the entropic term. The same thermodynamic cycle that we discuss for
the energetics also applies to entropies. For example, entropic considerations tell
us that unimolecular reactions have comparable reaction rates in the gas phase
and in solution, assuming that other things are equal and no large-amplitude
motions occur in the transition state. This conclusion is valid because a compa-
rable entropy change (equal to the entropy of evaporation) occurs when a mole
of reactant or a mole of the transition state is transferred from solution to the
gas phase.∗ For bimolecular reactions, however, a real difference exists. Entropy
favors such reactions in solution. The reason for this behavior is the loss of trans-
lational freedom of the gas-phase reactants when they form a transition state, as
discussed in Section 6.1.4.1. In solution, the freedom of motion of the reactants
is already much reduced compared with the separated reactants in the gas phase.
So the entropy barrier to the formation of the transition state is lowered compared
with that in the gas phase.∗∗ Similar considerations arise in identifying the fac-
tors contributing to catalysis and catalysis by enzymes in particular. A catalyst
presumably lowers the free energy of activation of the rate-determining step. But

∗ Exceptions are possible. For example, photoisomerization around a double bond, Figure 8.6,

involves a large-amplitude twist so that the assumption above fails.
∗∗ Other things being equal, when we compare the evaporation of two moles of reactants and one

mole of transition states, the reaction rate in solution should be faster by exp(�Svap/R), which is

of the order of 102. Another way to think about the difference is to compare the concentration of

a reactant in the gas and the condensed phase. This equilibrium ratio equals exp(−�Gvap/RT) =
exp(−�Hvap/RT) exp(�Svap/R) and is often larger than 10 at room temperature. For more on this

point see Section 11.1.3.1 on the cage effect.
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the relative importance of energetic and entropic factors is still under very active
discussion.5

11.1.1 Electrostatic models for solvation

In the simplest model of solvation, the solvent is treated as a structureless and
continuous medium of dielectric constant∗ ε. In 1920, Born developed the earliest
polarizable continuum model. He treated the ion as a point charge q located in the
center of a hollow sphere with radius R. The hollow charged sphere is embedded
in a classical dielectric continuum having a relative dielectric constant εr. The
electrostatic contribution to the free energy, evaluated in Section 11.1.1.1, is given
by

�Gsolvation = − q2

4πε0 R

(
εr − 1

2εr

)
polarizable continuum model (11.1)

This expression predicts that the free energy of solvation in any given solvent
will increase directly proportionally to the square of the charge of the ion and

∗ The dielectric constant or permittivity describes the attenuation of the coulomb force F between

two interacting charges q1 and q2 separated by a distance R. The magnitude of the force is given by

F = q1q2

4πεR2

We are using SI units where the force is measured in N = kg m s−2 and the charge is in coulombs.

When the medium is a vacuum, it is conventional to use ε0 for the permittivity. In SI units,

1/(4πε0) = 9.109. The ratio of the force in a vacuum to the force in any other medium between

the same pair of point charges separated by the same distance is called the relative permittivity εr

of that medium. It follows that εr = ε/ε0. Of course the relative permittivity (relative dielectric

constant) is a dimensionless quantity. We can rewrite the magnitude of the force as

F = q1q2

4πεrε0 R2

in terms of the relative permittivity. This force can be considered to arise from the negative of the

gradient of the electrical potential φ. At a distance R from a point charge q the electrical potential

is

φ = q

4πεrε0 R

The more polar the solvent, the higher is the dielectric constant and the smaller is the force that

one charge exerts on the other in solution. The following table illustrates this trend:

Material Relative dielectric constant, εr

Vaccum 1.0
Carbon tetrachloride 2.2
Acetone 20.7
Methanol 32.6
Water 78.5
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decrease inversely proportionally to the ion’s size. ∗ The success of the Born
model depends on the choice of the ionic radius R. With carefully chosen cavity
radii, see Section 11.1.1.1, one can accurately reproduce the vacuum-to-water
hydration-free energies of both cations and anions.

Why are ions so pervasive in solution? An analysis of NaCl provides a sim-
ple answer. The very stable NaCl molecule has a bond energy of 4.26 eV =
411 kJ mol−1 for dissociation to neutral Na and Cl atoms. To compute the disso-
ciation energy needed to form Na+ and Cl− we must add the energy required for
removing an electron from the Na atom and subtract the energy gained by giving
the electron to the Cl atom. This electron transfer process costs us the ionization
potential of the Na atom (5.139 eV) minus the electron affinity of the Cl atom
(3.6 eV), for a net cost of 1.5 eV = 145 kJ mol−1. The energy required to separate
NaCl into Na+ and Cl− in the gas phase is the sum of the dissociation to neutrals
and electron transfer energies, that is, 556 kJ mol−1. We conclude that the disso-
ciation of NaCl into ions is a highly endoergic process in the gas phase. Suppose
however that we let the Na+ and Cl− ions become hydrated. We gain the very
considerable heats of hydration of the two ions, where, from the table (99.3 +
86.1) = 185.4 kcal mol−1 = 775.7 kJ mol−1. This energy more than offsets the
energy (556 kJ mol−1) needed to cleave the NaCl bond and make the Na atom
a cation and the Cl atom an anion and the solvation energy of neutral NaCl. It
is no wonder then that so many molecules ionize in water (Ando and Hynes,
1999).

We can improve upon the Born model for solvation by recognizing the discrete
nature of the solvent and the specific interactions with the solute, but we have
the added costs of more computation and more complexity. When the solvent is
water, it is especially important to take into account the large dipole moment of
the water molecule as well as the propensity of water molecules to form hydrogen-
bonded networks. Consequently, the insertion of an ion into water causes water
molecules in the immediate vicinity of the ion to orient in such a way that the part
of the water molecule having the opposite charge to that of the ion faces the ion.
This reorientation of the water molecules surrounding the ion costs entropy and
energy. It leads to a structuring of the water molecules close to the ion, and this
structuring destroys our simple model of a dielectric continuum. At the water–
vapor interface, Section 11.3, the destruction of the hydrogen-bonded network at
the interface is equally important.

An advanced treatment (Honig and Nicholls, 1995) shows that the water
molecules are in different sheaths about the ion, a first hydration shell of rotation-
ally hindered water molecules, an intermediate layer that is a transition between

∗ Note that our considerations refer to a neat solvent, which means in practice a solution of negligible

ionic strength µ. If µ is not negligible, the field φ is reduced by a term proportional to
√

µ

arising from the shielding by the other ions present. The effect of this term is familiar to us from

the dependence of the activation energy for reactions between ions on the ionic strength (see

Problem A).
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it and the bulk, and finally a bulk sheath. The existence of rotationally hindered
water molecules explains why some adjustment needs to be made in the radius of
the hollow sphere for the ion to fit experiment better. Ultimately, we must take into
account the molecular sizes and charge distributions of the solute and solvent.
Various computer codes have been written to simulate ion solvation energies and
solvation dynamics.

*11.1.1.1 The Born solvation model
It is instructive to review Born’s derivation of the expression for �Gsolvation. Not
surprisingly, he considered a four-step cycle as shown in Figure 11.2. Consider
an ion in a vacuum, without solvent. First, the ion is discharged, so that it is
electrically neutral. The work done to discharge the ion is denoted Wdischarging.
Second, the neutral species is introduced into the solvent. The work required to
make this transfer is denoted Wtransfer. Third, the neutral solute sphere is charged
while it is in the solvent. The work done to charge it is denoted Wcharging. Last, the
ion is brought from the solvent to the vacuum. The work Wsolvation in going from
the solvated ion to the bare ion is equal to the negative of the free energy change
�Gsolvation. It is this quantity that we wish to calculate. Because these four steps
constitute a closed cycle, we write:

Wdischarging + Wtransfer + Wcharging − �Gsolvation = 0 (11.2)

Neglecting Wtransfer because it is small in comparison with the electrostatic terms
Wdischarging and Wcharging, we have

�Gsolvation = Wdischarging + Wcharging (11.3)

The energy of charging (in solution) and discharging (which is just the reverse
process of charging, but is here in the gas phase) requires us to evaluate the
following integrals, where the relative dielectric constant εr is that of the solvent
for charging and εr = 1, that of the vacuum, for discharging:

Wcharging =
q∫

0

ϕ dq ′ =
q∫

0

q ′

4πεrεo R
dq ′ = q2

8πεrεo R

Wdischarging =
0∫

q

ϕ dq ′ =
0∫

q

q ′

4π εo R
dq ′ = − q2

8πεo R
(11.4)

Hence,

�Gsolvation = − q2

8πεo R

(
1 − 1

εr

)
= − q2

4πεo R

(
εr − 1

2εr

)
(11.5)

which agrees with Eq. (11.1).
This expression is for a single ion. To find the expression for a mole of ions,

multiply by Avogadro’s number. If radius R is measured in units of nanometers
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and charge q is measured in units of electron charge, then we can express the free
energy change (kJ mol−1) as

�Gsolvation = −69.0
q2

R

(
εr − 1

εr

)
(11.6)

For a sodium ion Na+ solvated in water, we take R = 0.168 nm and q = 1:

�Gsolvation = −
(

69.0

0.168

) (
77.5

78.5

)
= −405 kJ mol−1 = −96.8 kcal mol−1 (11.7)

This simple calculation forcefully demonstrates how large free energies of sol-
vation are and why solvation should be expected to play such an important role
in reactions of ions in solution.

How well does the Born model for solvation compare with experiment? We are
not able to measure �Gsolvation directly, but we can use the relation �Gsolvation =
�Hsolvation − T �Ssolvation to make a judgment about the validity of this model.
The term �Hsolvation is the heat of the reaction, that is, the heat of transferring an
ion from the vapor to the solvent (where we assume that the vapor is essentially
equivalent to a vacuum). These data are available. In the expression for �Gsolvation

the only term that varies with temperature is the dielectric constant. Hence we
can write

− �Ssolvation = ∂�G

∂T
= Na

q2

8πεo R

1

ε2
r

∂εr

∂T
(11.8)
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We solve for the heat of reaction and write

�Hsolvation = −Na
q2

8πεo

(
1 − 1

εr
− T

εr

∂εr

∂T

)
(11.9)

Thus, if we know the radius of the ion, its charge, the change of its dielectric
constant with temperature, and the temperature, we can calculate �Hsolvation. The
following table compares the solvation enthalpies calculated from the Born model
with those enthalpies derived from experiment. The entry “corrected radius” is
the radius of the cavity surrounding the ion, adjusted so as to reproduce solution
thermochemistry:∗

Corrected radius �Hsolvation (Born model) �Hsolvation (Experiment)
Ion (nm) (kcal mol−1) (kcal mol−1)

Li+ 0.1316 −126.7 −125.8
Na+ 0.1680 −99.3 −98.5
K+ 0.2172 −76.8 −78.4
F− 0.1423 −117.2 −119.3
Cl− 0.1937 −86.1 −85.3
Br− 0.2087 −79.9 −78.8

11.1.2 Electron transfer reactions

Oxidation and reduction reactions abound in chemistry. Photosynthesis in plants,
energy transduction in our body, corrosion of metals, and the operation of solid-
state devices are just some of the processes that require electron transfer.6 We
have already discussed the harpoon mechanism as a long-range electron transfer
in the gas phase. In Section 11.3 we discuss electrochemistry and other examples
of electron transfer at an interface. Here we want to discuss electron transfer in
solution and show how solvation plays a key role. But note that when a molecule
gains or loses a charge, its own structure also changes. Consequently, it is not
only the solvent that needs to reorganize when charge transfer takes place.

Why do we speak of solvent reorganization? The issue comes into focus when,
using isotopes, we study thermoneutral reactions in solution. For example, con-
sider electron transfer between two different aquated iron complexes

Fe(H2O)+2
6 + ∗Fe(H2O)+3

6 → Fe(H2O)+3
6 + ∗Fe(H2O)+2

6

in which *Fe represents an isotope of iron. This type of reaction was observed
to occur at a finite rate and to require an activation energy.7 Why cannot the
electron easily hop from one center to the other? As written we can think that

∗ Only a semi-quantitative agreement would have been obtained if the ionic radius from the crystal

data had been used for the cavity radius.
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the reaction is a resonance transfer with a zero energy gap. The point is that the
transfer is not really a resonance process, because the traditional way of writ-
ing the chemical change, as above, is misleading! Let us assume that before
the transfer, the reactants are indeed in thermal equilibrium. Then immediately
after the transfer, the products are not in equilibrium. The reason is that if the
reactants are in equilibrium, the nascent products are an Fe+3 ion solvated as if it
is still an Fe+2 ion and an ∗Fe+3 ion as if it is still an ∗Fe+2 ion. The transfer is ener-
getically expensive because the solvent cannot adjust as quickly as an electron can
jump. The solvent needs to adjust because the radius of the Fe+2 ion is larger than
that of the Fe+3 ion so the water molecules that surrounded the Fe+2 ion reactant
need to move closer in. For the Fe+3 ion reactant the water molecules need to move
out. As part of this reorganization the dipoles of the water molecules need to rotate
and optimize. In Section 11.1.3 we discuss experiments that probe the relaxation
of the solvent motion to reach new solvation equilibrium. Here we characterize
the sluggishness of the solvent response in the frequency domain. We distinguish
between the dielectric constant under static conditions and the dielectric constant
when the electric field varies so rapidly that the nuclei of the solvent cannot fol-
low. We use the Born model, Section 11.1.1.1, and note that the electrons of the
solvent do respond as quickly as it takes the valence electron to hop. So the elec-
tronic response of the solvent is fast. Hence the cost in solvation energy caused
by the solvent failing to remain in equilibrium, known as the reorganization
energy, is∗

λ0 = e2

4πεo

(
1

2RA
+ 1

2RB
− 1

RAB

) (
1

εr∞
− 1

εr0

)
(11.10)

Here RA and RB are the cavity radii for solvation of the isolated donor and acceptor
ions, where A + B+ → A+ + B; RAB is the A–B distance at contact; and εr0 is
the familiar (relative) dielectric constant εr, except that we add the subscript 0
to emphasize that we mean the static limit. The limiting value of the dielectric
constant at high frequencies is εr∞. This is the dielectric constant of the solvent
when only its electrons can respond. Because εr∞ is but a small fraction of εr,
the reorganization energy is of the order of the energy of solvation of a charge
and as such is high.

∗ Marcus (1964). This cost is the difference in solvation energy change throughout the process of

charge transfer between the solvent in equilibrium and the solvent not in equilibrium. Assume

first that the solvent can fully adjust. Then the process is to discharge one electron from reac-

tant A, charge product B, then bring reactant and product to a distance RAB from each other.

Because the solvent is allowed to adjust throughout, the dielectric constant is at a low (→ 0)

frequency of the electric field. As the frequency of oscillation of the electrical field increases,

the dielectric constant decreases whenever a molecular motion is no longer able to follow the

changing field. For electron transfer reactions only the electrons of the solvent can adjust to the

rapid change in the field. We therefore need to use the limiting value of the dielectric constant

at visible or higher frequencies, εr∞. Otherwise the computation of solvation energy change is

the same. The difference between equilibrium and non-equilibrium is the reorganization energy,

Eq. (11.10), the additional energetic cost arising from non-equilibrium solvation.
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So there is a high cost in energy, identified as the reorganization energy, λ0,
to transfer the charge if the reactants are in equilibrium with the solvent and
the products are fully out of equilibrium, Figure 11.3. Marcus has shown that the
reaction can proceed by means of a lower barrier.∗ This path requires a fluctuation
that takes the reactants away from equilibrium and part of the way toward the
equilibrium solvation configuration of the products. One still forms products not
in equilibrium, but the extent of solvation disequilibrium in the nascent products
is reduced.

The computation of the minimal barrier height is instructive. We use
Figure 11.3 as an aid. For the purpose of our discussion the interaction with
the solvent is described by a (single) displacement coordinate r for small devi-
ations of the solvent from its equilibrium configuration.8 The reorganization
energy is defined in terms of the solvation energy cost for charge transfer when
the reactants are at their equilibrium with the solvent, so that r = RA. The equi-
librium value for the solvation coordinate of the products is RB. Assuming a har-
monic approximation∗∗ for small displacements of the solvent about the ion (see
Figure 11.3), the solvation energy of B+ is larger than its equilibrium value by

λ0 = 1
2 k (RB − RA)2 (11.11)

The reorganization energy λ0 is the basic parameter that enters the theory. The aim
of the development is to compare rates of reaction of given λ0 and different values
of the thermodynamic driving force �G0. To do so we note, using Figure 11.3,
that the lowest bottleneck for charge transfer occurs at that value of the solvent
displacement r‡ given as the point of intersection of the two parabolas

1
2 k (r ‡ − RA)2 = �G0 + 1

2 k (r ‡ − RB)2 (11.12)

where �G0 is the free energy difference between the products and reactants
(at equilibrium) and equals zero for the self-exchange shown in Figure 11.3.
Equation (11.12) determines the height of this minimal barrier to be

�G‡ = 1
2 k (r ‡ − RA)2 (11.13)

Comparison with Eq. (11.11) shows that by crossing at the intermediate value,
r = r‡ where neither reactants nor products are in equilibrium with the solvent,
the minimal barrier height, �G‡, is lower than the reorganization energy. Solving
Eq. (11.13) for r‡ (see Problem B) and substituting the value in Eq. (11.12) leads
to the Marcus equation for the (free-energy) barrier height or, equivalently, the

∗ See Marcus (1964) and Marcus (1993) for the Nobel Prize lecture giving more background to this

early work.
∗∗ For large displacements the potential must be anharmonic, because there is exchange of solvent

molecules between the solvation shell and the bulk. Isotopic labeling experiments show that even

water molecules in the first solvation shell of polyvalent ions do exchange, albeit slowly, because

the activation energy is high. For weaker solvation the exchange can be quite fast.
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Figure 11.3 Left: Potential energy for displacing the solvent, along the solvent
reorganization coordinate r, about its equilibrium configuration for the reactants
A–A+ and a second such plot, for the products A+–A. For small displacement of the
solvent from equilibrium (about either the reactants or the products) the energy
rises quadratically, as shown. For this symmetric exchange the two parabolas have
the same force constant but their equilibrium positions are not the same. The
reorganization energy λ0 is indicated as the energy necessary to form the products
when the reactants are at equilibrium with the solvent. Reactants with the solvent
displaced from equilibrium can cross over to products at a greatly reduced barrier,
indicated as �G‡. The letter G is used for the barrier height because, strictly
speaking∗, we need to plot the free energy rather than just the potential energy. The
reaction exoergicity is �G0 and is here zero. See Figure 11.4 for plots with three
different signs of �G0. Right: The need for solvent reorganization is shown in the
cartoon of water molecules surrounding the doubly charged ion Fe2+ and the triply
charged ion Fe3+. Note the smaller cavity around the triple ion. At the location
where the free energy for electron transfer is minimal the solvation is symmetric, as
shown. An environment such as a protein has a lower reorganization energy than
water and so the rate of electron transfer is higher. (Adapted from H. B. Gray.)

rate constant for charge transfer:

�G‡ = 1

4λ0
(λ0 + �G0)2 or k(T ) = A exp(−�G‡/RT ) (11.14)

For a self-exchange reaction, �G0 = 0 and the entire barrier∗ comes from the sol-
vent reorganization energy k(T ) = A exp(−λ0/4RT ). In this case the location of
the barrier is midway between the reactants and products, and the non-equilibrium
displacement about each contributes equally to the lowering of the barrier from
the value λ0, for reactants at equilibrium, to �G‡ = λ0/4.

∗ Note that this plot is in the non-adiabatic limit, meaning that there is a separate electronic state

of the reactant and product, each with its own nuclear motion. The same kind of plot was used

in another context in Section 5.1.4. In the adiabatic limit the initial and final states are two dif-

ferent wells on the same ground-state adiabatic potential. This limit is appropriate here when the

excited electronic state is separated by a gap that exceeds the available thermal energy. See also

Problem H.
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Figure 11.4 Left: determining the activation barriers for an endoergic, symmetric,
and highly exothergic electron transfer process. The reactants’ parabola is dashed,
the barrier height is determined as the energy at which the reactants’ and products’
parabolas cross. The free energy is plotted in units of the reorganization energy. The
inverted regime is when −�G0/λ0 >1 and, as the plot suggests, in this regime the
barrier increases upon further increase in the exoergicity. For the thermoneutral
case the barrier is λ0 /4. In the endoergic regime the barrier is higher than �G0. How
much higher depends on the value of λ0. The plot of the rate constant vs. the
thermodynamic driving force, Eq. (11.14), is shown on the right.

Generally it is customary to distinguish among different regimes as shown
in Figure 11.4. In the endoergic regime �G0 is positive and the barrier height
increases with increasing �G0. In the exoergic direction �G0 is negative. As it
becomes more negative, the barrier height decreases until the point at which the
exoergicity can fully compensate for the solvent reorganization, λ0 = −�G0,
and the barrier height is zero, �G‡ = 0. The reaction rate is now very fast. It
is so fast that the reaction itself need not be the rate-determining step for the
observed change in the bulk concentrations. The approach of two reactants that
are initially far apart can be slower than the reactive event. This condition is
the limit of diffusion control as discussed further in Section 11.1.3.1.1 and in
Problem D. The unexpected prediction of the Marcus equation is that for very
exoergic reactions, those where λ0 < −�G0, the barrier increases again while
�G0 becomes more negative. This inverted regime occurs because of the need to
release a large exoergicity into the solvation modes. The Franck–Condon overlap
between the motions in the two parabolas is then not optimal.9

The loss or gain of an electron by a molecule is typically accompanied by
structural changes, which in turn also create a barrier to electron transfer. We are
familiar with this effect in the gas phase when the transferred electron enters
an antibonding orbital, Section 5.1.3.1. In solution, the barrier arising from
intramolecular reorganization is known as an inner-sphere effect because it occurs
within the solvation sphere. The barrier arising from solvent reorganization is then
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Figure 11.5 Probing the dynamics of solvation. Shown is the potential for solvent
displacement about a chromophore in its ground state, S0, and the electronically
excited state, S1. When the dipole of the excited chromophore is larger than its value
in the ground state, at equilibrium the dipolar solvent is much more organized
around the electronically excited solute. An ultrafast excitation creates an excited
molecule solvated as if it were in its ground state. As the solvent relaxes to its
equilibrium structure, the energy decreases. This energy change is conveniently
monitored by a shift to the red in the fast fluorescence of the solute, as shown in
Figure 11.6 [adapted from Stratt and Maroncelli (1996)]. Below we discuss the large
spectral shift, a manifestation of the interaction with the solvent, in terms of the
dielectric constant. However, large spectral shifts are also observed in non-polar
solvents such as benzene, see Reynolds et al. (1996). Understanding such shifts
requires a more detailed examination of the long-range dispersion forces between
solvent and solute. Quantum chemistry has yet to do a more detailed analysis of
these forces; see Cramer and Truhlar (1996).

referred to as an outer-sphere effect. Section 11.4 seeks a unified approach to both
aspects.

11.1.3 Dynamics of solvation

In Section 11.1.2 we argued that the solvation shell is not static. To probe the
dynamics of the motion under the solvent–solute potential we need to displace
the shell from equilibrium in a sudden manner. Ultrafast optical excitation of a
solute from the ground state to an electronically excited state, particularly when
the excited state has a very different dipole moment from the ground state, creates
suitable initial conditions (see Figure 11.5).

As shown schematically in Figure 11.5, the failure of the solvent to readjust
during the fast electronic transition prepares the solute in the excited state S1

with a solvent configuration appropriate to equilibrium with the ground state S0

of the solute. On a time scale short compared with any radiationless decay, the
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Figure 11.6 Time-resolved emission of a dye molecule (Coumarin 153, shown as an
insert) in formaldehyde following an ultrashort electronic excitation. The spectra
shown were taken with a delay of 0.0, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, and 50 ps with
respect to the excitation. These times are short compared with any radiationless
decay of the excited state.∗ In reference to Figure 11.5, the results show that for a
fast optical excitation the solvent has no time to adjust to the new electronic state
of the solute. As time progresses, the spectra monotonically and continuously shift
to the red [adapted from M. L. Horng et al., J. Phys. Chem. 99, 17311(1995)].

solute will fluoresce from its unequilibrated state. Monitoring this fluorescence
as a function of time, Figure 11.6, shows the relaxation toward equilibrium.

For the purpose of a quantitative analysis we normalize data like that shown
in Figure 11.5 using the relation

Sν̄(t)(t) ≡ (ν̄(t) − ν̄(∞))/(ν̄(0) − ν̄(∞)) (11.15)

where ν̄(t) is the frequency of the peak position (or some other spectral feature)
at time t. The results span a range of variations between different solvents,
Figure 11.7, but do follow what one would expect from the dielectric continuum
model that we have discussed: the characteristic time for the decay of Sν̄(t)(t) is
shorter in the more polar solvents.

Quantitatively, we expect the temporal response of a solvent to be governed by
the dynamics of the translation and reorientation of its molecules. This response
changes the interaction of the anisotropic charge distribution of the solute, as
characterized by the multipole moments (dipole, quadrupole, etc.) of its charge
distribution, with the multipole moments of the solvent molecules. In a polar
solvent we can seek to relate the time scale of the solute’s reorientation dynamics
to the frequency∗ dependence of the dielectric constant in the spectral region
corresponding to nuclear motions.10

∗ The duration of the pump pulse is ultrashort but it needs to be long enough that it does not create

vibrational coherence, cf. Chapter 7, in the solute itself. This is possible because the dephasing

time of the solute is usually (but not always) shorter than the relaxation time of the solvation shell.
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Figure 11.7 The normalized fluorescence emission, Sν̄(t )(t ), vs. time for solvents of
decreasing polarity [ACN (acetonitrile, where the decay has a time constant of about
100 fs), tetrahydrofuran (THF), methanol, 1-propanol, and 1-pentanol]. Not shown is
1-decanol, for which the time is already about 200 ps. Longer times are measured for
even more viscous solvents such as glycerol, conforming to the rule of thumb that
solvent viscosity is a useful measure for the strength of the solvent–solute coupling
[adapted from Horng et al. (1995) loc.cit.].

The relaxation of the solvent configuration toward equilibrium as characterized
by Sν̄t (t) is not simply exponential. At least two time scales are discerned in
Figure 11.7. Aided by dynamical simulations a picture emerges to rationalize
the separation of time scales into two regimes. The fast relaxation is essentially
inertial, which means that there is not sufficient time for solvent molecules to be
strongly coupled to one another. Each solvent molecule rotates independently so
as to reduce the (dispersion force) multipole–multipole coupling between solvent
and solute. Quite small rotations are often sufficient to bring about a significant
reduction in the solvation energy and so the inertial relaxation can account for
much of the reorganization. Simulations of solvation in water show times as short
as 20 fs for this component. The longer relaxation is collective and dissipative in
nature. Of course, any specific interaction between solute and solvent (such as
strong hydrogen bonding, or charge flow to solvent) modifies this simple picture.

11.1.3.1 Cage effect
The term “cage effect” was coined to describe the low quantum yield for simple
photodissociations in solution, such as

(I2)solvated
hν−→ (I)solvated + (I)solvated
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Figure 11.8 Cage effect in
the photodissociation of I2
in hydrocarbon solvents.
Shown is the quantum
yield vs. the density of the
inert solvent [adapted
from J. Schroeder, and D.
Schwarzer, Z. Phys. Chem.
215, 183 (2000)]. When we
go to supercritical
solvents, the yield
decreases. Simple models
for the density
dependence are
discussed in Schroeder
and Troe (1993, 1987). The
lines shown are for static
caging.

There being no computers in those early days (Rabinowitch and Wood, 1936),
two red billiard balls were placed next to each other on a big tray, surrounded
by many white billiard balls, as in Figure 1.8. Vigorous shaking of the tray did
not move the two red balls from each other. The conclusion was reached that
the solvent was caging the products. The nascent I atoms, instead of separating,
recombined∗ to reform I2. The observed yield of I atoms is therefore far less than
two per photon. Recent data are shown in Figure 11.8. Further experiments11 and
simulations show that caging can be multistaged. There is the primary cage and
beyond it a secondary cage where a solvent atom gets between the two I atoms
but these are still kept together by the surrounding solvent.

11.1.3.1.1 Diffusion control
An immediate implication of the possibility of caging is that an A + B barrier-
crossing reaction in solution is not quite like the sequence of independent binary
collisions seen in the gas phase. Rather, the A + B attempted barrier crossings
are bunched together into encounters as shown schematically in Figure 11.9.
This means that once A and B get together at the foothills of their chemical

∗ This recombination is known as geminate because the two sibling radicals meet each other. Time-

resolved experiments (Harris et al., 1988) have verified this mechanism with additional refinements.

First, there are many electronic states of I2 that dissociate to two open-shell I atoms in their ground

states. So the geminate recombination is not necessarily back to the ground electronic state. Even

when it is, the nascent I2 molecule that is formed in this way is vibrationally energy-rich. Its cooling

is by energy transfer to the solvent (Harris et al., 1990), which is an interesting example of the

exponential gap principle at play, because the vibrational spacings of an anharmonic molecule

depend on its energy content.
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(a) Collisions in the gas phase

(b) Collisions in solution

Encounter Encounter Encounter

time

time

{ {{

Figure 11.9 Contrasting the time sequence of attempted crossings of an activation
barrier for reaction in the gas phase and in solution [adapted from Schwartz et al.
(1994)]. (a) In the gas phase the collisions of A and B are randomly spaced in time.
(b) In solution once A and B get together they are caged by the solvent and therefore
can try several times to cross over to products. We refer to such a bunch of
attempted crossings as an encounter.

interaction, they are caged by the solvent and can have more than one opportunity
to attempt to cross the barrier to products. This behavior enhances the bimolecular
chemical reaction rate, because every A + B meeting allows for several attempted
crossings.

The caging of the reactants can be phenomenologically represented by the
kinetic scheme

A + B
kdiffusion−→←−

kdissociation

(AB)encounter
k−→ products

The concentration of the encounter pair is low and so we make a steady-state
approximation for it, d[(AB)encounter]/dt = 0, and this yields for the rate of for-
mation of products

d [products]

dt
≡ k

[
(AB)encounter

] = k kdiffusion

kdissociation + k
[A] [B] (11.16)

When the barrier crossing is very fast (so that k > kdissociation), the reaction is
diffusion-controlled with a rate constant given by k = kdiffusion. Thus, the getting
together of A and B is the rate-determining step. Otherwise, if the barrier to
reaction is high or the barrier crossing is slow for other reasons, most encounters
are not fruitful and result in the separation of A and B, so that kdissociation > k. Then
the formation of the encounter pair is itself in equilibrium, with an equilibrium
constant given by K = kdissociation/kdiffusion and the observed reaction rate constant
is Kk, where k is the rate constant for barrier crossing.

This phenomenological treatment shows that there are really several reasons
why reaction rates in solution differ from those in the gas phase. As seen before,
the solvent can have an intrinsic effect, influencing the process of barrier crossing
both because it modifies the potential and because of dynamical effects. Beyond
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that, the solvent also influences the transport of the reactants (and products) into
the cage. Equation (11.16) is discussed further in Problem D, in terms of the rate
of diffusion in solution with the result that kdiffusion = 4π (DA + DB)β, where
the Ds are the diffusion coefficients, and β is the reaction radius for an A + B
reaction. If there is no long-range interaction between A and B, β is the radius
of the cage. For ion–molecule reactions and other examples where there is a
long-range attraction, there is usually a precursor to the primary cage, where the
reactants are separated by just one solvent molecule. This situation is referred to
as a solvent-separated (ion) pair.

11.1.3.2 Caging dynamics
Ultrafast excitation experiments and corresponding dynamical simulations reveal
that on the molecular time scale caging is sensitive both to the detailed molec-
ular structure of the solvent surrounding the molecule and to the dynamics of
the dissociation process. As an example let us take excitation of I2 to an elec-
tronically bound state (B) that dissociates because of a non-adiabatic transition
to a repulsive state, Figure 11.10. The transition is symmetry forbidden in the
isolated homonuclear molecule but allowed in solution, where coupling to the
solvent breaks the symmetry of the isolated molecule.∗

11.1.3.3 Caging dynamics in clusters
Clustering of a solute by a small number of solvent molecules allows one more
variable for testing our ideas about how properties scale with the number of
molecules in the solvation shell.12 For example, fast ionization of a neat cluster
generates an ion in a non-equilibrium environment and is a way to explore the
dynamics of ion solvation. Here we consider another aspect of the caging dynam-
ics: in a series of experiments a dihalogen ion, solvated by n CO2 molecules,
is photoexcited above its dissociation limit. The quantum yield of atomic and
molecular ions is determined as a function of n

XY− (CO2)n
hν−→

{
X−(CO2)m + Y + (n − m)CO2, uncaged

XY−(CO2)m + (n − m)CO2, caged

For all dihalogens examined, there is a strong increase of caging efficiency with
increasing cluster size n. Complete caging is observed once a single solvation
shell is completed. Results for I−2 (CO2)n are shown in Figure 11.11 and compared
with dynamical simulations.

That caging is effective even when the solvation shell is not completed, as seen
in Figure 11.11, is observed in other clusters and solutes. Simulations suggest
that more than one effect is at play. There is the purely mechanical effect that a
solvent molecule is in the way and that, particularly when it is sufficiently heavy,

∗ This example is yet another instance of how the solvent induces qualitative changes in the electronic

structure of the isolated system.
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Figure 11.10 Potential energy curves of the isolated molecule, left panel, and
snapshots of simulations of the dissociation dynamics of I2 in a rare-gas solvent
[adapted from M. Ben-Nun, R. D. Levine, and G. R. Fleming, J. Chem. Phys. 105,
3035 (1996)]. The Franck–Condon region on the bound B state for excitation from the
ground state is on the left from the crossing point to the dissociative a state, and the
motion on the shallow dissociation asymptote is very slow. There are therefore
distinct time windows during which the two I atoms can separate, just as in the
gas-phase NaI experiment shown in Figure 9.12. The first and second such exits
from the bound state are indicated. The essential difference is that in solution the
solvation shell stops the atoms from escaping and it is the first collision of the
fragment with the solvent cage that stops it. With time, the initially excited
wave-packet on the B state dephases both because of its own very anharmonic
motion and because of the interaction with the solvent. Only then is the dissociation
possible at every time interval and we can describe the dissociation by first-order
kinetics.

it can turn back the atom trying to escape. This effect is observed in studies of
the photodissociation of I−3 in alcohols,13 ROH, where the quantum yield goes
down as the size of R increases. In addition there can be an electronic effect
arising from the solvation.∗ An asymmetric solvent configuration around the
molecule polarizes the molecular charge distribution. When the bond extends,
these forces are comparable to the chemical force between the two atoms. The
potential energy is then no longer simply a function of the interatomic distance.

∗ Photodissociation of a chemical bond creates open-shell species. It is to be expected that such

reactive intermediates will interact chemically with the solvent – particularly so for nascent species

that are translationally hot and/or when the solvent itself has unpaired electrons.
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Figure 11.11 The quantum yield for photodissociation of I−2(CO2)n vs. cluster size n.
[Experimental results at 790 nm, dots, from Vorsa et al. (1997); simulations, squares,
from J. Faeder et al., Chem. Phys. 239, 525 (1998).] The simulations include the effect
of the longer-range ion–molecule polarization potential and this favors caging. The
simulations also provide typical configurations; these are shown at equilibrium for
n = 5 and n = 16. Also shown is a solvent-separated ion pair for n = 16. Note that
already at n = 5, when the molecule is still completely unsolvated on one side, there
is an onset of caging. Dissociation is fully suppressed by n = 16.

Instead the description of the dynamics is more complicated, meaning that there
is time for the solvent to interfere with the exit motion.

Studies of I2 ultrafast direct dissociation and recombination in Ar clusters14

have shown that, as in solution, see Figure 11.10, the geminate recombination
happens in two stages. The first stage is fast in which the solvent has no time to
move appreciably. Its structure presents a rigid cage from which the wave-packet
for I I motion is reflected but with much retention of its coherence so that the
atoms can recombine as the wave-packet vibrates within the solvent shell. The
second stage is slower geminate recombination in which the solvent has time to
move and then a solvent species can get in between. The relative importance of
the two stages depends on the solvent density and temperature.

11.1.4 Vibrational relaxation

In this section we carry over the ideas examined for the gas phase in Chapter 9
to the condensed phase and look for the new features.

There are many examples of energy transfer to or from the solvent. Caging
dissipates the translational energy after bond breaking and conversely, the sol-
vent must provide the energy required to cross an activation barrier to a chemical
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reaction. Photodissociation can be used, such as the HgI product in the photo-
dissociation of HgI2 (Figure 8.3). Using fast laser pulses in the IR, we can pre-
pare lower vibrational states that can be monitored, most typically by Raman
spectroscopy (Laubereau and Kaiser, 1978; Seilmeier and Kaiser, 1988). Internal
conversion (Section 7.0.3) provides one convenient way to put lots of vibrational
energy in a solute. Vibrational relaxation dynamics in solution are therefore well
studied.15

The condensed phase brings definite new features but, as in the gas phase, we
continue to emphasize the exponential role of the energy gap. As an example,
a vibrationally excited diatomic, such as O2, survives intact in a cold atomic
solvent for a very long time because of the large frequency mismatch. Further-
more, it is observed that for such rather rigid molecules the relaxation rate scales
linearly with solvent density, which suggests that a close-in collision with a
particular solvent atom is required to affect the relaxation. This “independent
binary collisions” approximation is not surprising, because one must dump a
great deal of energy into translation. How then can the solvent play a special
role? We shall see that the answer is that the solvent offers new ways for bridging
the gap.

In a polar solvent it is natural to study ions. In a polar solvent, ions are strongly
solvated, providing new modes into which the solute vibrational energy can flow.
Indeed, ions in water undergo facile vibrational relaxation.16 Furthermore, ionic
species couple well to the intramolecular modes of the polar water molecules.
Once we recognize this fact, we can ask a more sophisticated question: can
the relaxation compete with, or even be faster than, the vibrational motion of
the diatomic molecule? If it can, then we have a regime not familiar from the
gas phase: it is no longer sufficient to just ask how fast the energy drains out,
because during relaxation the molecule can retain a coherence that is built into
the initial state by an optical excitation. Figure 11.12 shows several scenarios.
They range over two extremes. In one case, called the slow relaxation limit,
the initially prepared wave-packet oscillates many times and so dephasing is
faster than vibrational energy relaxation. In the other extreme, called the ultrafast
relaxation limit, the wave-packet simply sinks to the bottom of the potential before
it has time to complete even one vibration.

The relatively low frequencies of solvent motions, the very reason why non-
polar diatomic molecules relax slowly, is just what is needed to make polyatomic
molecules relax more effectively. The reason is the possibility of solvent-aided
intramolecular vibrational energy transfer. Recall that polyatomic molecules have
ladders of vibrational states (e.g., Figure 7.18). At higher energies these ladders
overlap and form a quasi-continuum. Consequently, the solvent-induced relax-
ation does not need to remove much energy. It can effectively compete with
the intramolecular vibrational relaxation. When the molecule is large enough or
energy rich enough, or both, for the molecule to act as its own heat bath, the solvent
provides an even bigger bath but qualitatively there is no essential difference: a
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Figure 11.12 Limiting cases of vibrational relaxation of a wave-packet prepared at
time zero with much vibrational energy. An example is the HgI diatomic fragment
from an ultrafast dissociation of HgI2, but carried out in a polar solvent to allow for
faster relaxation. (a) Slow vibrational relaxation. The packet oscillates in the well,
dephasing slowly owing to the anharmonicity of its potential, just as it would in the
gas phase. Solvation may make the potential even more anharmonic because of the
fluctuating solvent dipole moments as the ionic molecule vibrates. No other
solvation effect is expected. (b) Slow vibrational relaxation. The packet oscillates in
the well and at the same time rapidly dephases owing to the modulation of the
potential by the solvent but without much loss of vibrational energy. (c) Fast
vibrational relaxation, comparable to the vibrational period. Coherence is retained,
at least in part, as the molecule is drained out of its vibrational energy. (d) Ultrafast
vibrational relaxation. The motion is like that of an overdamped oscillator. The
signature is that the motion in the relaxed state retains its coherence, that is, it
remains localized [adapted from Voth and Hochstrasser (1996); see also Voth
(2001)].

localized vibrational excitation will rapidly relax. It is at lower energies that the
solvent plays a key role. This is the regime where there are many states but these
are not quite so near in energy. Here the solvent can take up (or provide) the small
energy mismatches. The solvent bridges the exponential gap and we discuss this
intermediate regime further below. Finally, there must be a slow stage where the
molecule returns to the ground state by dumping a fair amount of energy into the
solvent. This stage is just the same as for collisional relaxation of polyatomics
in the gas phase, where the lowest vibrational frequency determines how much
energy needs to be lost by a V T process.

The new feature in the vibrational relaxation of polyatomics in solution is the
intermediate energy stage where the solvent significantly aids the intramolecular
redistribution of vibrational energy, Section 7.2.4. Figure 11.13 shows experimen-
tal results for the relaxation of a C H chromophore in acetonitrile (CH3CN).
The C H vibration is a high-energy (∼3000 cm−1) mode that can be excited
to ν = 1 by an ultrafast IR pulse. In the neat liquid it relaxes very rapidly, a
few picoseconds, as opposed to relaxation of CH ν = 1 states in isolated small
organic molecules that is observed in the gas phase to take a few nanoseconds. The
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Figure 11.13 Time-resolved pump–probe vibrational relaxation of a C H stretch
vibration in liquid acetonitrile at room temperature detected by (Raman) emission
from the excited state. In the isolated molecule such a ν = 1 stretch mode will relax
on the nanosecond time scale. The experiment maps out the energy transfer
pathways in the liquid. The essential point is that the relaxation is by solvent-aided
intramolecular transfer, as discussed in the text and indicated by arrows. Energy
dumping into the liquid is far slower, requiring about 250 ps [adapted from Deak
et al. (1998); see also Iwaki and Dlott (2001), Wang et al. (2002)].

essential point of the experiment is to identify where the energy goes. Monitoring
the other vibrations by Raman spectroscopy, the decay of 3 ps is correlated (see
Figure 11.13) with a 3 ps rise time of the C H bend (∼1400 cm−1) and C C N
bend (∼400 cm−1), C H stretch (ν = 1) → C H bend (ν = 1) + C C N bend
(overtone).

A small energy gap requires excitation of the ν = 3, 4 overtone vibrations
of the C C N bend. A wide-gap transfer from the C H stretch to the C N
stretch (∼2250 cm−1) is much less probable. There is also no small-gap process
to drain energy out of the C N stretch so its lifetime is long, ∼80 ps. As seen in
Figure 11.13, the C H bend (∼1400 cm−1) decays by a small-gap process to the
lower-energy (∼900 cm−1) C C stretch and C C N bend. The final dumping
of vibrational energy into the solvent bath requires about 250 ps, as can be seen
in the long-time heating of the C C N bend and can also be detected through a
temperature rise of the liquid. This behavior illustrates the hierarchy of different
relaxation times.
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11.2 Barrier-crossing dynamics

Understanding the participation of the solvent in crossing the barrier to reaction
has challenged theorists ever since the birth of dynamics. We want to control
not only the rate of reaction but also the nature of the products in the same way
that synthetic chemists do. The more ambitious take their cue from enzymatic
reactions, where the (protein) environment is able to affect changes in the rates by
many orders of magnitude. That goal has proved challenging. The problem in part
is that we are seeking a goal that contains an inherent contradiction. On the one
hand, we think in terms of reactants and their surroundings and want to discuss
how varying the surroundings can alter what the reactants do. On the other hand,
as shown by the discussion of solvation, the reactants and their surroundings can
be strongly coupled. The forces between solvent and solute, not necessarily weak,
cannot be considered a small perturbation. A solvent that exercises a qualitative
effect cannot be represented simply as the reactants’ response to it; there are
mutual influences. So it is useful to speak of a combined system. By treating the
solute and solvent as one system we can often achieve a quantitative description.
But when we want to change the solvent, such an approach requires that we start
from the beginning. The use of transition state theory allows us, to a certain
extent, to factor the dynamical behavior into two terms, one having to do with
the reactants and another representing the solvation of the transition state. The
problem is to go beyond this factorization. In principle, tools such as the Langevin
equation (see also Section 5.2.2.1) allow us to represent the solute dynamics under
the influence of the solvent in terms of friction and memory effects, but there is
still a gap between the principle and the practice. Incisive experiments have yet
to be done that critically test well-developed theoretical tools.

We begin with the potential along the reaction coordinate known as the poten-
tial of mean force. This allows us to compute the reaction rate using transition
state theory. Then we discuss two dynamical regimes where respectively the sol-
vent aids and hinders the crossing of the chemical barrier. Kramers17 (1940)
clearly identified these two complementary roles of the solvent and showed that,
other things being equal,∗ they correspond to weak and strong solvent–solute
coupling. The weak coupling regime is intuitively clear and is analogous∗∗ to the
Lindemann regime, with which we are familiar: the molecule acquires energy
by collisions with the fluid around it. For reaction in solution, the thermal reac-
tants at the foothills of the chemical barrier need to be activated so that they can

∗ The problem for an experimental verification is that when we change the solvent it can be the case

that we also change the barrier height and other reaction attributes.
∗∗ The Lindemann scheme is applied in the gas phase where the collisions are binary and isolated.

Kramers (1940) couples the molecule to a medium with which it exchanges energy in a random

fashion. This weaker coupling regime is known as the energy diffusion regime because the energy

content of the motion along the reaction coordinate often varies up and down by small amounts.
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cross the barrier. The weak coupling regime is where the energy flow from the
solvent to the reaction coordinate is rate-determining and so the reaction rate is
lower than what we would compute from transition state theory. Already noted
in Section 11.0.1 is another scenario, namely, that the thermal reactants at the
foothills of the barrier acquire the required energy in one rare but large impulse
rather than in a diffusive manner. Coupling to the solvent is important also in
deactivating the products in an isomerization reaction, as shown in Figure 11.14.
The reason is that just after crossing the barrier from the reactants’ well to the
products’ well there is energy released along the reaction coordinate during the
descent from the barrier. Unless this energy is rapidly channeled into other degrees
of freedom, the motion along the reaction coordinate can be reflected by the outer
repulsive potential of the products’ well, see Figure 11.14, causing a recrossing
of the barrier back to the reactants.

As the friction increases, the role of the solvent changes and, as a function of
the strength of coupling to the solvent, the reaction rate reaches a maximum and
then decreases in what is known as the turnover regime. At very high friction it
is the very motion along the barrier top that becomes diffusive (we shall inter-
pret this as due to the participation of the solvent motion in the crossing of the
barrier).

11.2.1 Potential of mean force

The potential of mean force, the technical term for the free energy along the
reaction coordinate, is an essential ingredient in a correct application of transition
state theory to processes in the condensed phase.18 We need the potential of mean
force for two purposes. First, to know the location of the bottleneck to reaction,
the transition state. Except when it is dictated by symmetry, as in symmetric
exchange, the transition state in the presence of a solvent is not necessarily the
same as in the gas phase. Second, we need to know the height of the barrier.

To determine the potential of mean force we constrain the solute to be at a
particular position along the reaction coordinate. Then the solvent–solute system
is brought to thermal equilibrium and the energy is determined. So all degrees
of freedom are allowed to vary and approach equilibrium, the solvent, the solute,
and their relative motion. Only the position along the reaction coordinate is held
fixed. We determine the free energy and then choose a new position along the
reaction coordinate, equilibrate, determine the energy, and so on. This procedure
is what we do in the gas phase, even when there is no solvent. The only practical
difference between the gas phase and a solution is in how many degrees of freedom
there are to deal with. In either case, we treat the whole system.19 The one fixed
coordinate is the minimum energy path. All other degrees of freedom, those of
the solute, the solute–solvent configuration, and the solvent itself constitute the
thermal bath. The potential of mean force, W(q), is the work required to bring the
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solute to a particular location q along the reaction coordinate, averaged over the
equilibrium distribution of all other degrees of freedom. We now turn to show
that this potential indeed determines the mean (averaged over all other modes)
force for the motion along the reaction coordinate.

*11.2.1.1 Evaluating the mean force
The potential of mean force, W(q), at position q along the reaction coordinate
enters into our quantitative considerations when we come to compute the partition
function for the transition state. This information is an input into the expression for
the barrier-crossing rate constant, Eq. (6.11). The partition function Q‡ is like the
partition function for the whole system except that we do not allow motion along
the reaction coordinate and we constrain the position along the reaction coordinate
to be at the top of the barrier. Next comes an observation about partition functions
that is generally valid in the limit when classical mechanics is applicable. One
way of evaluating partition functions is by summing over the quantum states of
the system, Eq. (A.6.4). In the classical limit we can also evaluate this sum as an
integral of the Boltzmann factor over all n positions and n momenta

Q =
∫

exp(−H (x, p)/kBT )dx dp/hn (11.17)

As with transition state theory in the gas phase,20 it is useful if we can21 write the
Hamiltonian as a sum of the kinetic energy, T(p), a function only of the momenta
and the potential energy, and V(x), a function only of the positions. The 2n-
dimensional integral in Eq. (11.17) then factors into a product of an n-dimensional
kinetic energy integral and an n-dimensional potential energy integral, known as
the configuration integral Z. The configuration integral at the transition state is
obtained by constraining the value of reaction coordinate q. So if n is the number
of degrees of freedom of the system, we need to evaluate

Z ‡ ≡
∫

exp (−V (x)/kBT ) δ(q − q‡)dx (11.18)

The delta function constrains the value of the reaction coordinate q to q‡, the
location of the transition state along q. Remember that in solution q can involve
solvent modes and need not be the same coordinate as in the gas phase.

How is this configuration integral related to the mean force? Let us compute
the mean force along the reaction coordinate at q = q‡:

−
〈
∂V (x)

∂q

〉
q=q‡

= −
∫

(∂V (x)
/
∂q) exp (−V (x)/kBT ) δ(q − q‡) dx∫

exp (−V (x)/kBT ) δ(q − q‡) dx

= kBT

(
∂

∂q‡ Z ‡
) /

Z ‡ = kBT
∂ ln Z ‡

∂q‡ ≡
(

∂ ln W (q)

∂q

)
q=q‡

(11.19)
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We have shown∗∗ why (kBT times) the logarithm of the configuration integral Z‡

acts as a potential from which the mean force can be determined. We are already
familiar with a simpler version of this connection, that kBT times the logarithm of
the partition function is the free energy, which is the (reversible) work available.

11.2.1.2 From gas phase to solution
When the potential of mean force is known, we can compute the transition state
theory rate of barrier crossing in solution. It is customary to define �W(q) as the
difference in the potential of mean force between the gas phase and solution and
to write symbolically

kBT ln
ksolution

kgas phase
= −(�W (q‡) − �W (q at reactants)) (11.20)

This shorthand summary is not without pitfalls. It suggests that the environment
merely changes the energetics of the transition state relative to that of the reactants.
But in solution the very configuration of the transition state and the displacement
that is the reaction coordinate may differ in different solvents. On the other hand,
computing the potential of mean force and determining the transition state for it
often accounts for much of the solvent effect on the rate of reaction, an effect that
would otherwise be attributed to the solvent playing a dynamical (rather than an
equilibrium) role in crossing the barrier to reaction.

Having shown the application of the potential of mean force, we should remem-
ber that the purpose of transition state theory is not to describe the dynamics of
the reaction. It is a theory for computing the rate of a single barrier crossing,
starting with reactants in equilibrium and assuming that the passage over the
barrier is the rate-determining step. If there is more than one barrier en route to
products – say if the reactants are caged at the foothills of the chemical barrier
– then the theory needs suitable modification. Similarly, if the reactants are not
in equilibrium with the solvent, we cannot apply the theory. Finally, there may
be true dynamical effects such as barrier recrossings and, in particular, barrier
recrossings induced by the solvent.

11.2.2 Isomerization

The dynamics of the photoinduced conformational change shown in Figure 11.14
allows us to explore the role of the solvent in barrier crossing. The measured rate
for isomerization of 1,1′ binaphtyl as a function of solvent viscosity is shown

∗ Note that

∂

(∫
f (y)δ(y − a) dy

)/
∂a =

∫
f (y) (∂δ(y − a)/∂a) dy

= −
∫

f (y) (∂δ(y − a)/∂y) dy = −
∫

δ(y − a) (∂ f (y)/∂y) dy



11.2 Barrier-crossing dynamics 455

0

1000

2000

−40 −20 0 20 40

P
ot

en
ti

al
 e

ne
rg

y 
/ c

m
−1

Twist angle, θ / deg

reactants'
well

repulsive wall
of products

ω

θ

‡

∆E

Figure 11.14 Isomerization in 1,1’ binaphtyl. The conformational change is the twist
of the angle θ , right panel. The potential for the twist motion in the first excited state,
as fitted to the measured isomerization rate, is shown vs. the angle. The twist angle
at the barrier is taken as the zero [adapted from D. P. Millar and K. B. Eisenthal,
J. Chem. Phys. 83, 5076 (1985)].

in Figure 11.15, under the premise that the viscosity of the neat solvent is a
reasonable measure for the friction that is applied onto the solute. Note that the
optical excitation prepares a non-stationary state localized over the left well. So
the experiment directly probes the role of the solvent in hindering the isomeriza-
tion and is not concerned with the activation stage because the energy is provided
by the optical excitation.

Assuming that the potential at the bottom of the reactants’ well is parabolic
with a frequency ω and that the barrier can be fitted as an inverse parabola with
a frequency ω‡, see Figure 11.14 and Eq. (11.23) below, the decline of the rate
constant due to coupling to the solvent can be written in the form that Kramers
deduced:

k = κ kTST

κ = [1 + (γ /2mω‡)2]1/2 − (γ /2mω‡)
high γ−→ (mω‡/γ ) (11.21)

The transition state rate kTST is for a one-dimensional solute reaction coordinate,
a result that depends only on the barrier height and the reactants’ well frequency
ω. The mass for the motion along the reaction coordinate is m.∗ The transmission
coefficient κ corrects the rate so as to include the effect of solvent friction γ . This
treatment assumes one-dimensional motion along the reaction coordinate and a

∗ Because friction·velocity has the dimension of force γ /m has the dimension of frequency

(1/time).
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Figure 11.15 The barrier-crossing rate for the (fast) isomerization in 1,1’ binaphtyl
in its electronically excited state vs. the solvent shear viscosity (cP). The twist angle
θ , see Figure 11.14, is about 40◦ different in the equilibrium configurations on the
ground and first singlet excited state. A short pulse prepares the initial state that has
the same configuration of the nuclei as the ground state. The subsequent change of
conformation can be probed by fast absorption [adapted from D. P. Millar and K. B.
Eisenthal, J. Chem. Phys. 83, 5076 (1985)]. The change in geometry requires that the
solvent be pushed out of the way, and the rate decreases with increasing viscosity of
the solvent. The solid line is the fit by Millar and Eisenthal to Eq. (11.21). (At the high
friction end, the rate does decrease as 1/γ .) From this fit, the potential as shown in
Figure 11.14 is deduced. For activation by the solvent in the weak-coupling regime
where the rate of isomerization increases with the viscosity, see Campbell et al.
(1992).

static friction, Problem F. The time delay in the response of the solvent can also
be incorporated∗ and leads to the implicit equation

λ‡ = (ω‡)2

[λ‡ + γ (λ‡)/m]
(11.22)

that needs to be solved for the reactive frequency λ‡ and κ = λ‡/ω‡. The reactive
frequency is the (imaginary) barrier-crossing frequency that takes into account
the friction caused by the solvent. To determine λ‡ we need to determine the
frequency-dependent friction evaluated at the frequency of the barrier crossing,
denoted by γ (λ‡) in Eq. (11.22). In Section 11.2.2.2 we discuss a toy model for
barrier crossing that yields Eq. (11.22) as the exact result within transition state
theory provided that we recognize that the reaction coordinate in the presence
of the solvent should be modified from that of the pure solute. For details see
Problems E and F.

∗ Known as the Grote–Hynes correction (Hynes, 1985a, 1985b). See Problem F.
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*11.2.2.1 Toy model for barrier crossing
The model offers insights on several key points regarding the role of the solvent.22

But in the final analysis it cannot substitute for realistic dynamical simulations.
In particular, the model overlooks any role played by the internal modes of the
solvent molecules or the internal modes of the solute. What the model provides
is insight into the motion along the solvent-modified reaction coordinate. Specif-
ically, the diffusion forward and backward across the barrier, that in the Kramers
model occurs along the reaction coordinate of the isolated solute, is shown in the
model to be equivalent to a single crossing of the transition state provided that
we use a collective reaction coordinate, one that involves both solute and solvent
motion.

The model assumes one-dimensional motion along a reaction coordinate q
with a parabolic barrier:∗

Hsolute = p2

2m
+ V (q)

V (q near q‡) = Ebarrier − 1
2 m(ω‡)2(q − q‡)2 (11.23)

The solvent is represented as a set of harmonic modes.23 These solvent modes
are coupled, by a term linear in their displacement, x, from equilibrium, to the
solute

H = Hsolute +
∑

solvent modes j

[
p2

j

2m j
+ m j

2

(
ω j x j + C j

m jω j
(q − q‡)

)2
]

(11.24)

The solvent modes, labeled j, are not coupled to one another, and the form of the
coupling to the solute is written to ensure that the barrier height is independent
of the strength, C, of the coupling. The masses mj and frequencies ωj of the
individual solvent modes enter into the frictional force (where each solvent mode
contributes C2

j /m m j ω
2
j to the static friction). The reduction in the rate due to

the coupling to the solvent appears in the final result24 for the transition state
theory rate constant through the value of the reactive frequency λ‡. Specifically,
the Hamiltonian given in Eq. (11.24) is, in the vicinity of the barrier, q ≈ q‡, a sum
of bilinear terms. Therefore, its normal modes can be analytically determined.
The mode that is unstable, meaning that its frequency is purely imaginary, is the
barrier-crossing mode. The reactive frequency is found to be the positive root of
the equation

(λ‡/ω‡)2 = 1

1 + ∑
j

((
C2

j /m m j ω
2
j

) /
ω2

j (1 + (λ‡/ω j )2)
) (11.25)

In summary, we have two ways to understand the reduction in the reaction rate at
higher friction. One is to use a Langevin equation for the diffusive motion along

∗ The frequency ω‡ at the barrier corresponds to an unstable motion. The harmonic frequency is

defined as
√

k/m, where k is the force constant. At the barrier top k is negative so the harmonic

frequency is purely imaginary and equals iω‡.
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the reaction coordinate of the solute, as was done by Kramers. In general it is not
practical to evaluate the friction terms exactly, but for the quadratic Hamiltonian
of Eq. (11.24) this computation can be explicitly done and the Langevin equation
can be written down with the details given in Problem E. The alternative is to
locate the bottleneck for the crossing from reactants to products in the presence of
the solvent and to do so along a reaction coordinate that allows for the coupling
to the solvent. This is what variational transition state theory, Section 6.1.4.2,
tells us to do. For the toy model this procedure yields results equivalent to the
Langevin equation, as shown further in Problem F.

The toy model allows us also to examine the dynamics.25 For this purpose
we can rewrite the Hamiltonian such that the reaction coordinate is coupled
to only one harmonic solvent mode. This solvent mode is in turn coupled to
the other solvent modes, but we will neglect the coupling that is purely within
the solvent. The model reduces to motion involving an anharmonic mode, the
reaction coordinate, a mode whose frequency, ω(q), depends on the position along
the coordinate, coupled to a harmonic (solvent) mode of frequency ω. We can
now ask where, along the reaction coordinate, is the role of the solvent expressed?
We know that two modes will effectively couple when the two frequencies are
comparable. This condition is measured by the frequency ratio of the reactive vs.
the solvent modes

ρ2(q) ≡ ω2(q)/ω2 = (
m−1∂2V (q)/∂q2

)
/ω2 (11.26)

When the energy variation along the reaction coordinate arises from chemical
bonds being broken and reformed in concert, the spatial spread of the barrier is
confined because chemical forces are short-range. But the height of the barrier
can be significant. This means that chemical potential varies rapidly over a short
range so that, say, for atom exchange reactions, |ω2(q)| will be large. (An absolute
value is needed because near the barrier ω2(q) is negative.) The frequencies of
unassociated solvents are generally lower than chemical-sized frequencies. Under
such circumstances, the role of the solvent is largely confined to the foothills of
the chemical barrier, where ω2(q) is much reduced in magnitude compared with
its value at the barrier top where |ω(q‡)| ≡ ω‡.

The potential energy in the toy model, Eq. (11.24), is such that at the barrier,
where q = q‡, the solute mode is uncoupled to the solvent. At the very top of
the barrier the crossing is a motion along the q coordinate alone. However, away
from the barrier the reaction coordinate is slanted, meaning that it involves a
displacement of both the solvent and the solute. The potential energy contours
for the case of high friction are shown in Figure 11.16. Superimposed on the
potential is a typical trajectory. It shows that the toy model recovers the failure of
the solvent to move substantially during crossing the barrier. As a result, at large
friction the barrier along the q coordinate is crossed many times and, as can be
seen from the trajectory, this caging involves energy exchange between solvent
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Figure 11.16 Potential energy contours for a Hamiltonian consisting of a reaction
coordinate q and a single solvent mode r when the two are linearly and strongly
coupled, as in Eq. (11.24). For weak coupling the contours run almost parallel to the
q axis. The stronger is the coupling, the more is the solvent displacement involved
in the dynamics (L is a range parameter). Superimposed on the potential contours is
a trajectory showing caging on either side of the barrier. The motion over the barrier
at high coupling is diffusive [adapted from Ben-Nun and Levine (1994)]. The
potentials and masses are chosen to mimic the O + H2 → OH + H reaction in
supercritical Ar. The variational transition state theory discussed above seeks to
rotate the coordinates so as to reduce the number of recrossings.

and solute. Figure 11.17 shows the same effects in a full molecular dynamics
simulation.

11.3 Interfaces

Much that is central to our life and our technology occurs at interfaces, the
interface between a solid or a liquid and a gas, the interface between two liquids
(as in phase transfer catalysis), and the interface between a solid and a liquid.
The solid–gas interface has received much attention because of the relation to
catalysis, and it is the subject of Chapter 12. In this section we will specifically
examine interfaces with a liquid (Benjamin, 1997; Kondow and Mafun, 2000). We
begin with the gas–liquid interface (Nathanson et al., 1996), continue with liquid
interfaces, and finally discuss fuel cells as an example where the dynamics at the
electrode–electrolyte interface is rate-determining. Our purpose is to emphasize
what is unique about such systems and how the inhomogeneity that is an essential
characteristic is reflected in the dynamics.

11.3.1 The gas–liquid interface

Experiments probing gas-phase molecules hitting the surface of the liquid have
shown both aspects unique to the interface, such as uptake of molecules into
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Figure 11.17 Molecular dynamics simulation of the O + H2 → OH + H exchange
reaction in supercritical Ar where the atomic structure of the solvent is fully retained
in the simulations. Shown are the O H and H H bond distances∗ vs. time. The dense
solvent cages the reactants (as well as the products). There are several tries to cross
the barrier, but only the attempt at time zero is successful [adapted from Ben-Nun
and Levine (1994)]. To perform such computations it is advantageous to initiate the
trajectory at t = 0 at the barrier top and to integrate both forward and backward in
time (Bennett, 1977).

the∗ bulk∗∗ or the preferential orientation and the aggregation of molecules on
the surface, as well as providing interfacial analogs of bulk solvation, hydrogen
bonding, proton exchange and in general acid–base reactions, and oxidation–
reduction.

As a concrete example, Figure 11.18 reports the different outcomes when a
fast DCl molecule is incident on the hydrogen-bonding solvent glycerol. The first
question that also arises in the gas–solid interface is whether the impinging HCl
molecule recoils directly from the surface in one or a few bounces, or dissipates
its incident kinetic energy and binds momentarily to the surface. If it is trapped,
does it remain intact or does it fall apart at the surface of glycerol or wait until
it is deeper in the bulk, and the mechanisms for interfacial dissociation and
recombination differ from those in bulk solution. It is this ability to discuss both
interfacial and bulk processes that is special to the liquid surface.

∗ These distances oscillate at a high frequency when bound and at a much lower frequency when

the atoms are unbound but the reactants or products are caged.
∗∗ This is of much concern for the uptake of pollutants by water drops and in connection with the

ozone cycle in the atmosphere.
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Of the DCl molecules striking the surface of glycerol, 73% undergo D/H
exchange and desorb as HCl. These DCl molecules first dissociate into D+ and
Cl− and then the D+ ion exchanges with glycerol and the resulting H+ ion diffuses
for long times (seconds) before eventually recombining with Cl− and evaporating
as HCl from the liquid. An additional 20% of the DCl molecules desorb immedi-
ately back into the gas phase as DCl, despite the measured –67 kJ mol−1 exother-
micity for dissociation. The remaining 7% of the DCl molecules striking the
glycerol film desorb as HCl within one microsecond, most likely reacting within
the top two monolayers. These DCl molecules choose to dissociate, undergo D/H
exchange, recombine, and then leave without ever penetrating deeply below the
surface. The interfacial DCl(g) → Cl− + D+ → Cl− + H+ → HCl(g) mech-
anism appears to be quite different from recombination in bulk glycerol, where
D+ and Cl− ions originating from two different DCl molecules diffuse toward
each other and combine. The experiments provide strong evidence for the follow-
ing pathways: a DCl molecule first lands on the surface and dissociates within a
near-surface cage of glycerol molecules. Nine out of ten times, the Cl− ion and
D+ or an exchanged H+ ion hop out of the cage, and the ions diffuse deeply into
the liquid for several seconds. One out of ten times, however, a D/H exchanged
H+ ion within the surface cage reattaches to the solvated Cl− and the nascent
HCl desorbs into the vacuum. This interfacial exchange and desorption occurs
within 10−6 s, or one million times faster than bulk dissolution and eventual HCl
evaporation.

This study demonstrated that the interfacial region of a liquid can be regarded
as a distinct reaction medium even when dissolution in the bulk is very favorable.
The gas–liquid interface is not only the gateway for a gas molecule into the bulk,
but a region where distinct reactions occur.
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11.3.2 The liquid–liquid interface

At the interface of two immiscible liquids there are marked changes in the den-
sity, viscosity, and polarity. It is a reasonable zeroth approximation to take these
properties to change abruptly at a sharp boundary between the two liquids, but
simulations∗ suggest that on the molecular scale the dividing surface is rather
rough so that theories developed for understanding the bulk must be applied
with care. A prime example is the dielectric constant. Over what distance scale
does it change across an interface between two different solvents? The results of
an experiment that uses “molecular rulers” to measure this change is shown in
Figure 11.19.

The experiments shown in Figure 11.19 suggest that there is a reordering of
the organic solvent at the interface.26 In Chapter 12 we discuss much additional
evidence for reordering at the solid–gas interface and note that there can be a
further, adsorbate-induced, reordering.

Another active research area where emphasis is shifting from static structures
to dynamics is interfaces in biological systems, in particular at the membrane of
the cell where so much critical chemistry is taking place.

11.3.3 Fuel cells

A fuel cell directly converts chemical energy into electrical energy.∗∗ The most
familiar example is the cell using hydrogen and oxygen, Figure 11.20, with the
cell reactions

anode: 2H2O + H2 → 2H3O+ + 2e
cathode: 1

2 O2 + 2H3O+ + 2e → 3H2O

}
net: H2 + 1

2 O2 → H2O

The rate-determining step is that of electron transfer to the oxygen molecule at
the cathode. The Marcus theory of Section 11.1.2 can be applied to this situation
as follows (Marcus, 1964). We define the overpotential η as the excess free energy
required to drive a current through the cell, eη = �G − �G0, where the standard
free energy refers to the absence of any net current passing through and e is the
charge of the electron. We use Eq. (11.14) to compute the rate of electron transfer
from the electrode to the molecule so that λ0 is the reorganization energy about
the molecule. To convert the rate constant to a current density we need to multiply
it by the concentration [c] and by the Faraday constant F. The difference in free
energy between the oxidized and reduced species needs to take into account that
there is a potential V across the cell. We can write for either oxidation or reduction

j± = ± F[c]A exp(−(λ0 ± (�G0 − eV ))2/4λ0 R T ) (11.27)

∗ Dynamics at interfaces is extensively discussed in Benjamin (1997a, 1997b, 2002).
∗∗ Unlike the familiar car battery, a fuel cell gets the fuel from an external source. There is therefore

no need for charging it and the fuel cell will not go flat as long as the fuel is supplied.
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Figure 11.19 Left: the surfactants used to probe the length scale of the interface
between water and an immiscible organic solvent. The anionic sulphate group is
assumed to remain solvated in water. This group is attached by an alkyl spacer to
p-nitroanisole whose absorption monotonically shifts as the solvent polarity
changes. See the spectrum on the right that indicates the absorption maxima for
water (εr = 78.9) and for 1-octanol (εr = 10.3). Longer spacers allow the aromatic
group to penetrate deeper into the organic solvent. The second-harmonic
generation spectrum used as a probe (Eisenthal, 1996) is surface-specific, meaning
that only molecules at the anisotropic interface between the two solvents will give
rise to a signal. The density of molecules at the surface is kept low so that they do
not form a monolayer and hence act as a probe of the interface. For the
non-associating water–cyclohexane interface the polarity is found to change
smoothly from that of water to that of cyclohexane (εr = 2) in less than a nanometer.
But for the hydrogen bonding but immiscible water–1-octanol interface, the
spectrum, shown on the right, is quite different. All probes have shifts that show a
polarity that is far less than for either solvent. As the ruler length increases, the local
dielectric environment around the probe tends to that of the organic layer [adapted
from W. H. Steel and R. A. Walker, Nature 424, 296 (2003)].
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Figure 11.20 Schematic of a hydrogen/oxygen fuel cell. In a commercial alkaline
cell of this type the electrolyte is phosphoric acid and it is operated at above room
temperature. At even higher temperature the electrolyte is a molten carbonate and
the species that migrates is CO2−

3 . At sufficiently high temperature a solid oxide can
be used and the mobile ion is O−

2 .

and verify that these rates are equal when there is no overpotential, η = eV −
�G0 = 0. The exponential rise of the net current, j+ + j−, with the overpotential
is familiar as the Butler–Volmer law of electrochemistry.

11.4 Understanding chemical reactivity in solution

Let us bring together several key ideas that we have discussed. We seek a unified
approach where both the role of the solvent and the rearrangement of the reactants
to form products are taken into consideration. We further want the approach to
center attention on the correlation of reactivity with structure, a theme that we
started in Chapter 6.27 In essence, we generalize the one-coordinate discussion of
solvation in Section 11.1 to a two-dimensional world that consists of a solvation
coordinate and a reaction coordinate.∗ Starting from the gas phase, what we do
is generalize the one-coordinate Evans–Polanyi model to include the role of the
solvent.

11.4.1 The reaction series

The systematics of the energy profile along the reaction coordinate are obtained
from the Evans–Polanyi model. Recall, Sections 5.1.4 and 7.0.2, that this model
regards the adiabatic potential energy profile leading from reactants to products

∗ As a dynamical approach, it is a toy model not unlike that of Section 111.2.2.1. But we do not mean

to do dynamics. Rather we want to obtain an order-of-magnitude estimate for the rate constant.

This is a more forgiving application because we are concerned with terms that are in the exponent

rather than with the prefactor.
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as determined by the mixing of two diabatic potentials,28 one representing the
electronic state of the reactants and the other of the products, as in Figure 5.9.
The adiabatic energy is always lower than the diabatic one. Therefore we obtain
an approximation to the location of the transition state as the crossing of the
two diabatic potentials, Figure 11.21. To find this point and the height of the
potential, we take the diabatic potential curves to be parabolas. This assumption
may be unrealistic in the asymptotic reactants-and-products region in the gas
phase. Because we intend to apply the results in solution, you can think of the
bottoms of the parabolas as the reactants and the products inside the solvent cage.∗

Let us first examine the transition-state region for which the model of intersecting
parabolas captures the essence. Next, and still following Evans and Polanyi, let
us make a change in the nature of the products. A nicely studied reaction series29

is that of substituted benzyl anions with CH3Br

CH2
−

CH2CH3CH3Br+ + Br
−

x x

and we vary the substituent X. Figure 11.21 shows how the diabatic curve of the
products shifts down as the reaction exoergicity is changing. The key to getting
a simple answer is shifting the products’ parabola up or down without changing
its shape.

The approximation of the energies of different reactions in the series as con-
gruent parabolas allows us to determine the free energy height of the barrier, in
analogy to the derivation of the Marcus Eq. (11.13), as

�G‡ = (λ + �G0)2/4λ (11.28)

It is sometimes useful to rewrite this equation as

�G‡ = �G‡
0︸︷︷︸

intrinsic barrier

+(�G0/2) +
(

(�G0)2/16�G‡
0

)
(11.29)

where �G‡
0 = λ/4 is the intrinsic barrier, independent of the energy require-

ments or release, and is regarded as a kinetic contribution. The thermodynamic
contribution consists of two parts, one that depends on the sign of the energy
release and is the thermodynamic driving term and another that is a mixing term.
The so-called kinetic term is really a property of the energy profile along the
reaction coordinate and as the derivation of Eq. (11.13) showed, see also Problem
G, the intrinsic barrier is determined by the force constant of the parabolas of
Figure 11.21. In structural terms λ is the energy necessary to distort the products
(without allowing a chemical change) until they assume the configuration of the
reactants, see Figure 5.9.

∗ But you also must consider the free-energy changes that accompany the separated solvated reactants

coming together into the cage. We will introduce this correction.
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Figure 11.21 The essence of the Evans–Polanyi model for systematic variations in
the transition state location and height in a reaction series. For a given reactant’s
parabola three sets of products are shown. Dashed parabola: a symmetrical
reaction∗ for which �G0 = 0. The barrier height originates from only the intrinsic
electronic rearrangement necessary to go from reactants to products. By analogy to
the Marcus theory of electron transfer, the barrier height is assigned the value λ/4,
where λ is the free energy of the products at the configuration of the reactants, see
Figure 11.3. The two solid parabolas on the products’ side represent two reactions of
increasing free-energy change. Note how the Hammond postulate arises inherently
from this construction: the more exoergic reaction has the earlier transition state.
Problem G derives the barrier height, Eq. (11.28), and shows that the Hammond
postulate is a necessary quantitative intermediate result in the derivation.

11.4.2 The unified approach

So far, the treatment is one-dimensional, along reaction coordinate q. We have
not discussed the role of the solvent except possibly as a motivation for why the
reactants or products are located at the bottoms of parabolas and do not escape
to infinity. If we only treat the solvent, we have the solvation coordinate r of
Section 11.2. Here we go to a two-dimensional model where both the reaction
coordinate q and the solvent coordinate r can vary. We have two (diabatic) parabo-
las, each two-dimensional, located over the reactants’ and∗ products’ configura-
tion, Figure 11.22.

∗ Not every reaction series has a physically clear example of such a symmetric reaction. So this

reference case can be hypothetical, but it need not be. Well-studied reaction series for which there

is an obvious example of a symmetric case are proton transfers between two bases, AH + B+ →
A+ + HB. Many-group transfer reactions and electron transfer reactions also offer examples. We
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∆G

Figure 11.22 A simple unified model for free energy change of a chemical reaction
in solution. Each parabola is a function of the solvent displacement coordinate r and
the solute reaction coordinate q. The minimal energy path followed by the system,
as shown, involves both coordinates, just as in the toy model of Section 11.2.2.1.
Here we do not couple the two motions, although we could. To apply transition state
theory we need to know where is the lowest energy barrier and what is its height.

As shown in Figure 11.22 there is a reaction coordinate that involves both sol-
vent and solute motion. Proceeding in familiar steps, we recover again a parabolic
expression for the minimal barrier height

�G‡ = (λu + �G0)2/4λu (11.30)

where in the unified model the intrinsic barrier is a sum of three terms, one from
the solvent alone, one from the kinetic contribution alone, and a cross term. This
cross term represents the shift of the location of the transition-state configuration,
from where it would be in the gas phase to where it is in solution, or, equivalently,
a shift in the solvation energy caused by the chemical change along the reaction
coordinate.

We need one more step. The observed free energy change is not the change
from the reactants at the foothills of the barrier to the products at the other side.
Rather, it is from the reactants far apart in solution to the well-separated products,
Figure 11.23. The same is true for the barrier height. From Figure 11.23 we see
that

�G0
obs = �G0 + WR − WP = �G0 + �W

�G‡
obs = �G‡ + WR (11.31)

reiterate that the barrier we are discussing is for the isolated system, known as the inner-sphere

contribution in the terminology of electron transfer reactions.
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Figure 11.23 Free energy balance in going from separated reactants to separated
products in solution. The observed quantities refer to the separated species. Without
the subscript “obs” the free energies refer to Figure 11.20, where caged reactants
cross the barrier to caged products. W is the free energy of caging and �W is the
difference between products and reactants and is expected to be small in a given
reaction series. In a careful treatment, e.g., Marcus (1997), it is useful to distinguish
between the caged species and the caged species with the (old or new) bond
stretched to the location corresponding to the minimum of the parabola.

The observed free energy height of the barrier, the one measured with respect to
the separated reactants, is from Eqs. (11.30) and (11.31)

�G‡
obs = WR + (

λu + (
�G0

obs − �W
))2

/4λu

�Wsmall−→ WR + (
λu + �G0

obs

)2
/4λu (11.32)

11.4.3 Recapitulations

The unified approach is based on what we have learned about typical reaction
processes in solution. The first assumption is a separation of time scales between
caging and barrier crossing. The reactants reach the foothills of the barrier and
remain caged there until solvent reorganization enables them to cross to the prod-
ucts over a low barrier. The barrier crossing is fast compared with the lifetime
of the cage. The same behavior is observed in the products. Molecular dynamics
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simulations, starting with the system at the top of the barrier and watching it
roll down in either direction, have provided support for this picture, but direct
experimental evidence is still needed. We have kinetic evidence30 that the three-
step mechanism – association, reaction, and dissociation – can rationalize the
measured reaction rates in a reaction series. But kinetics alone cannot prove a
mechanism. Next is the assumption of a parabolic barrier. The precise dependence
is not critical except that the simplicity of the quadratic relation between barrier
height and net free energy change depends on it.∗ The congruence assumption is
essential for the concept of a reaction series where all members share the same
intrinsic barrier, λ/4. Finally there is the two-dimensional dynamics requiring a
synchronous motion of solvent and system along the reaction coordinate. The
simple result that we obtained above was by identifying a one-dimensional cut
along which motion can be treated as one-dimensional. In Chapter 8 we cautioned
that the one-dimensional picture, while making life simple, does sometimes over-
look essential aspects of chemical reality. Consequently, care must be exercised
here as well.

The future is surely for direct dynamical examination of the individual ele-
mentary steps in such reactions. For proton transfer from excited electronic states
this is already a reality,31 and we look forward to additional work along the same
lines of inquiry for other archetypal reactions.

Problems

A. Reaction rate and ionic strength, also known as the primary salt effect. For
reactions between ions in solution, the presence of other ions influences the
reaction rate. The Debye–Hückel theory provides an explanation for both the
direction and the magnitude of the effect. It stems from the stabilization of an
ion by a cloud of oppositely charged ions. The stabilization of an ion of charge z
scales as z2√µ where µ is the ionic strength, µ ≡ (1/2)

∑
i ci z2

i due to the other
ions where the cs are concentrations. Physically, when like ions form an encounter
complex it is more charged than the separate reactants and so it is more stabilized.
The opposite is the case for unlike ions. Derive this conclusion quantitatively. This
problem is treated in many textbooks. In fact, the agreement with experiment is
better than what one has a right to expect since the Debye–Hückel theory is valid
only in the limit of high dilution.

B. Compute r‡, the location of the barrier along the reaction coordinate in the
Marcus theory of electron transfer. Show how, for a given solvent, the location
shifts with the exoergicity of the transfer. Compare your conclusions here to
what you did in Problem G of Chapter 5. Should one not be able to unify the two

∗ The parabolic assumption is critical in the prediction of an inverted region for very exoergic

processes, where it shows that the rate slows down. In awarding Marcus the Nobel Prize for his

work on electron transfer, the Nobel committee specifically cited this prediction.
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aspects, the reorganization of the reactants and the reorganization of the solvent?
We make a start in Section 11.4. In the meantime, separate the barrier height in
the Marcus theory into an intrinsic part and a part that depends on the exoergicity.
Note that the second term does depend on the sign of the exoergicity.

C. Show that the Marcus result for the reaction rate constant of electron transfer
satisfies detailed balance.

D. Diffusion-controlled reactions. When the barrier crossing is fast the reac-
tion rate in solution is determined by the diffusion of the reactants to form the
encounter complex, Eq. (11.16). In this problem you are asked to compute the
reaction rate in this limiting case, for an A + B reaction without any long-range
potential acting between A and B. Then, get some help from the literature and
derive the general result that the effective reaction rate constant is given by

keffective = 4π (DA + DB)β k

k + 4π (DA + DB)β exp(V (R)/kBT )

Here the Ds are the diffusion coefficients, R is the radius of the cage, and V(R)
is the A–B potential. If this potential vanishes beyond R, β, the reaction radius,
equals R. (a) Show that the general result above is consistent with Eq. (11.16)
of the text. (b) Derive the limiting result keffective

∼= kdiffusion = 4π (DA + DB)R
when the barrier crossing rate constant k is much larger than kdiffusion and there
is no long-range potential between A and B. To do this we proceed as follows.
Draw a sphere of radius R around A. Let [B](r) be the concentration of B at a
distance r from A. The flux of B molecules is given by Fick’s law of diffusion as
−(DA + DB) d[B](r)/dr. The rate of diffusion through the sphere of radius R
is 4πR2 times the flux. Since there are [A] molecules per unit volume, the rate
of diffusion through all spheres is that much higher. At a steady state, the rate
of reaction, k[A][B], is balanced by the rate of diffusion, k[B] = 4πR2(DA +
DB) d[B](r)/dr. [B] is the bulk concentration of B. Now integrate to obtain [B](r).
You will need boundary conditions. Here is where the key approximation comes
in: we assume that reaction is so fast that no B molecule lingers and so at the
sphere [B](R) = 0. This should enable you to get the reaction rate. (c) Now allow
the diffusion to take place in a potential gradient. This will require defining a
reaction radius β. (d) Finally do not require that [B](R) = 0.

E. The Langevin equation. The purpose is to derive a Langevin equation for the
motion along the reaction coordinate q in the presence of a solvent. The coupling
to the solvent will be introduced implicitly but exactly, through a friction term. The
Hamiltonian is given in Eq. (11.24) and the derivation follows Lindenberg and
West (1990), Section 4.3.1. The first step is to solve for the motion of the normal
modes of the solvent. (a) Write down the equation of motion and hence show that
the solution is x j (t) = x0

j (t) − C j

∫ t
0 dτ (sin ω j (t − τ )/m jω j )q(τ ) where x0

j (t) is
the normal mode vibration in the absence of the solute. (b) Substitute the solution
from (a) in the equation of motion for q(t). Integrate the equation by parts and
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you get the Langevin equation

m
d2q(t)

d t2
= −∂V (q)

∂q
−

t∫
0

η(t ′)q̇(t − t ′) dt ′ + F(t)

The first contribution to the force is just from the motion along the reaction
coordinate in the absence of the solvent. The second part is the friction term.
Note how it depends on the past motion of the system. Hence the friction part is
known as the memory kernel. (c) Show that the time-dependent friction is given by
η(t) = ∑

j

(
C j/m jω

2
j

)
cos(ω j t). Hence conclude that it is a symmetric function

of time. (d) F(t) is the so-called random force and it represents the role of the
fluctuation of the solvent. You can solve for it if only to show that for a solvent
in thermal equilibrium, 〈F(t)〉 = 0. (e) The Langevin equation is exact. Hence,
for a finite number of solvent modes it shows no damping. You can verify that,
with or without coupling to the solvent, the equation propagates into the past just
as into the future. On the other hand, and as we discussed in connection with the
picket fence model in Chapter 7, for the finite times that are of interest to us, the
equation does exhibit damping.

F. Transition state theory for reactions in solution. We have two ways to correct
for the role of the solvent. One is to write a Langevin equation for the motion along
the reaction coordinate as in Problem E. This gives rise to the Grote–Hynes [R. F.
Grote and J. T. Hynes, J. Chem. Phys. 73, 2715 (1980)] correction, Eq. (11.22).
The role of the solvent is to introduce a transmission factor κ . This corrects for
the recrossings of the barrier. The other option is to work out the transition state
theory result when the solvent is explicitly taken into account in the definition
of the reaction coordinate and the structure of the transition state. This is what
we ask you to do in this problem, for the Hamiltonian given by Eq. (11.24). For
this case the two ways give the same answer for the reaction rate constant. This
need not be so in general but it reinforces the point that one must be careful
before interpreting the role of the solvent as a dynamical effect. The derivation
follows E. Pollak, J. Chem. Phys. 85, 865 (1986) and we assume that initially the
system is in thermal equilibrium. (a) No frictional coupling to the solvent. Let
ω0 be the frequency of the solute in the well (of the cage) before the reaction,
Hamiltonian given by Eq. (11.23). Show that the TST reaction rate constant
for a one-dimensional reaction coordinate will be (ω0/2π )exp(−Ebarrier/kBT).
(b) Show that in the presence of coupling to the solvent this is modified to
(ω0/2π )(�iωi/�iλi)exp(−Ebarrier/kBT) where, as in the Hamiltonian Eq. (11.24),
the ωis are the frequencies of the solvent. The λi’s are the frequencies of the
bound motions at the transition state. These motions involve both the solvent
and the solute and the key to the final answer is to evaluate the required product.
(c) Let ω‡ be the (imaginary) frequency of the pure solute at the transition state as
defined in Eq. (11.23). λ‡ is the (imaginary) frequency across the barrier but in the
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presence of the coupling to the solvent. It appears first in the text in Eq. (11.22).
Either before the reaction or at the barrier we have a Hamiltonian of coupled
harmonic oscillators. It can be exactly diagonalized. Show that (�iωi/�iλi) =
λ‡/ω‡. This recovers Eq. (11.22) for κ . (d) Finally solve for λ‡. You will really
have to diagonalize the Hamiltonian Eq. (11.24) at q = q‡ and to identify the one
imaginary frequency. The answer recovers Eq. (11.25).

G. The unified model for barrier crossing in solution. (a) Construct the two
intersecting two-dimensional parabolas, each being a function of the solvation
coordinate r and the solute coordinate q. (b) Determine the reaction coordinate
and the lowest barrier. (c) Determine the intrinsic barrier, when the reaction is
symmetrical. (d) Derive Eq. (11.29) for the free energy at the barrier.

H. Electron transfer with strong coupling to the solvent. As in Problem F
we need to choose the reaction coordinate to incorporate the role of the solvent
[Warshel, 1991; I. Benjamin and E. Pollak, J. Chem. Phys. 105, 9093 (1996);
Barzykin et al., 2002]. The purpose is to show that the solvent can modify the
dynamics so that the diabatic picture used in Section 11.1.2, Figure 11.3 in
particular, needs to be replaced by a diabatic picture [L. D. Zusman, Chem.
Phys. 49, 250 (1980)].

Notes
1 For Steric vs. Solvation, see Regan et al. (2002).

2 In certain experiments we do not displace the combined solute–solvent system very far

from equilibrium. The theoretical tool for handling such situations is the correlation

function, which is the equilibrium expectation value of the time evolution of the dynamical

variable of interest. This function is usually referred to as a linear response approach

(Gordon et al., 1968; Mukamel, 1990). For example, vibrational relaxation of a diatomic

molecule in an atomic solvent occurs because of the force F that the solvent applies along

the bond axis. The relevant time correlation function is 〈F(t)F(0)〉, which represents how

fast the force varies that determines the efficiency of the energy transfer. Explicitly, this

variation needs to be comparable to the vibrational frequency ω. How can we test this

condition? By taking the Fourier transform of the time correlation function. The Fourier

component at the frequency ω cannot be small. There are however many situations where

the coupling to the solvent is strong enough that we cannot use linear response.

3 Diffusive motion occurs when the frictional force, caused by coupling to the solvent, is the

dominant driving term. The force of friction is proportional to the velocity, and when it

dominates, the motion reaches a steady velocity. The equation of motion is then ma =
dp/dt = 0, where a is the acceleration and ma is the sum of the force derived from the

potential and the force arising from friction. This regime is known as the Smoluchowski

limit (Gardiner, 1983). In this limit the reaction rate slows down with increasing coupling

to the solvent. If we regard the viscosity as a measure of the friction that the solvent can

apply, the reaction rate will slow down with increasing viscosity.

4 For a more detailed discussion of this mechanism, see K. R. Wilson and R. D. Levine,

Chem. Phys. Lett. 152, 435 (1988).
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Warshel and Parson (2001).
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see, e.g., Barthel et al. (2001).

7 See Taube (1970) for a review of the early work on electron transfer.

8 To obtain a molecular understanding of the nature of coordinate r, one can probe the

charge transfer to the solvent itself (Barthel et al., 2001).

9 One can ask why the electron transfer needs to be over the barrier. Can an electron not

tunnel through it? It can, but just as the case of over the barrier, the solvent needs to

adjust to the new parabolic potential. The propensity for doing so is maximal when the

vibrational turning points in the two wells coincide. This occurs at the crossing distance

r‡. There is however an exponentially small but finite transfer probability also by

tunneling under the barrier. For a discussion of solvent-mediated coupling see Zimmt and

Waldeck (2003).

10 For more on solvation dynamics, see P. G. Wolynes, J. Chem. Phys. 86, 5133 (1987); I.

Rips, J. Klafter, and J. Jortner, J. Chem. Phys. 89, 4288 (1988); Bagchi (1989, 1999)

Nandi et al. (2000).

11 Schwartz et al. (1994), Barthel et al. (2001).

12 The study of the size effects (Jortner, 1992) applies not only to static properties such as

the solvation energy (Castleman and Keesee, 1986; Castleman and Bowen, 1996) but also

to dynamical properties (Castleman and Wei, 1994; Zhong and Castleman, 2000).

13 E. Gershgorn, U. Banin and S. Ruhman, J. Phys. Chem. A 102, 9.

14 J. K. Wang, Q. Liu and A. H. Zewail, J. Phys. Chem. 99, 11309 (1995).

15 Vibrational energy relaxation in liquids is reviewed by Chesnoy and Gale (1984),

Elsaesser and Kaiser (1991), Harris et al. (1990), Iwaki and Dlott (2001), Owrutsky et al.

(1994), Oxtoby (1981), Stratt and Maroncelli (1996).
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(1997); P. K. Walhout et al., J. Phys. Chem. 100, 5188 (1996).

17 Activated barrier crossing is reviewed by Fleming and Hanggi (1993), Hanggi et al.

(1990), Hynes (1985), Nitzan (1988), Schroeder and Troe (1987, 1993), Talkner and

Hanggi (1995), Pollak (1996).

18 On the transition state approximation in solution D. Chandler, J. Chem. Phys. 68, 2959

(1978).

19 There is the practical question of how to compute the free energy when the solvent

extends to large distances. In a practical computation we describe the solvent using

so-called periodic boundary conditions that allow for mimicking the effect of many

solvent molecules. Alternatively we can treat the solvent beyond the first layer as a

continuum (Allen and Tildesley, 1987).

20 See the elegant applications of the factorization in Johnston (1966). For application in the

condensed phase see Ben-Nun and Levine (1995).
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Chapter 12
Dynamics of gas–surface interactions
and reactions

Heterogeneous catalysis is responsible for a significant fraction of the output of
the chemical industry. The kinetics of surface chemical reactions have therefore
been studied extensively.1 One must not however think that surface processes are
synonymous with catalysis. The study of lubrication, known under the modern
name of tribology, is very active. For example, what determines the rate of infor-
mation storage and retrieval is the speed with which the reading head can move
over the hard disk at a very low elevation. Other familiar examples of surface
processes, such as corrosion, come to mind. Microelectronics and nanostructures
on surfaces are also benefiting from and contributing to progress in surface sci-
ence. An important development is that imaging techniques initially introduced
for the probing of surface structure on the atomic scale are revealing details about
reaction dynamics. Scanning tunneling microscopy (STM) has been particularly
useful.2

Our intent in this chapter, as in the rest of this volume, is to examine
the molecular-level description. We shall thus make no attempt to review the
extensive literature on the macrolevel description but proceed immediately to
the microlevel, considering first elastic and energy transfer collisions and then
“pre-reactive” and reactive collisions. Many of the experimental and theoretical
techniques are closely related to those used to study collisions in the gas phase,
but both the experiments and the collision dynamics per se are more complicated
because the surface is never really passive and may even be one of the reactants,
as in the etching of silicon for microelectronics. Nevertheless, a great deal has
been learned, and we have witnessed a molecular “takeover” of the chemistry
component of the field of surface science.3 Much of the heterogeneous chemistry
of real-world interest is taking place on amorphous structures or on supported
catalysts, etc. Yet much of the fundamental science that we discuss below is for
well-characterized surface structures. This is necessary both for the interpreta-
tion of the results and the strict reproducibility of the experiment. As in the case
of liquids, Section 11.3, the understanding of chemistry on irregular interfaces
is just emerging. What is also in progress is the bridging of the gap between
the understanding of elementary events and real-world catalytic processes.4 We
begin this process by highlighting a few truths.

475
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12.0.1 A clean surface?

The number of surface atoms per unit area is of the order of 1015 cm−2. But as
soon as we generate a pristine surface, say by cleaving a solid, a surface tension
is generated, therefore molecules from the gas phase get absorbed on the bare
surface and, as we discuss below, are reluctant to leave. It is worthwhile to note how
quickly a clean surface gets covered. The flux, I, of molecules coming from the
gas phase and striking the surface is I = n〈v〉/4 where n is the number density
and 〈v〉 is the mean velocity of molecules at thermal equilibrium. Problem B
shows where the factor of 1/4 comes from. In practical units and relating number
density to pressure,

I (atoms cm−2s−1) = 3.5·1022 P (torr)/
√

M (g mol−1)T (K)

For N2 at room temperature and at the quite low pressure of 10−6 torr, the surface
will be covered in a few seconds, assuming that every molecule sticks. For this
reason, ultrahigh vacuum (≈10−10 torr) conditions are necessary in experiments
that study reactions on clean surfaces. Even then the surface will be contaminated
in about an hour. Otherwise, a surface is always covered and under the higher-
pressure conditions (required in industrial catalytic processes to achieve a high
throughput of material) there can be several absorbed layers, one on top of the
other.∗

12.0.2 The reconstructed surface

It is natural to assume that when we cleave a solid so as to expose a fresh surface,
the atomic arrangement is that which it was in the bulk. As a rough rule of
thumb, this is not so. The newly exposed atoms will rearrange their positions,
perhaps only slightly, often more. This reconstruction should be expected. The
equilibrium arrangement of the bulk solid is a result of an optimization process
where each atom seeks to maximize its attraction to its neighbors while reducing
the short-range repulsion. When atoms suddenly find themselves on the surface,
the number of their near neighbors is reduced. The surface atoms will therefore
re-optimize by seeking a possible configuration of lower energy. Also the second
(and even deeper) layer can reconstruct.∗∗ This means that when molecules are
absorbed on the surface, and particularly so when it is a chemisorption process so
that the adsorbate–surface forces are strong, there can be an adsorbate-induced
(second) reconstruction of the surface. In short, the surface is flexible and can

∗ Often, only the first layer is strongly bound to the surface and the additional layers can easily be

evaporated. Water is an example to the contrary because of the hydrogen bonding (Henderson,

2002). See Problem C for an example of water-saturated air in equilibrium with Ru.
∗∗ Clusters of atoms serve as a useful model for this and other surface processes. Small clusters

exhibit non-monotonic variations in reactivity with size reflecting this optimization process that

leads to different packings for different numbers of atoms.
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accommodate to the adsorbate (Somorjai and Rupprechter, 1998). Sometimes one
says that “rough surfaces do the chemistry” because it is irregularity of packing
of surface atoms that makes for surface sites that are not optimally bonded.

12.0.3 The electronically active surface

Metallic solids have mobile electrons that can be excited at low energies. These are
the electrons of the partly full conduction band and the excited electron leaves
a hole at the lower energy.∗ Electronic excitation of the surface can therefore
take place at lower collision energies than between molecules in the gas phase.
Similarly, charge transfer between an incident projectile and the surface is more
common than in collisions between molecules in the gas phase.5 This alters the
bonding in the molecule and facilitates bond stretching and dissociation. Non-
adiabatic processes are more common in surface-induced chemistry.

The simplistic discussion of long-range forces in Section 2.1.9 suggests that the
low excitation energy of surface charges leads to a physical attraction between a
molecule and the surface that is stronger. The interaction also has a longer range,
∗∗ typically of the form

V (z) = −C/z3

where z is the distance from the surface. At shorter range where the (Pauli)
repulsion sets in, the potential reflects the atomic arrangement on the surface,
that is, the surface is corrugated and the potential depends on the precise point
of impact. The net result is a physisorption well whose depth can be significant,
particularly on metal surfaces (where the low excitation energies of the conduction
electrons make the polarizability and hence the coefficient C large). The well
depth can exceed kBT at room temperature even for rare gases. For molecules,
the physisorption potential can be quite anisotropic.†

12.1 Surface scattering

Just as for gas-phase molecular collisions, gas–surface encounters can be elastic,
inelastic, or reactive in nature. A wide range of scattering behavior is observed
depending upon the gas molecules, the composition, structure, and temperature

∗ In a semiconductor the valence band is full and the conduction band is empty. The band gap need

not be large and furthermore it contains impurity levels. So the creation of electron–hole pairs is

also possible at low-energy collisions with semiconductors.
∗∗ This is because the incoming molecule samples not just the interaction with the site directly where

it will land but with the entire surface layer. The attraction to sites further away is weaker but there

are more such distant sites.
† As for a molecule solvated in a liquid, the physical potential between the molecule and its envi-

ronment can be modeled by considering the anisotropic charge distribution on the molecule. See,

for example, D. B. Whitehouse et al., J. Phys. Chem. 95, 8175 (1991).
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of the surface, the translational and internal energies of the molecules, and even
on the orientation of the colliding molecules with respect to the array of surface
atoms.

The processes that need to be considered include two kinds of elastic scattering.
In either there is no energy loss, and in both cases the component of the projectile
momentum in the direction perpendicular to the surface reverses its sign but
without any change in magnitude. For specular scattering, there is also no change
in the component of momentum parallel to the surface. The angle of scattering is
thus equal to the incident angle. Diffraction scattering is a quantal interference
phenomenon and occurs when the de Broglie wavelength of the incident projectile
is comparable to the spacing of atoms at the surface. Diffraction scattering is thus
seen mostly for light projectiles, typically He atoms, at low velocities. In Problem
D you are asked to show that it is characterized by constructive interference
of scattering from two adjacent surface sites, namely a “Bragg-like” condition
familiar from X-ray structure determination. The important practical difference is
that X-rays do penetrate into the bulk solid while low-energy atoms scatter from
the surface. Hence diffraction scattering probes the periodicity of the surface
structure.

12.1.1 Inelastic scattering

Next we recognize three kinds of inelastic scattering involving a change in the
component of the momentum of the projectile in the direction normal to the
surface. Two are of the direct mode and are discussed in this section. The indi-
rect kind is the subject of Section 12.1.1.1. First we deal with atomic, “struc-
tureless,” projectiles where the only possible direct inelastic process is energy
exchange between the incident translational motion and the solid degrees of free-
dom (phonons but possibly also the electronic excitation). A simple picture that
provides a realistic prediction of the trends in energy transfer is the hard-cube
model: the incident atom is assumed to undergo a binary elastic collision with
a hard cube that is viewed as a surface atom but with an effective mass M that
reflects the interaction of that surface atom with its neighbors. The hard cube has
a thermal velocity distribution in the direction normal to the surface. The velocity
of the incident atom, v, is changed only in the normal direction and the magnitude
of the change is determined, Problem E, from conservation of momentum in the
collision between the projectile and the hard cube. The outgoing velocity is given
by, Problem E,

v′
⊥ = ((µ − 1)/(µ + 1)) v⊥ + (2/(µ + 1)) u

where u is the thermal velocity of the hard cube and µ is the mass ratio m/M,
where m is the incident mass. Typically µ < 1 and the smaller is µ the more rigid
is the surface. The effect of the second term, due to the thermal motion of the hard
cube, becomes more important the lower is the incident energy compared with
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kBT, meaning that the thermal motion of the cube is comparable to the duration
of the collision. At higher temperatures the thermal component can overwhelm
the first term and cause the incident atom to emerge from the collision with a
higher translational energy.

Molecular projectiles offer the possibility of additional direct inelastic chan-
nels, namely, the excitation or de-excitation of the molecular internal modes,
much as for gas-phase molecular inelastic scattering. Unlike a gas-phase colli-
sion of a molecule with a structureless projectile, here the energy balance of the
internal modes of the molecule need not be met entirely by the translation. The
participation of the surface degrees of freedom is possible and the low-energy
modes of the surface, not only phonons but also electron–hole pairs, are particu-
larly important in bridging the gap (remember the exponential gap principle) and
thereby making such inelastic collisions quite efficient.

12.1.1.1 Trapping at the surface
Ubiquitous to interfaces is the possibility of “sticking” collisions where the inci-
dent projectile is temporarily bound to the surface by the strong physical attraction
before departing. This is similar to the longer-living complexes in gas-phase col-
lisions. Here the projectile is initially trapped in the attractive well of the physical
potential to the surface, a well that is often deep on the scale of thermal energies.∗

The energy released by this binding is taken up by the surface and so eventually
trapping can be followed by desorption where the energy is returned to the trans-
lation along the z direction that is normal to the surface. But owing to the long
residence time of the projectile on the surface, considerable energy exchange
can take place and the exit velocity of the projectile can be much lower than the
incident velocity. This is shown both schematically and for experimental data in
Figure 12.1.

The signature of the trapping can be seen not only in the translational energy
of the outgoing particles, Figure 12.1, but also in the angular distribution of
the scattered particles, Figure 12.2. The reason is that projectiles that have long
been trapped at the surface can be taken to have forgotten the initial direction
of incidence. So their angular distribution will not be specular. Rather, trapped
species desorb preferentially in the direction of the normal to the surface, as
shown by the following argument. Consider a gas at thermal equilibrium inside a
cubic container and apply detailed balance. At equilibrium, the flux of projectiles
impinging on the surface while making an angle θ with the normal is equal to
the flux of trapped projectiles desorbing into that direction. The incident flux is
determined by the velocity of projectiles in the direction normal to the surface. At
equilibrium the incident flux is proportional to cos θ . Hence the law of cosines: the
flux of desorbing atoms varies as cos θ where θ is the angle measured with respect

∗ The analogous situation in the gas phase is ion–molecule collisions, Section 6.2.3.1, where there

is a deep well in both the entrance and exit valleys.
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Figure 12.1 Left: the mechanism of trapping–desorption. Right: experimental
results showing that even atoms can be trapped at the surface. Shown are the
time-of-flight spectra of Ar atoms at an incident energy of 12.5 kJ mol−1, scattered
from the 111 surface of Pt at 110 K. The incident angle is 60

◦
while the outgoing

atoms are detected at 40
◦

of the normal. The distribution is due to two processes,
direct inelastic scattering that leads to faster outgoing atoms and trapping followed
by desorption that results in higher energy uptake by the surface. The curve through
the data is a sum of two separate components [adapted from M. Head-Gordon et al.,
J. Chem. Phys. 94, 1516 (1991)]. A model for the trapping process by adding an
attractive potential to the interaction of the hard cube and the incident Ar atom is
discussed in Problem E.

to the normal direction. Experimentally, Figure 12.2, one typically observes both
a direct, that is, specular, component in the direction complementary to incidence
and a diffuse, law of cosines, component such that the observed scattering is the
sum of the two.

Projectiles can react with surface atoms or with adsorbed molecules, but more
complex processes involving interaction via diffusion of adsorbed species are
also possible. Diffusion of absorbed species on the surface is often fast on the
time scale of how long a molecule remains trapped on the surface. This allows
us to assume that the molecule has had time to sample the available binding sites
and configurations and can therefore be regarded as having reached thermal equi-
librium with the surface. One often says that the molecule has accommodated to
the surface. When these molecules desorb they are found to do so with unexpect-
edly fast rates and this can be traced not to a low activation energy but rather to
a high Arrhenius A factor. Can we use transition state theory to rationalize this
observation? To apply the theory we need to compare the partition function of the
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Figure 12.2 The two components in the angular distribution of the polar molecule
CH3Cl scattered off graphite, compared with the scattering of He from the same
surface. The incident angle, θs, for both is 30

◦
. The curve shown through the

scattering intensity of CH3Cl is a sum of a direct specular component, like that for
He, and a cosine law component for the trapped–desorbed molecules [adapted from
T. J. Curtiss, R. S. Mackay, and R. B. Bernstein, J. Chem. Phys. 93, 7387 (1990)].

reactant, namely a molecule bound to the surface, and that of the transition state.
Let us consider a diatomic molecule with a high vibrational frequency so that
the vibrational partition function is comparable to unity in either state. The reac-
tion coordinate is presumably the normal distance to the surface. So that leaves
the two translational modes of the center of mass in the two directions along the
surface and the two rotations. The large anisotropy of the potential means that the
adsorbed molecule is rather restricted in its ability to rotate. Experiments with
oriented molecules indeed show a strong steric effect and spectroscopic probing
of adsorbed molecules confirms that a particular end of the molecule is typically
preferentially bound to the surface, e.g., the N end of NO is more strongly bound
to metals. On the other hand, in the transition state the molecule is further away
from the surface and its rotation is far less restricted. The rotational partition
function will therefore be significantly larger in the transition state. The same is
true for the motion of the center of mass. For the molecule bound to the surface
this motion is frustrated but it is almost free in the transition state. The two effects
together mean that the pre-exponential factor can be larger∗ by three to four orders
of magnitude than kBT/h (∼= 5·1012 s−1 at room temperature, Problem F).

∗ In Section 6.1.4.1 we have seen how transition state theory can account for the pre-exponential

factor being smaller than kBT/h. There it was due to the loss of entropy in forming the transition

state due to the steric requirements. Here the steric requirements work in the opposite direction. It is
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12.1.2 Collision-induced surface processes

Projectiles incident from the gas phase can induce both inelastic and reactive pro-
cesses in adsorbed molecules.6 Such processes are typical of incident molecules
from the high-energy tail of the thermal energy distribution in bulk systems. Des-
orption or dissociation of adsorbed molecules, CID, can be induced by projectiles
and it is only to be expected that collisions can also cause adsorbed molecules
to migrate along the surface, CIM, a process that usually has a lower activation
energy than outright desorption. The fast projectiles can also be generated pho-
tochemically on the surface, see Section 12.2.4. The chemistry that is induced
by collisions with species from the gas phase is known as an Eley–Rideal mech-
anism, Section 12.2.2.

12.2 Dynamics on surfaces

12.2.1 Dissociative adsorption

A key surface elementary process is dissociative adsorption wherein the
incident molecule undergoes bond rupture (Darling and Holloway, 1995).
The energy required to break a bond in the incident molecule (typically
1–5 eV) is provided by the formation of new bonds with the (unsaturated) sur-
face atoms. The dissociative adsorption of H2 on clean copper can serve as an
example:

H2(g) H H H H
+ → | | → | |

Cu · · · Cu · · · CuCuCu · · · Cu · CuCu · · · CuCu · ·
Such processes are confirmed by observations of facile isotopic exchange, for
example, detection of scattered HD when the incident beam consists of a mixture
of H2 and D2.

The mechanism of dissociative adsorption necessarily involves the crossing
of (at least) two potential energy hypersurfaces (Section 3.2.4.2) since both
the undissociated and dissociated molecule can be at the (physical) surface.
A simplified potential curve-crossing diagram is shown in Figure 3.6 for a
diatomic molecule approaching the (physical) surface. Given sufficient energy,
the molecule can pass from the weaker (often van der Waals) well, binding the
undissociated molecule to the surface and over the barrier Eb, if any, to the region
of a deep chemical well corresponding to the formation of two new bonds to the
surface (at the expense of breaking the molecular bond). The energy barrier, Eb,
for dissociative (or “activated”) adsorption can be measured as a translational
energy threshold for the dependence of the sticking probability S upon the com-
ponent of kinetic energy normal to the surface, i.e., E⊥ = ET cos2 θi . As in the

the reactant that is more constrained. For both situations transition state theory correctly rationalizes

the observable trends.
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Figure 12.3 Dissociative sticking probability Sd vs. normal component of the
translational energy of the incident D2 molecules in a given initial vibrational and
rotational state incident on a Cu(111) surface [adapted from H. A. Michelsen et al.,
J. Chem. Phys. 98, 8294 (1993); see also Rettner et al. (1996), Darling et al. (2001)].
The initial vibrational excitation of D2 serves to lower the barrier to dissociation. The
effect of rotation is in two opposing directions. Dissociation occurs preferentially
when the molecule is parallel to the surface, so rotation should hinder dissociation.
On the other hand, the higher the initial rotational state, the more energy is brought
in by the molecule. The latter effect increases quadratically with the quantum
number and so wins out at the higher j ’s.

gas phase, the barrier height may well be different for different energies (e.g.,
translational vs. vibrational) of the incident molecule and will also depend on the
orientation of the molecule with respect to the surface, as seen in Figure 12.3.
So far, everything is much the same as in the gas phase. A new twist is that the
barrier can also differ for different faces of the crystal (which differ in the detailed
atomic configuration at the surface).

Another indicator of the presence of the barrier is the energy disposal in
the desorbed molecules. From our considerations so far we expect the barrier
energy to appear as translational energy of the emitted molecules. The velocity
distributions of H2 (and D2) molecules desorbing from Cu surfaces are indeed
found to be peaked at high speeds. Time-of-flight distributions (Figure 12.4) are
narrower than for a Maxwellian velocity distribution at the surface temperature
Ts and have a mean energy that is about four times kBTs. In addition, the angular
distribution is also narrow and is peaked at the normal. For the internal energy of
the desorbing H2 (and D2) molecules it is found that the rotational distribution
is only mildly deviant from a thermal one at Ts but the vibrational excitation is
substantially higher than the thermal.

To better explain the observations above, the simple curve-crossing picture
of Figure 3.6 is clearly inadequate. To begin with, we must consider at least
a potential energy surface, showing the dependence not only on the distance
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Figure 12.4 Time-of-flight spectrum of D2 molecules desorbing in the normal
direction from a Cu(100) surface at Ts =1000 K. The deuterium was supplied to the
surface “from the rear” by permeation through a thin Cu foil (as D atoms),
recombining at the surface and desorbing into the forward direction. From an
analysis of the time-of-flight data the mean translational energy of the desorbing D2

molecules is about four times larger than Ts [adapted from G. Comsa and R. David,
Surf. Sci. 117, 77 (1982)].
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Figure 12.5 Schematic potential energy surface for dissociative adsorption–
desorption [adapted from Ertl (1982)]. In the drawing, the barrier to dissociation–
recombination occurs when the molecule is already at the surface and is along the
bond distance. This will lead to vibrationally excited desorbed molecules. Note also
the precursor well along the approach to the (physical) surface. This well will slow
down the approaching reactant but may not be deep enough to insure that it fully
accommodates to the surface.
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Figure 12.6 Surface corrugation. Potential energy contours, schematic, as a
function of the distance of the molecule from the surface and the lateral position
along the surface. The thicker line is the location of the barrier to dissociation. Its
height and its location along the surface normal are seen to depend on the lateral
position. Such a picture helps in understanding why different surface sites may be
important for inelastic collisions and for dissociation and why also momentum
along the surface can help overcome the barrier to dissociation.

from the surface but also on the bond distance of the diatomic molecule as
drawn in Figure 12.5. Then one needs to recognize that the interaction energy
can be strongly dependent on the orientation of the molecule with respect to the
surface, so that just two variables are not sufficient. Then, unique to gas–surface
interaction, there is the effect of surface corrugation: the interaction energy will
depend on the precise lateral location on the surface, Figure 12.6. Finally, we
must also remember that the surface itself is neither static nor two-dimensional.

The many factors that come into play make it difficult to draw quantitative,
microlevel conclusions from desorption data alone and simulations play an impor-
tant role in unraveling the dynamics. This is even more so when it comes to the
understanding of reactive processes on the surface.

12.2.2 Heterogeneous chemical reactivity

In a gas–surface reaction the surface atoms can be reagents and therefore can
be consumed in the reaction or the surface can serve as a catalyst. In the lat-
ter case, one often distinguishes between the Eley–Rideal mechanism, where
the molecules from the gas react with surface chemisorbed reagents, or the
Langmuir–Hinshelwood mechanism, where both reagents are chemisorbed prior
to reaction. Of course, in view of the often multistaged nature of the adsorption
process, there can be intermediate situations as well, where the absorbed molecule
is in a precursor state, see Figure 12.5, so that it is on the surface but it is not fully
accommodated.7

Reactions of gaseous molecules with surface atoms are often of practical
importance. They include the oxidation of graphite, O2 + C(gr) → CO + O, and
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other, so-called, corrosion reactions that lead to desorbing products at the temper-
ature of the experiment, e.g., Cl2 + Ni(s) → NiCl(g) + Cl. The pre-exponential
factors for such reactions can be estimated (to within an order of magnitude) from
transition state theory adapted to the two-dimensional world of surface chemistry.
In so doing, one must identify correctly the rate-determining step (whether reagent
chemisorption or surface diffusion or reaction or product desorption).

Simple surface-catalysed reactions that have been well studied include isotopic
exchange reactions,

H2 + D2
on a Pt surface−−−−−−−−−−→ 2HD or 14N14N + 15N15N

on a W surface−−−−−−−−−−→ 214N15N

bimolecular reactions,

CO + O2
surface−−−−−−−−→ CO2 + O or C2H4 + H2

surface−−−−−−−−→ C2H5 + H

and dissociation,

N2O
surface−−−−−−−−→ N2 + O or HCOOH

surface−−−−−−−−→ H2 + CO2

The exchange reactions are perhaps the most instructive since they require only
dissociative adsorption followed by surface diffusion prior to recombination.
Thus, when a beam containing a mixture of H2 and D2 is incident on a Pt sur-
face, the integrated scattered yield of HD can be as high as 35% depending
on the angle of incidence and the detailed atomic arrangement at the surface.
Figure 12.7 compares the HD yield from a smooth (111) or stepped (332) Pt
surface. The data imply that the exchange probability per unit surface is some
sevenfold greater for “step” sites than for “terrace” sites, and that this differ-
ence is due to a higher probability for dissociative adsorption on the stepped
surface.8 Subsequent processes are probably the same for both types of surface
plane.

For N2 on W(100), the yield of 14N15N is essentially identical to the directly
measured sticking probability of the molecules on the surface. This is to be
expected because the reaction rate at low energies is dominated by the formation
of a precursor.9 The role of dissociative adsorption is also demonstrated in the
absence of any detectable CO2 formation when O2 is incident on a Pt surface that
is saturated with CO. The converse is not the case. However, since the O atom sat-
uration coverage is low, the question of whether CO is adsorbed prior to reaction
needs to be considered. By modulating the CO beam it is found that the mean
residence time on the surface is very long. The reaction occurs between two
adsorbed species (a Langmuir–Hinshelwood mechanism) to produce adsorbed
CO2. That the adsorbed species need not be in its gas-phase equilibrium config-
uration is revealed by measuring the energy disposal and angular distribution, as
discussed in Section 12.2.3. The many intertwined steps during a surface reaction
mean that the kinetics can be made to exhibit oscillations and pattern formation
as discussed in Section 12.3.
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Figure 12.7 HD formation as a function of the angle of incidence θ i, measured from
the normal to the surface, when a mixed H2/D2 effusive beam (300 K) is scattered
from clean surfaces of Pt at a surface temperature Ts = 1100 K. The bottom curve is
for a smooth Pt(111) surface, for which the HD yield is relatively small and there is
no dependence on azimuthal angle∗ φ. The two upper data sets are for a stepped
Pt(332) surface at the same Ts. At φ = 0 the HD yield is independent of θ i. However,
for φ = 90◦ the incident beam strikes the step edges; here a strong dependence of
the scattered HD intensity upon θ i is found, with greatly enhanced yields at large
positive θ i and decreased yields at negative θ i [adapted from Somorjai (1981)].

Many reactions on the surface occur between reagents∗ that have come to
equilibrium with the surface and this is particularly so when diffusion along
the surface is facile. As a practical definition one can regard the Eley–Rideal
mechanism as the situation when this is not the case. The primary signa-
ture of such a “direct” surface reaction (Rettner and Auerbach, 1994) is, as
in direct reactions in the gas phase, the distribution of the products, both in
space and in energy, and the dependence of these distributions on the initial
state of the gas-phase reactant. Even reactions that otherwise will proceed by a

∗ Consider a beam incident on the surface at a given angle θ . As we vary the azimuthal angle φ the

beam will span a cone. If the surface is uniform it makes no difference what is the value of φ.

But if the surface is rough, it very much does matter. The experiment shown was an early direct

demonstration of what we now take for granted, namely that surface irregularities are active sites.
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Langmuir–Hinshelwood mechanism can be direct if the surface is saturated with
one reactant. The near specular exit of HD from H (or D) atoms incident at
a given angle on D/Cu(111) (or H/Cu(111)) is a well-studied example. Fur-
ther applications of reaction dynamics to elucidate the mechanism are discussed
next.

12.2.3 Dynamics of gas–surface reactions

The many relevant variables in gas–surface reactions make it almost imperative
to probe the dynamics before conclusions on the molecular mechanism can be
reached. If anywhere, it is here that laser probing to determine the velocity and
angular distribution for each individual final quantum state (Section 7.1.3) will
prove decisive.

The beam-scattering studies of the oxidation of CO on Pt in the presence of
adsorbed O2 have not only detected a long residence time prior to CO2 desorption
but have also shown that the emerging CO2 molecules are translationally fairly
hot and vibrationally excited (as revealed by infrared emission). The angular
distribution of the desorbing CO2 molecules is sharper than cosine, and this
also is indicative of repulsive forces operating in the exit valley. In contrast, the
angular distribution of NO from the Ni(100)-catalysed dissociation of N2O is
cosine, suggestive of accommodation of NO prior to desorption.

A simpler reaction that is more easily interpreted is the dissociation of fast
molecules impacting a hard surface. Figure 12.8 shows the dissociation proba-
bility of I2 on MgO(100) measured as a function of the initial kinetic energy. The
fraction of molecules dissociated rises rapidly from the thermochemical threshold
(∼= the dissociation energy of I2, 1.54 eV) and tends to level off at higher energies.
Although a rigid-surface model can account for this trend, time-of-flight data on
the undissociated I2 show a large average energy transfer to the solid requiring a
non-rigid description of the solid. Such a model, which fits the inelasticity data,
also recovers the energy dependence of the dissociation probability as shown in
Figure 12.8. Note that the dissociation yield saturates at well below 100%. This
is an example of the steric effect that we already alluded to in connection with the
role of reagent rotation: in order to dissociate, the molecule should preferentially
hit the surface sideways.

The theoretical approach that so far has been most effective in describing
the dynamics of adsorption–desorption and of reactive gas–surface collisions is
based on the method of classical trajectories. The essence of the problem is to
provide a tractable yet realistic approach to the coupling of the molecular and
surface (and bulk) degrees of freedom. In principle, one can introduce a (often,
semi-empirical) potential energy, which is a function of the positions of all atoms,
both those of the molecule and those of the surface. The classical equations of
motion can then be solved. Since each atom of the solid is interacting with its
neighbors, the number of coupled differential equations that need to be solved in
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Figure 12.8 Dissociation probability (percentage) for I2 molecules striking a
MgO(100) surface at Ts = 548 K as a function of their incident translational energy.
Experimental data: points connected by a solid curve. Theoretical calculations:
dotted curve, rigid surface model; dashed curve, non-rigid [adapted from
E. Kolodney et al., Chem. Phys. Lett. 111, 366 (1984)].

order to keep track is enormous. Moreover, the solution needs to be repeated many
times with different initial conditions, so that, for example, thermal averaging
from the solid’s degrees of freedom can be carried out. This is computationally
unrealistic and is also unreasonable on physical grounds: surely the outcome of
the surface reaction cannot depend on the precise details of the motion of an
atom several layers below the surface? This situation is already familiar to us
from dynamics in the liquid and the same way out is available: we average over
the solid’s degrees of freedom first and then integrate for the time evolution of the
molecular degrees of freedom. This can be done in a manner that is formally exact
and leads to the result that the presence of the surface introduces two additional
terms in the equation of motion for the molecular degrees of freedom (known
as the generalized Langevin equation). The two extra terms are a dissipative or
frictional force leading to energy flow into (out of) the surface and a random force
reflecting the thermal fluctuations in the positions and momenta of the surface
atoms.

As in the liquid, evaluating the two additional terms exactly is as difficult
as the original problem. However, because of their physical interpretation it is
possible to provide simple yet realistic approximations for them. In practice, one
sometimes solves the equations of motion not only for the molecular degrees of
freedom but also for those surface atoms to which they are directly coupled. Only
the rest of the solid is averaged over. This structureless, “pillow-like” description
of the environment has enabled the method of classical trajectories to be applied
not only to reactions at the surface but also in solution. Unique to the surface is
the need to allow for electron–hole pair excitations.10
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12.2.4 Laser-induced processes

Finally, we consider the interaction of photons with adsorbed molecules and,
specifically, laser-induced desorption and laser-induced photofragmentation pro-
cesses. The potential practical applications of the former have resulted in consid-
erable activity, but definitive generalizations on the dynamics are still not at hand.
Photochemistry at surfaces is being actively explored (Dai and Ho, 1995), and
the ability of the surface to align the absorbed molecules (Polanyi, 2001) allows
reactions to occur with restricted geometries of approach as shown in Figure 12.9.

Laser desorption using CO2 lasers for heating the substrates has been widely
used to produce evaporated species ranging from metal atoms to complex organic
polyatomic molecules. By sweeping these in a beam of cold gas such as He one
can study large molecules in the gas phase. This method has also been used to
produce clusters of atoms or molecules for spectroscopic or kinetic study. Visible
and ultraviolet lasers providing larger photon energies are sometimes preferred
when attempting vaporization of refractory metals – some of the rare earths,
transition metals, etc. C60 was first detected in this way.

An ultrafast laser can excite the surface electrons and these can induce chem-
istry as well as desorption prior to their being rapidly (∼1 ps) thermalized with the
phonons (Bonn et al., 1999). The electronic mechanism for laser-induced desorp-
tion (Gomer, 1983; Gadzuk, 1988; Avouris and Walkup, 1989) is through the tem-
porary formation of the negative ion of the adsorbate. The ion is pulled strongly
toward the surface while its equilibrium distance tends to increase. Shortly there-
after the charge is returned to the surface and a vibrationally excited neutral is
ejected.

An early example of photodissociation is a study of the CH3Br molecule
chemisorbed on a LiF(100) surface. Using an ultraviolet laser tuned to 222 nm,
the time-of-flight velocity of the CH3 radical from the photodissociation of the
adsorbed CH3Br was determined. The key observation is that the translational
energy distribution of the CH3 normal to the surface extends to the theoretical
upper limit, assuming all the excess energy (i.e., the photon minus the H3C Br
bond dissociation energy) goes into CH3 recoil, implying that the CH3 is recoiling
from a more massive “particle” than Br, namely, the “near-infinite” mass of the
surface. The inference is that the H3C Br bond of the chemisorbed CH3Br is
perpendicular to the surface.∗

An elegant example of a surface-aligned reaction is the oxidation of CO with
O atoms produced by photodissociation of O2 when both reactants are localized
parallel to step sites on a Pt surface. CO molecules absorbed on terraces of the
same surface are less than half as reactive. The principle of the experiment and
the results of probing the CO reactant before and after irradiation are shown in
Figure 12.9.

∗ The CH3Br bond is perpendicular to the surface but whether it is the Br atom or the CH3 group

that is near the surface depends on the surface coverage.
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Figure 12.9 Schematic of the surface-aligned photo-oxidation experiment on a
highly corrugated Pt surface and spectroscopic probing of the depletion of CO,
showing the preferential reactivity of CO molecules that are along a step edge. The
first stage in the experiment is to cover about 50% of the step sites with O2. Next,
isotopic 13C18O is introduced to saturate the step sites. Then isotopic 12C16O is
absorbed on the terraces. The width of the terrace is about 17 Å between two edges.
Spectroscopic monitoring confirmed that at low temperatures (88 K) there is no
exchange of CO molecules between the two types of site. Photodissociation of O2

produces O atoms preferentially along the step edge and these react with the
coadsorbed and coaligned 13C18O molecules, which then desorb as 16O13C18O
molecules. There is some reaction of the 12C16O molecules adsorbed on the terrace,
but their depletion is significantly less. The concentration of the different
isotopomers is measured by their different absorptions and this can also distinguish
between the absorption of the same isotopomer at the two different sites. Using this
(small) shift one notes that as reaction preferentially depletes 13C18O molecules
from the edge sites, 12C16O molecules move into these vacated sites [adapted from
E. M. Tripa and J. T. Yates Jr., J. Chem. Phys. 112, 2463 (2000)].

12.3 Chaos and pattern formation: spatiotemporal aspects
of surface reactivity

Chaotic behavior requires a nonlinearity in the equations of motion. For conserva-
tive mechanical systems, of which computing classical trajectories is, for us, the
prime example, Section 5.2.2.1, the nonlinearity is due to the anharmonicity of
the potential. In chemical kinetics11 there are two sources of nonlinearity. One is
when the concentrations are not uniform throughout the system so that diffusion
must be taken into account. The other is if there is a feedback so that, for exam-
ple, formation of products influences the reaction rate, see Problem H. As we
shall see, this type of nonlinearity occurs naturally in many surface reactions and
this is why we chose catalytic processes as an example. In both mechanical and
chemical kinetics systems there is one more way to add nonlinear terms and this
is by an external perturbation. For surface reactions this additional control can be
implemented, for example, by modulating the gas-phase pressures of reactants
and/or products.12
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The full manifestation of chaotic behavior requires that at least three equations
of motion are coupled. This is not a strong requirement for a mechanical system.
Each degree of freedom gives rise to two (Hamilton) equations of motion (or one,
but second-order, Newton equation). So two coupled (anharmonic) oscillators
can already exhibit chaotic behavior. Solving the trajectory for an atom colliding
with a diatom requires six equations. If there are only two variables, one can get
oscillatory solutions but not chaos.

Whether the behavior is fully chaotic or not depends on both the initial condi-
tions and the magnitude of the parameters that appear in the equations of motion.
In chemical kinetics these parameters are rate constants and their value can be var-
ied, most simply by changing the temperature. En route to chaos the system goes
through eye-catching patterns and these are our topic here. For surface reactions
such patterns have been extensively observed, particularly in oxidation reactions
using O2 or NO as the oxidants on transition metal catalysts.13

12.3.1 The CO + O2 reaction on Pt(110)

The reason for picking a particular Pt surface is that, unlike the hexagonal close-
packed Pt(111) surface, the more open, so-called missing row, Pt(110) surface
reconstructs, as shown schematically in Figure 12.10. As further emphasized in
the figure, the sticking of O2 is different for the two phases, being higher for the
unreconstructed surface. The reconstruction of the bare surface can be driven
back by increasing the concentration of CO and so O2 sticks preferentially on the
bare metal areas when the coverage by CO is higher. The fraction of reconstructed
surface provides the essential third variable besides the coverage of the surface
by CO and by O atoms.

The kinetic equations describing the reaction need to take into account the
following observations (Ertl, 1982). A surface saturated by CO will not lead to
CO2 formation when O2 is introduced. So the mechanism cannot be an Eley–
Rideal with O2 coming from the gas phase. The O2 molecules need to first
dissociate on the surface. A surface saturated with O2 will, however, lead to CO2

formation when it is exposed to CO. To rule out an Eley–Rideal mechanism
with CO coming from the gas phase to react with adsorbed O atoms it was
necessary to show that CO can still be absorbed on an O-saturated surface. The
explanation is that the O atom coverage is rather open with an O O distance
of about 5.5 Å. Using S to denote a surface site, the mechanism, without taking
surface reconstruction into account, and neglecting any desorption of O2, is

CO + S�κCO

kd
COad

O2 + 2S
κO−→ 2Oad

Oad + COad
kr−→ CO2 + 2S
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sO2

sO2

Figure 12.10 A model of the Pt(110) surface, which is the stable form at high CO
coverage, and the reconstructed surface. Note the missing row in the 110 surface
and the steps on the reconstructed surface; sO2 is the sticking coefficient of
molecular oxygen and it is higher for the unreconstructed (i.e., CO covered) surface
[adapted from Imbihl and Ertl (1995)].

where the subscript ad means an adsorbed species.∗ This reaction scheme can
exhibit oscillatory kinetics because at a low partial pressure of CO the reaction
rate will rise with increasing concentration of adsorbed CO while at a higher
pressure the surface will become saturated with CO and reaction will cease.
Using θ to denote coverage, with a subscript sat for the coverage at saturation,
coupled rate equations for the assumed mechanism are

dθCO

dt
= κCO PCO (1 − (θCO/θCOsat)) − kdθCO − krθCOθO

dθO

dt
= sO2κO PO2 (1 − (θCO/θCOsat) − (θO/θOsat))

2 − krθCOθO

∗ The observed rate of adsorption of CO does not quite have the expected Langmuir form where the

rate of adsorption is proportional to the fraction of empty sites. This is because CO is initially trapped

in a mobile precursor site. Quantitative agreement with the experimental oscillations requires using

(θCO/θCOsat) with a power higher than unity, say between 3 and 4.
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Figure 12.11 Experimental oscillations in the catalytic oxidation of CO by absorbed
O atoms on Pt(110) [adapted from M. Eiswirth et al., J. Chem. Phys. 90, 510 (1989)].
Shown is the partial pressure of CO2 which, because of the high pumping speed, is
proportional to the reaction rate and the variation of the surface work function. The
correlation between these two variables is expected for the proposed mechanism.

To really complete the model we cannot use a sticking coefficient for O2 that
is the mean value for the two surface forms but must allow for the fraction of
Pt(110) surface to be a dynamical variable, coupled to the concentration of CO.
The qualitative role of surface reconstruction can be discussed with reference to
Figure 12.10. Starting, say, with a CO-covered and hence unreconstructed surface,
the adsorption of oxygen and therefore the catalytic oxidation rate will be high.
This consumes adsorbed CO molecules and if these cannot be replenished quickly
by adsorption, their coverage will decrease below a critical value (CO coverage
of about 0.2) and the surface will reconstruct. The sticking probability of O2 will
then go down so that the concentration of adsorbed CO can rise and we return
to the starting conditions. It is possible to monitor both the partial pressure of
the CO2 product and the concentration of adsorbed O atoms because the surface
work function is high in proportion to the O atom coverage. The oscillations in
both are shown in Figure 12.11.

12.3.1.1 Imaging surface processes
The experimental evidence for the coupling between surface structure and cat-
alytic reaction rate uses low-energy electron diffraction, LEED, to monitor the
surface structure and the reaction rate is followed through changes in the work
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Figure 12.12 Left panel: spiral patterns, a few micrometers in size, measured at
different times, for oxidation of CO on Pt (110). Shown are the local variations in the
work function, low at CO-covered surface, bright areas, and high for O atom
coverage, dark areas. The time interval between the frames is 30 s and as can be seen
different spirals rotate at different rates. Right panel: the different spatial patterns
that have been analyzed as a function of temperature and partial pressure of CO, for
a low (4·10−4 mbar) O2 partial pressure. [Both adapted from Rotermund (1997)].

function. Examining patterns also in space and not only in time requires prob-
ing with high lateral resolution. Photoemission electron microscopy, PEEM,
allows submicrometer resolution (Rotermund, 1997). Anisotropic patterns can
arise owing to the anisotropy of the surface diffusion of CO, which is fast along
the troughs in the surface, cf. Figure 12.10, but slow in the perpendicular direc-
tion. Defects on the surface can serve as the nuclei for spiraling waves, as seen in
Figure 12.12. As a reminder that not only the partial pressure of the reactants but
also the temperature (that enters through the rate constants) can affect the pat-
terns, we also show a bifurcation diagram, exhibiting the nature of the different
patterns.

Problems

A. The Langmuir adsorption isotherm and kinetics of reactions on surfaces.
Consider a molecule A coming from the gas phase and absorbed on an empty
surface site S that then becomes occupied, A + S → A − S. The fraction of
surface sites that are covered by A molecules is denoted θ . (a) At equilibrium
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the rate of adsorption, ka[A](1 − θ ), should equal the rate of desorption, kdθ

(see Problem E for computing the rate constants). Derive the Langmuir expression
for the equilibrium coverage, θ = K [A]/(1 + K [A]). What is K? Plot θ against
the pressure of A assuming an ideal gas law. (b) Deviations from the simple
adsorption isotherm are not uncommon. One possible reason is that the molecule
dissociates on the surface so that each adsorbed molecule occupies two surface
sites A2 + S + S → A − S + A − S. Show that the equilibrium surface cover-
age is θ = √

K [A2]/(1 + √
K [A2]). (c) Say that adsorbed A molecules undergo

a unimolecular reaction. Then the reaction rate is kθ . Suppose however that A
undergoes a bimolecular, Langmuir–Hinshelwood type, reaction with another
adsorbed molecule B. Solve first for the equilibrium coverage of A and B and
hence show that the bimolecular reaction rate is kKA KB[A][B]/(1 + KA[A] +
KB[B])2 and define all the symbols. (d) Plot the reaction rate as a function of the
pressure of B when the pressure of A remains constant. In Section 12.3 we saw
a similar behavior when the pressure of one reactant is varied. (e) But suppose
that the mechanism is Eley–Rideal, where an absorbed molecule A reacts with
a molecule B coming from the gas phase. What then is the expression for the
reaction rate?

B. The flux of gas molecules striking a surface. Consider a gas in thermal equili-
brium in a container shaped like a cube. Focus attention on a wall of the container
that is perpendicular to the z direction. Compute the mean velocity of molecules
striking this surface and hence show that the flux is I = n〈v〉/4. The factor 1/4
comes from two different considerations, each contributing a factor of 1/2.

C. How many water molecules are absorbed on Ru (desorption energy
10 kcal mol −1) at atmospheric pressure (partial pressure of water 20 torr) and
room temperature.

D. Diffraction scattering. Say that the flux of He atoms reaching a detector at
an angle θ to the surface normal comes from atoms scattered from two different
surface sites that are a distance d apart. Compute the path lengths that each atom
travels from the surface to the detector. (a) Since the detector is far away from
the surface show that the path difference is d sin θ . (b) Argue that if λ is the
de Broglie wavelength of the He atoms, the two events interfere constructively
or destructively at different angles θ . At what angle is the main constructive
interference? (c) What is the velocity of the He atoms to observe an effect for a
realistic value of d? Can we use Xe atoms?

E. The hard-cube model. Adapted from E. K. Grimmelman, J. C. Tully, and
M. J. Cardilo, J. Chem. Phys. 72, 1039 (1980). See also Harris (1987). An incident
atom of mass m undergoes a binary elastic collision with a hard cube that is viewed
as a surface atom with an effective mass M. The velocity of the incident atom,
v, is changed only in the direction normal to the surface. (a) Using conservation
of momentum show that the outgoing velocity of the atom in the direction nor-
mal to the surface is given by v′

⊥ = ((µ − 1)/(µ + 1))v⊥ + (2/(µ + 1))u where
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u is the velocity of the hard cube and θ is the mass ratio m/M. The velocity in
the direction parallel to the surface is assumed not to change. (b) Say that the
velocity of the hard cube has a (one-dimensional) thermal distribution. Compute
the average kinetic energy of the outgoing atom. (c) We have emphasized the
importance of the attraction to the surface. Modify the hard sphere repulsion by
adding a square-well attraction as in Problem D of Chapter 5. If the well depth
is D and the incident atom comes in with energy ET, show that the energy loss
to the surface is 4µ(ET + D)/(1 + µ)2. To get this simple result, and also in
(d), neglect the thermal motion of the hard cube. (d) Compute the (low) transla-
tional energy below which the incident atom is trapped at the surface. ∗(e) Include
both the thermal motion of the hard cube and the attraction in the model.

F. Transition state theory for adsorption and desorption. (a) Adsorption with
an early transition state. The reactants are A and S as in Problem A and they
retain their identity in the transition state. There is no barrier. The reaction coor-
dinate is the translation perpendicular to the surface. Show that the transition
state theory rate constant is ka = (kBT/2πm)1/2. (b) The result looks familiar.
What is it? (Remember the factor of 4 from Problem B. Show that it implies every
molecule that hits an empty site, sticks.) (c) When a surface is already partially
covered, an incoming atom can be attracted (or repelled) by atoms that are already
absorbed. Sketch how you would include this effect in computing the rate con-
stant and conclude that the activation energy can be coverage-dependent. (d) An
atom desorbing from a surface. First assume that the problem is one-dimensional
and derive the rate constant kd = ν exp(−D/kBT ), where ν is the vibrational
frequency of the atom bound to the surface (assume a harmonic binding poten-
tial) and D is the well depth. Of course, the harmonic assumption can be made
only if D � kBT . (e) An atom bound to the surface has two other degrees of
freedom that we did not consider in (d). What are they? If we include them in
the theory will the desorption rate constant be larger or smaller? (f) A diatomic
molecule desorbing from a surface. Modify the discussion in (d) to conclude that if
the surface-bound molecule cannot freely rotate, the pre-exponential factor will
be significantly higher than ν. There are two factors that are relevant. One is the
same as in (e). Identify the other one.

G. Potential energy surface. H2 molecules desorbing from a Cu surface are
observed to be translationally hot, Figure 12.4. Modify the sketch of the potential
energy surface shown in Figure 12.5 so that it can rationalize this observation.

H. Nonlinear kinetics: an autocatalytic process. Contrast the catalytic reaction
R

x−−−−→ P and the autocatalytic reaction R
x−−−−→ P + X in terms of the rate

of production of the product P as a function of the concentration of the catalyst
X for an excess of reagent R. It can be done by the methods of chemical kinetics
or we can quickly get to the point by noting that Avogadro’s number is about 279

and that the autocatalytic reaction doubles the concentration of X every time it
takes place.
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Notes
1 Textbooks of this technologically important topic include Kolasinski (2002), Masel (1996),

Somorjai (1994), van Santen (1991), Grunze and Kreuzer (1987), Boudart and Djéga-

Mariadassou (1984), King and Woodruff (1983). Modern texts of chemical kinetics, e.g.,

Houston (2001), Steinfeld et al. (1999), also pay attention to this key topic.

2 For more on STM in surface processes, see, for example, Ho (1998) for a review and J. R.

Hern and W. Ho, Phys. Rev. Let. 87 (2001) for a study of the oxidation of CO.

3 See the general overviews Somorjai (1981), Ho (1996), Ertl (1993, 1982).

4 Examples include Goodman (1996), Ho (1996), Hodgson (2000), Gellman (2000), van

Santen (1991).

5 Reviews of surface non-adiabatic processes include Tully (2000), Greeley et al. (2002),

Kroes et al. (2002), Kasemo (1996), Avouris and Walkup (1989).

6 For projectile induced processes, see Ceyer (1990), Asscher and Zeiri (2003).

7 For more about precursors, see Harris and Kasemo (1981).

8 The ultimate proof is to block the steps using adsorbed metal atoms and measure the

orders of magnitude change in reactivity, S. Dahl et al., Phys. Rev. Lett. 83, 1814 (1999).

9 Rettner et al. (1990).

10 For the important special case of dynamics at metal surfaces, see Tully (2000), Greeley

et al. (2002), Kroes et al. (2002).

11 On chaos and non-linear chemical kinetics, see Epstein and Pojman (1998), Gray and

Scott (1994); Kapral and Fraser (2001), Slinko and Jaeger (1994), Kapral and Showalter

(1995), Scott, (1994), Scott (1987), Noyes (1989).

12 For more on the control of surface reactions, see Kim et al. (2001).

13 On pattern formation in oxidation reactions on surfaces, see Imbihl and Ertl (1995),

Rotermund (1997).

14 G. A. Somorjai and A. L. Marsh, 2004 symposium.

Epilogue

C H bond activation,14 a key stage in the catalytic transformation of organic
molecules by transition metals is one example that takes us from the present to
the future. Dissociative adsorption is accompanied by restructuring of the metal
surface and in the presence of hydrogen the subsequent course of the reaction can
be altered. Surface mobility is necessary to free up catalytically active surface
sites and this diffusion can be inhibited by CO adsorption. Similar understanding,
and with it the options for control, is likely to become increasingly available. Other
technologically important areas will also be transformed by the application of the
tools of reaction dynamics.

The tools, experimental, computational, and conceptual, are being both honed
and developed with new and more complex questions in mind. Imaging tech-
niques are providing ever-increasing resolution and we are moving towards the
single molecule limit. The remarkable progress of applied quantum chemistry
will allow us to complement the experimental innovations by viewing elemen-
tary reactions with unprecedented detail. We will also pay increasing attention to
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processes where it is the motion of the electrons that determines the time scale
for the chemical change and also for physical processes including nanoelectron-
ics. At the other end, the time scale for both experimental and computational
examination will increase all the way through the µ sec range thereby bringing
biological processes, material response, and molecular machines fully within the
scope of dynamics. This will require a better understanding of the dynamical
implications of the topography of potential energy landscapes of many-atom sys-
tems that is replete with many shallow minima and regio-selective and hindered
regions. Both for the inherent interest and for technological need to know reaction
dynamics under extreme conditions, very cold collisions and also very hot ones
and chemistry at higher densities will receive even more consideration.

This introduction to molecular reaction dynamics is over but the music of time
flows on and the molecules continue their dance. From here on you are invited to
give directions.
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1, 1’ binaphtyl conformational twist 455

1, 3 cyclohexadiene ring opening in real

time 386

Ar+ + H2 stripping 23

collision-induced dissociation 23

above-threshold ionization, ATI

332

absorption, collision-induced 310

abstraction reaction 14

accommodation to the surface 480

action variable 198

activated adsorption 482

activation energy 1

definition 74

in transition state theory 254

negative 196

Tolman expression 79, 103

adiabatic limit 149, 268, 372

adiabaticity parameter 372

and momentum gap 374

and response time 373

for curve crossing 381, 382

radiationless transitions 392

adsorbate-induced surface reconstruction

476

coverage dependence 493

adsorption

activated 482

dissociative 90, 482

Langmuir isotherm 495

on stepped surfaces 486, 487

aligning molecules with polarized

radiation 398

with strong lasers 323

alignment 396

and orientation in surface scattering

412

in terms of quadrupole moment

409

in the spectator limit 415

of reaction products in a

chemiluminescent reaction 414

analog computation 200

angle of attack 14, 97

angle of deflection 111

angle-dependent barrier to reaction 96,

163

angle-dependent line-of-centers

model 97

angle variable 198

angular distribution

classical divergence in the forward

direction 119

for surface scattering 479

hard-sphere-like in the backward

direction 119

in complex mode reactions 140

forward-backward symmetry 140

in direct reactions 138

in photodissociation 280

in photodissociation by linearly

polarized light 281

in reactive collisions 8, 142, 237

of state-selected molecules 171

quenched by reactive scattering 143

rebound reactions 142

resonance scattering 145

spectator stripping 8

sprinkler model 139, 140, 422

angular momentum 49, 144

conservation 109

conservation of total angular

momentum 402

definition 110

degree of orientation and

alignment 407

disposal 405

in phase space theory 249

inelastic collisions 412

kinematic effects 402

polarization 402

sense of rotation 411

spherical basis vectors 408

vector correlations 419, 422

angular velocity 113

anisotropy parameter in

photodissociation 280

anti-Morse potential 198

Arrhenius activation energy 1, 75,

79

see also Tolman expression

Arrhenius equation 1, 74

by saddle-point integration 101

historical background 25

surface desorption 480

Arrhenius pre-exponential factor 1

high/low 255

see also entropy of activation, steric

factor

associative desorption 484

asymmetry parameter 422

atmospheric detergent 283

atmospheric photochemistry 281

atomic flames 179

atomic force microscope, AFM

230

ATP synthase motor 228

attractive potential 88

attractive potential energy surface 155,

179

autocatalytic process 497

Ba + HI kinematic constraint 403

opacity function from products’

rotation 404

backwards scattering 120

bacteriorhodopsin 386

photoisomerization 387

ballistic collisions 389

543



544 Index

barrier height 152, 206

and barrier location

Evans-Polanyi model 162, 195, 268,

464

Hammond postulate 162

systematics 155, 466

in a reaction series 465

in a unified model 467

vs approach angle 96

barrier-crossing rate

Grote-Hynes correction 456

in the high friction limit 456

unified model for barrier crossing in

solution 464, 472

see transition state theory

benzene multiphoton ionization and

fragmentation 309

bimolecular spectroscopy 310

binning trajectory results 199

blackbody emission–molecular 274

bobsled effect 179, 192

bond breaking in real time 337

Born model for solvation 431

thermodynamic cycle 433

Born–Oppenheimer separation 148, 149

breakdown 193, 267

conical intersections 329

curve crossing 378

gap 357; how large is a large

gap? 270

in the transition state region 268

diabatic description of electronic states

380

exponential gap for non-adiabatic

transitions 382

radiationless transitions 272

picket fence model 275

bottleneck to reaction 212, 252

in solution 452

Br + HCl reaction

isotopic enrichment 324

laser pumped 324

Br + I2 reaction

from a restricted initial state 58

in real time 341

proceeding via the BrI2 intermediate

58

branching ratio 76

BrCH2COCl photodissociation

270

Breit–Wigner phase shift 135

profile 136

bright state 272

decay rate 275

revival 274

Brownian dynamics 175

brute force orientation 397, 424, 425

bumpy quasi-continuum 199

Butler-Volmer law 464

C2H2 spectra at increasing

resolution 277

C2H5 + O2 combustion reaction 156

Ca∗ + HCl electronic orbital control

399

cage effect 18, 19, 427, 442, 445, 459

coherence 447

in clusters 445

mechanical blocking 445

capture model 92, 107

cross-section 92

CARS spectroscopy 11

Cartesian contour maps 237

catalysis by enzymes 430

center of mass, definition 64

center-of-mass coordinate system 63

central collisions 117

centrifugal barrier 51, 53, 55

barrier to reaction 91

see capture model

centrifugal energy 112

centrifugal force 55

C H bond activation 4, 499

CH2=CH2
+ + CH2=CH2 complex mode

reaction 256

CH2CO photodissociation and

photoisomerization 294

potentials for photodissociation and

photoisomerization 294

unimolecular dissociation 295

CH3 + CF3 reaction, surprisal analysis

256

CH3Br photodissociation on LiF 490

CH3NO2 multiphoton

dissociation/isomerization 306

potential for dissociation and

isomerization 306

chaos 20

deterministic 174, 199

erasure of details 195, 218

long-time dynamics 261

pattern formation 20, 492

sensitivity to initial conditions 20

charge neutralization 107, 378

charge transfer 86, 385

adsorbate-surface 477

hardness 89

harpoon mechanism 86

in solution 437

oxidation-reduction 25

partial 156

rate constant 438

charge-directed action 227

chemical activation 216

chemical laser action 26, 359

chemiluminescence 6, 239

in four-center reactions 24

chemistry in space 107, 282

chemistry is local 4

chirped pulse 328

chirped pulses for stereodynamics

401

CHOCHO photodissociation 422

Cl + CD4 preferential DCl

alignment 418

Cl− + CH3Br reaction 226

Cl− + CH3Cl reaction, stereochemistry of

the transition state 188

Cl + CH4 peripheral reaction mechanism

416

approach geometry 415

reaction at different impact parameters

418

Cl + H2O reaction coordinate 299

Cl + HI reaction 4, 168

cone of acceptance 169

surprisal analysis 258

transition state spectroscopy 27

classical action 198

classical trajectories 11, 97, 170

complex mode 186

direct reactions 172

for energy transfer collisions 391

long times 261

Monte Carlo sampling 176

need for averaging 173

prompt 187

clocking bimolecular collisions 341

clocking by collisions 217

by fluorescence 217
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clusters 445

cage effect in photodissociation 446

coulomb explosion 326, 332

dissociation of 223

size effects in cluster dynamics 473

van der Waals 58, 301, 375

CO oxidation on Pt 492

phase diagram 495

role of surface reconstruction 494

CO2 laser 368

coherence effects 354

decay of coherence 355

for processes in solution and/or in

large molecules 341

HgI2 photodissociation

Hg–I coherent vibration 340

in reaction products 340

see also interference

coherent control 29, 320

by interference 321

by two-photon ultrafast excitation

350

coherent rotational motion 353

coherent state 198, 336

coherent vibrational motion 18, 340,

349

coincidence measurements 423

collision cross-section 31, 34

as sum over partial waves 133

conservation 85

divergence in classical mechanics 57

for hard spheres 39, 57, 69

microscopic definition 56

velocity dependence 46, 70, 124

collision frequency 37

collision in the c.m. system 112

collision number, Zr 358

collision rate constant 68

collisional ionization 379

collisional relaxation 6

collision-induced absorption, CIA 310

collision-induced dissociation, CID 23,

170

collision-induced surface processes, CID,

CIM 482

collisions of the second kind 390, 392

combustion 156, 197

competitive unimolecular decay 326

complex energy 330

see also resonances

complex mode reaction 169, 185, 216

O(1D) + D2 14

sprinkler model 139, 140

computational chemistry 4, 26

forces 26

gradient methods 156, 198

on the fly 159, 223

surface chemistry 26

computing on the fly 159, 198

concerted vs. sequential bond forming

344

Condon approximation 328

cone of acceptance 95, 98, 163, 168,

395

Cl + HI 169

opens up when the reactant bond is

stretched 189

Rb + CH3I reaction 27

configuration integral, as a potential for

mean force 454

configuration of no return 202

conical intersection 150, 196, 197, 259,

268, 329

in the H3 potential 160

in the LEP(S) potential 161

in the ring opening of cyclohexadiene

388

motion towards 346

connectivity diagram 197

conservation of angular momentum 109,

110

conservation of total angular momentum

110, 402

constrained geometries 59

control 3

by interference 321

by pump and probe 350

by strong laser field 25, 322

by the environment 17

by two-photon ultrafast excitation 349

laser-induced association 99

limited by dephasing 352

of alignment 323

of branching ratio 321

of molecular machines 260

of surface reactions 20

of the impact parameter 57

parameters 321

reagent approach 395

through constrained geometries 59

transition state spectroscopy 12

with ultrashort pulses 348

cooling by supersonic expansion 289

cooperative behavior 260

coordinate transformation in reactive

collision 405

corresponding states 47

corrosion reactions 486

coulomb explosion 326, 332

cross-section 31

see collision cross-section, differential

cross-section, reaction

cross-section,

orientation-dependent

cross-section

crossed molecular beam scattering 12,

230, 236

cumulative reaction rate 208

curve crossing 378, 380

curve crossing model 87, 89

dissociative adsorption 483

excimer lasers 88

for dissociative chemisorption 90

reactive collisions 162

harpoon mechanism 86, 87;

experimental data 103

strong laser field 99

cyclobutene ring opening 344

cyclobutene ultrafast isomerization 344

cyclopentanone ultrafast

dissociation 345

D + I2 flux-velocity contour map 234

bent transition state 236

D2 + OH reaction 12

dark state 275

tiers 276

decay into a quasi-continuum 274

deflection function 113

definition 59

for hard spheres 114

for realistic potentials 115

from the potential 121, 123

from the phase shift 132

in direct reactions 142

delayed ionization 324

density functional theory 26

density of internal states 213

density of states 208, 243

density of translational states 242
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dephasing 25, 338, 355

in an anharmonic potential 25

of wave-packets and pulse

shaping 355

desorption

associative desorption 484

laser-induced 490

electronic mechanism 490

trapping-desorption 479

detailed balance 248, 377, 479

at a given energy 248

for energy transfer collisions 389

in transition state theory 253

see also microscopic reversibility

deterministic chaos 174, 199

diabatic description of electronic

states 162, 380

dielectric constant 431

at high frequencies 436

in the interfacial region 462

diethyl ether multiphoton dissociation

307

differential collision cross-section 57,

118

classical divergence 118

hard spheres 119

non-reaction cross-section 143

reaction cross-section 140

differential reaction cross-section 140

rebound reactions 143

differential reaction rate, k(E) 208

diffraction mode 264

diffraction scattering 124, 478, 496

diffusion control 439, 443

rates 470

diffusion of absorbed species 480

diffusive energy regime 429

dilution factor 331

direct interaction product repulsion,

DIPR model 405, 425

direct reaction 14

angular distribution 138

collision trajectory 172

direct scattering 135

direct surface reaction 487

directed molecular states 353

directed nature of chemical bonding 394

dispersion constant 43, 70

dispersion energy 42, 43

disrotatory ring opening 344

dissociation of I2 on MgO 488

dissociation of van der Waals

adducts 223

dissociative adsorption 90, 482

on stepped surfaces 486, 487

potential energy surface 484

precursor well 484

role of internal energy 483

steric aspects 489

surface corrugation 485

dissociative chemisorption, curve

crossing model 90

distance of closest approach 53

by graphical construction 54

hard spheres 53

distributed (as) in photodissociation

(DIP) 261

distribution of maximal entropy 247

donor-acceptor electronic energy transfer

385

Doppler profile 288

Doppler spectroscopy 285, 370

dressed state 99, 100

dynamic bias 240

dynamic constraint 247

dynamics

at interfaces 459

at surfaces 475, 488

metal surfaces 498

barrier crossing 451

caging 445

complex mode 169, 216

in the condensed phase 17

Langevin 175, 199, 471, 489

long-time 261

migratory 200

of solvation 440

peripheral 106, 416

polyatomic 148

see also photodissociation,

stereodynamics

early release 179

effective potential 52

for an ion molecule reaction 91

Ehrenfest theorem 354

Einstein B coefficient 360

electrocyclic reactions 344, 392

electron affinity 87

vertical, adiabatic 107

electron transfer 28, 86

in solution 435, 473

strong coupling to the solvent 472

see also charge transfer

electronegativity 89

electron-hole pair excitation in surface

scattering 479, 489

electronic energy transfer 377

electronic orbital control 399

electronic predissociation 291

electronic quenching by harpoon

mechanism 380

electronically non-adiabatic processes

193, 268, 378

curve crossing 378

diabatic description of electronic states

380

exponential gap 382

gap 357

in surface-induced chemistry 477

in the transition state region 268

radiationless transitions 272

picket fence model 275

see also conical intersections

electrostatic interactions 42

Eley–Rideal mechanism 485

emission of light from a molecule that is

falling apart 158, 315

encounter of reactants in solution 443

energy and chemical change 179

energy diffusion regime 260, 451

energy disposal

in an exoergic chemical reaction 4

in ion-molecule reaction 23

in the spectator limit 23

of chemical reactions 239

energy gap law for radiationless

transitions 327

see also exponential gap, momentum

gap

energy profiles along the reaction

coordinate, adiabatic and diabatic

271

see also Evans-Polanyi, barriers

energy requirements of chemical

reactions 78, 184, 239

energy-rich collision intermediate 15,

186, 215

energy transduction 227, 260

energy vs. entropy of activation 307
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entropy-controlled reaction 212

entropy of activation 102

desorption from surfaces 480

enzymatic reactions 258

in transition state theory 254

reactions in solution 430

entropy of evaporation 430

entropy vs. energy of activation 307

enzyme catalysis 261

Evans–Polanyi model 155, 162, 268

and LEP(S) potential function 195

and solvation 464

exchange forces 42

systematics 466

exchange forces 70

excimer lasers 88

exoergicity of a chemical reaction 5

exponential gap

bridged by light 374

Franck–Condon window 374

bridged by solvent 449

for electronically non-adiabatic

transitions 382

in terms of the adiabaticity parameter

374

in V V’ transitions 365

radiationless transitions 327

exponential gap principle 327, 359

see also energy gap, momentum gap

F + CD4 reaction 12

F + H2 reaction 10

ab initio potential 155

early downhill potential 154

HF chemical laser 359

history 197

surprisal analysis 240

F + HBr reaction, surprisal analysis 256

F2 + I2 mechanism 23

face-on or edge-on attack 399

Fano profile 135

Fermi resonance 331

in CO2 367

first hydration shell 432

flexible transition states 252

fluctuating force 175

fluctuations in the decay rates 330

flux 32

flux density 101

flux detector 261

flux of molecules incident on a surface

496

flux-velocity contour map 230

quantitative representation 236

force fields, understanding

regioselectivity 395

forward-backward symmetry 14

peaking for a collision complex 15,

421

forward scattering 120, 122

four-center reaction 2

mechanism 23

orbital symmetry 25

concerted vs. sequential 344

Fourier transform of pump-probe time

delay 351

Franck–Condon principle 18, 265

as an exponential gap principle 374

classical perspective 324

factor 265

factor diagonal 267

in emission 313

in the dressed states picture 100

window 100, 267

free energy of solvation 431

for charge transfer in solution 437

frequency domain measurements 313

frictional force 175

in surface scattering 489

fuel cell 462

hydrogen/oxygen cell 464

funnel mechanism for chemical lasers

361, 362, 386

funnel region in an energy landscape 156

funneling by a conical intersection 160

gain in a laser 362

gas-liquid interface 459

Gaussian coherent state 336

geminate recombination 19, 443

glory scattering 115, 133

oscillations 124, 127

gradient methods 156, 198

grazing collision 114

Grote–Hynes correction 456

H + CH2 CHCH2R chemical activation

217

H + CH2CF3 reaction, surprisal analysis

256

H + Cl2 preferred approach

geometry 166

H + D2 reaction energy disposal 11

steric factor 94

orientation dependence 97

H + FCl reaction, HF vibrational energy

distribution 182

H + H2 reaction 27

barrier height 96

electronic orbital steering 164

opacity function 95

reaction path 153

resonances 27

see also H + D2

H + HOH reaction 10, 27

exit channel effects 27

quantum mechanical computations 27

transition state spectroscopy 27

H + ICl reaction 168

H2 + I2 mechanism 23

H2
+ + He reaction 76, 170

H2O photodissociation 290

half collision 289

Hammond postulate 155, 162, 466

hard-cube model 478, 496

trapping 497

hard-ellipsoid scattering 406, 412

hard-sphere model 37

excluded volume 38

for energy transfer 389

for reactive collisions 194

hard-sphere potential 38

hardness 89

harp model 390

harpoon mechanism 86, 87

excimer lasers 88

experimental data 103

for excited states 104

H–atom transfer reaction 4

hierarchy of relaxation rates 358

Hellmann–Feynman theorem 197

hemoglobin adjusts to admit oxygen 188

heterodyne detection of interference 349

heterogeneous chemistry 475

HF chemical laser 359

Hg∗
2 excimer 318

HgI2 photodissociation

Hg–I coherent vibration 340, 342

probing the HgI fragment in real

time 339
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HNCO vibrationally mediated

photodissociation 297

HOD excited state potential 298

HOD vibrationally mediated

photodissociation 297

homogeneous broadening 302

HONO2 vibrationally mediated

photodissociation 296

hot atom chemistry 24

Hughes–Ingold proposition 427

hydrogen/oxygen fuel cell 464

I + HI reaction 417

ICl potential and spectrum 279

ICl∗ adds to double bonds 279

ICN photodissociation, duration of bond

breaking 339

imaging 66, 285, 329

surface processes 494

impact parameter 49

a measure of the angular momentum

60, 112

centrifugal barrier 53

centrifugal force 55

cone of acceptance can depend on 98

control of the impact parameter 57

cut-off for reactive collisions 86

deflection must vary 59

distance of closest approach 51

differential collision cross-section 57

maximal for elastic collisions 62, 134

rainbow 60

turning point 53

impulsive excitation 335

independent binary collisions, IBC

approximation 448

induction energy 42

inelastic collisions 356

collision number 358

molecule-surface scattering 413, 478,

489

role of electron-hole pairs 479

hard-cube model 478, 496

propensity 359

stereodynamics 411

temperature dependence 375

infrared chemiluminescence 10

infrared multiphoton dissociation 303,

305

inner-sphere effect 439

insertion reaction 14, 25

interface length scale 463

interfacial exchange 461

interfacial solvation 460

interference 61, 72

between direct and resonance

scattering 135

between wave-packets 348, 349

in collision-induced absorption 318

near the rainbow 62

of classical alternatives 63

of exit channels in photodissociation

283

intermolecular forces

dispersion 42, 43

electrostatic origin 70

exchange forces 42

long-range attraction 40

short-range repulsion 39

sources of 44

internal conversion 274

internal diffraction 328

interstellar chemistry 77

intersystem crossing 274

intramolecular vibrational energy

redistribution, IVR 218, 275, 291,

299

decay of coherence 355

picket-fence model 275

RRKM hypothesis 215, 218

solvent-induced 448

intrinsic barrier in a reaction series 465

inverse electronic relaxation 329

inverted regime 439

ion–molecule potential 42

ionic strength and reaction rate 469

ion-molecule reactions 77

capture model 92, 104, 107

reaction rate 225

role of solvation 427, 445

steric factor 104

Walden inversion 187

isomerization in solution 454

isotope separation by photoselective

excitation 279

by multiphoton dissociation 304

isotopic scrambling 294, 330

K + (CN)2 reaction 145

K + aligned HF 399

K + Br2 harpoon reaction 86, 87, 179

K + CH3CN reaction 145

K + CH3I rebound reaction 138

flux-velocity contour map 234

K + HBr alignment of KBr 402

Newton diagram 255

K + HCl shielding by rotation 189

K + I2 stripping reaction 138

Newton sphere 231

flux-velocity contour map 233

K + ICl stereodynamics 397

K + NaBr complex mode reaction 145

K + SO2 complex mode collision 145

KCl + NaBr complex mode reaction 184,

185

kinematic constraint 402

stripping limit 405

kinematic model 24, 405

angular momentum disposal 405, 423

kinetic energy along the line of centers

52, 68

kinetic energy release distribution, KERD

238

kinetic shift 333

kinetics of reactions on surfaces 495

Kramers’ theory 451

energy diffusion regime 451

high friction limit 455

recrossing of the barrier 457

turnover regime 452, 455, 458

weak-coupling regime 452

laboratory to the center of mass 64, 232

ladder climbing 306, 371

vs rare events 376

ladder switching 308

in the visible/UV 308

Lambert–Salter correlation 376

Landau–Teller temperature dependence

375

by saddle-point integration 389

deviations 389

Landau–Zener localized curve crossing

378, 383, 390, 392

adiabaticity parameter 382

transition probability 382

Langevin equation 175, 199, 471, 489

fluctuating force 175

derivation 470

diffusive energy regime 429
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high friction limit 456

in surface scattering 489

memory term 471

Langevin-Gioumousis-Stevenson

reaction cross-section 92

also known as the capture model 92,

107

Langmuir adsorption isotherm 495

Langmuir-Hinshelwood mechanism

485

large molecule as its own heat bath 221

large molecules in the gas phase 490

laser

chemical pumping 26

funnel mechanism 361

CO2 368

excimer 88

gain 362

HF 359

population inversion 26, 360

Ti-sapphire 335

laser assisted

collisions 319

reaction Xe∗ + Cl2 320

recombination 100, 106

laser catalysis 333, 374

dressed state 99, 100

laser control 3, 320, 348

strong field alignment 323

strong field control 25

laser cooling 333

laser-induced desorption 490

electronic mechanism 490

laser-induced fluorescence, LIF 287

laser pumped Br + HCl reaction 324

see also coherent control, multiphoton

processes, pump-probe,

stimulated emission pumping

lasing on pure rotational transitions 363

law of cosines 479

learning algorithms 328

Lennard-Jones potential 41, 47, 68

parameters 48

reduced force constant 68

LEP(S) potential 159, 161

light atom attack 193

light atom transfer 192

Lindemann mechanism 215

exact kinetics 196

high pressure limit 216

line of centers model 93, 105

with a steric requirement 105

linear motor 230

linear response 472

linear surprisal 11, 246, 262

Liouville theorem 257

liquid–liquid interface 462

local modes 10, 300

localization by ultrafast excitation 15

localized curve crossing 383

localized non-adiabatic transitions 378

localized vibrational state

by funneling via a conical intersection

160

by ultrafast excitation 18

localizing electrons 353

London equation 159

London–Eyring–Polanyi(-Sato) LEP(S)

potential 159

conical intersection 161

long-range attraction to a surface 477

long-range potential 40

dipole-molecule 43

dispersion (van der Waals, London)

forces 43

ion–dipole 43

ion–molecule 42

long time classical trajectories 261

loose transition state 293

Lorentzian line profile 136

low energy electron diffraction, LEED

494

Marcus theory of electron transfer 18

at an electrode 462

detailed balance 470

inverted region 469

location of barrier 469

Marcus equation 437

mass spectrometry 257

mass weighted coordinates 181, 190, 194

dynamics 195

H + I2 195

mean force along the reaction coordinate

453

mean free path 31

compared to range of force 36

computed as a mean 33

determination by a scattering

experiment 31

mechanical bond 229

memory kernel 471

microscopic reversibility 9, 27, 253

see also detailed balance

migratory dynamics 200

minimum energy path 151

see also reaction coordinate

mode selective chemistry 9, 298

mode selective photodissociation 301

models of solvation 431

molecular beam scattering 26

molecular machines 188, 227

molecular mechanics 168

molecular rulers 463

molecular-orbital approach 163

momentum gap and adiabaticity

parameter 374

momentum gap rule 137

and adiabaticity parameter 374

monopole moment 409

Monte Carlo procedure 173

sampling 176, 195

theorem 199

Morse potential 68, 198

motor proteins 227

multi quantum transfer 366, 376

multiphoton dissociation 303

multiphoton ionization 308

statistical computations 309

multipole moments 409

multiplet of states 300

Myosin machine 227

Na + I collisional ionization 378

Na D line

absorption 318

emission detuned

to the red 315

to the blue 316

Na2 potentials and spectra 288

NaI dissociation in real time 384

nascent reaction products 6

negative activation energy 196, 197

Newton circle 65

Newton diagram 65, 232, 255

kinematic limitations 257

Newton sphere 230, 232

by imaging 285, 286

NO2 photodissociation 292

nodes, number of 266
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nonlinear kinetics 497

non-statistical dissociation 347

non-radiative decay lifetime 273

non-reaction cross-section 84

non-resonant ionization 332

non-RRKM behavior 218

normal modes of the solvent 474

number of collisions 67

O + CN reaction 193

O + CS reaction 181

CO vibrational distribution 183

O(1D) + D2 insertion reaction 15

collision complex mechanism 14

O(3P) + O2 + M recombination 282

O2 + C2H5 reaction 196, 197

O2 potentials and spectrum 282

O∗
2 adds to double bonds 279

opacity function 84

angular momentum limited 404

from non-reactive scattering 143

models 86

optical model 141

optical model 138, 142, 143

application to K + RI reactions 147

optically prepared state 275

see also bright state

orbital electronic control 399

in photodissociation 400

orbital following 400

orbital steering 165

in Ca + HCl 399

in H + H2 164

in H + Cl2 166

in photodissociation 401

orbiting 69, 71, 136

orientation

brute force orientation 397, 424, 425

in hexapole electric fields 395

in homogeneous electric fields 397

in terms of dipole moment 409

of symmetric-tops 395

orientation and alignment 396

geometrical view 410

orientation angle 13, 95, 397

laboratory vs. the c.m. system 108

orientation-dependent barrier to reaction

97

orientation-dependent reaction

cross-section 97

oscillations in catalytic oxidation 494

oscillatory kinetics 493

outer-sphere effect 440

overlapping resonances 331

overpotential 462

oxidation of CO on Pt 488

oxidation-reduction reaction 25

ozone layer 282

partial waves 129

expansion of scattering amplitude 132,

146

partition function

as phase space integral 453

as sum over states 214

factorization 214, 473

of internal states 214

pattern formation 20

in catalytic oxidation reactions 492

pendular states 397

pericyclic reactions 344

peripheral reactions 106

Cl + CH4 418

dynamics 416

I + HI 417

phase angle 198

phase shift 130

and deflection angle 132

and time delay 134

resonance 135

phase space theory 239, 249

photodissociation 287

cage effect 18, 427, 442

direct and indirect 289

in clusters 446

indirect dissociation 289

in solution 442

caging dynamics 445

of ketones 346

of van der Waals clusters 301

on surfaces 490

restricted geometries 490

surface aligned reaction 490

vibrationally mediated 295

photoisomerization 385

retinal 386

photoemission electron microscopy,

PEEM 495

photo-induced charge separation 385

PHOTOLOC technique 414

physisorption well 477

picket-fence model 275

coupling criteria 325

quantitative 325

plane wave 129

polar map of the potential 168, 169

of the H3 potential 189

polarizable continuum model 431

polarization of reaction products 27,

402

population inversion 7, 26, 360

potential contour map 151

potential energy landscape 156

potential energy surface 150, 196, 197

analytical form 197

attractive potential 88, 155, 179

computational chemistry forces 26

computing the potential on the fly 159,

198

cone of acceptance 14, 98, 394

Cl + HI 169

opens up when the reactant bond is

stretched 189

conical intersection 161, 340

in the H3 potential 160

in the ring opening of

cyclohexadiene 388

dissociative adsorption 484

early release 179

Evans–Polanyi model 162, 268, 464,

466

quantitative 195

F + H2 reaction, early downhill

potential 154

for dissociation and isomerization

of BrCH2COCl 270

of CH2CO 294

of CH3NO2 306

HOD excited state potential 298

London–Eyring–Polanyi(–Sato)

LEP(S) potential 159

repulsive potential surface 155

Sato modification of LEP

potential 197

potential of mean force 451, 452

power broadening 305, 332

in the visible/UV 308, 331

precursor 156, 498

in surface adsorption 485

well 484
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predissociation

by tunneling 137

electronic 291

pressure broadening 312

primary salt effect 469

prior distribution 239, 262

flux-velocity map 241

internal states 243

reduced energy variables 244

thermal-like 255

vibrational energy disposal 239

probability of electronically

non-adiabatic transitions 382

probing by mass spectrometry 343

product angular distribution by high

resolution Doppler spectroscopy

26

product repulsion 406

products angular distribution 8, 14

by crossed molecular beams 12,

15

by high resolution Doppler

spectroscopy 26

optical model 143

products rovibrational state distribution

11

by CARS spectroscopy

by classical trajectory computation

11

by crossed molecular beams 12

by IR chemiluminescence 6

by REMPI spectroscopy 11

by time of flight 12

products vibrational state distribution vs.

a Boltzmann distribution 6, 255

prompt dissociation 224

prompt trajectories 187

propagating the solution of the

time-dependent Schrödinger

equation 354

proteins connectivity 197

proton transfer from excited electronic

states 469

pulse shaping 328, 348

chirping 328

by learning algorithms 328

pump and ionize 345

pump-probe experiment for measuring

short time intervals 28, 338

pump-probe technique 10

quality of fit function 255

quantal scattering theory 125

quantum beats 301

quantum chemistry 4, 26

computing on the fly 223

gradient methods 156

quantum mechanics

interference 61, 135, 283, 318, 348

scattering 128, 130, 146

theory of inelastic and reactive

collisions 146

superposition principle 125, 146

quasi-bound states 293

quasi-classical trajectories method 174,

176

Monte Carlo 173

sampling 176

role of chaos 20, 195

quasi-diatomic model 338

quasi-equilibrium hypothesis 260

quenching collisions 312

kinetics 313

radial wave function 129

radiationless transitions 272, 329

adiabaticity parameter 392

energy gap law 327

picket-fence model 275

decay 274, 275

dilution factor 331

promoting mode 273

radiative emission from vibrationally hot

molecules 274

radiative lifetime 312

rainbow angle 115

rainbow scattering 60, 124

bright side 126

in rotational excitation 411

oscillations 127

quantal interference 126

random force 471

in surface scattering 489

random phase approximation 133

random walk in energy space 429

ratchet potential 227, 228

rate constant 73

for charge transfer 438

for relaxation 359

for state-selected reactants 81

for thermal reactants 74

for unimolecular dissociation 219

temperature dependence 73

rates of molecular collisions 36

rates of energy transfer processes 359

hierarchy of 358

Rb + CH3I reaction 94

stereodynamics 27

reaction

four-center 25

insertion 14

oxidation-reduction 25

reaction coordinate 151, 154

solvent motion participation 427, 459

reaction cross-section 75, 140

capture model 92

for oriented reagents 96

post-threshold energy dependence 98

microscopic definition 83

reaction path 152, 154

reaction probability 84

see also opacity function

reaction radius in solution 445

reaction rate constant 1, 68

energy-averaged 293

for complex-forming collision 224

for diffusion control 470

state-resolved products 82

state-selected reactants 81, 102

temperature dependence 74, 79

reaction series 465

barrier location and height 466

reactive asymmetry 94

reactive collision-induced light

absorption 319

reactive frequency 456

reactive reactants 79, 80

in transition state theory 258

reactivity in solution 464

realistic interatomic potential 41

rebound scattering 138

K + CH3I reaction 138

recombination

laser-assisted 100

third atom-assisted 257

reconstruction of surfaces 476

adsorbate-induced 476

recrossing of the transition state 258

in the high friction limit 459

reduced mass 49

definition 65
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reduced potential energy 46

reflection at an avoided crossing 271

relative velocity, definition 63

reordering at the interface 462

reorganization energy 436, 466

repulsive potential energy surface 155

resonance 27, 134, 135, 292

Breit–Wigner 136

complex energy 330

overlap 331

scattering 135

angular distribution 145

interference with direct 135

width 135, 330

resonance-enhanced multiphoton

ionization, REMPI 11, 308

resonance, vibrational 331

restricted geometries 13, 59, 160

in surface photochemistry 490

retinal chromophore 386

bound as a Schiff base to the protein

387

revival of the bright state 274

revival time 274, 354

Rg∗ + X2 reaction 89

rotational compensation 304

rotational energy transfer 373

in surface collisions 413

rotational rainbow 411, 426

rotational state, pressure broadening 313

rotaxane 229

rough surfaces do the chemistry 477

RRK, Rice, Ramsperger, and Kassel 259

rate constant for dissociation 221

RRKM theory 215

failure for photodissociation 301

for ion-molecule reactions 226

hypothesis 215, 218

rate constant 219

Rydberg tagging 12, 27, 290

saddle point 151, 152

sampling of initial conditions 173

Sato modification of LEP potential 197

scaled potential 47

scanning tunneling microscopy, STM

for imaging surface processes 475

scattering, elastic 109

scattering amplitude 125, 131

for partial waves 130

scattering angle 15

definition 28

scattering as a probe of the potential

119

scattering in velocity space 230

scattering matrix 130

scattering phase shift 130

and deflection angle 132

and time delay 134

scattering resonance 135

scattering wave function 128

second harmonic generation, SHG

spectroscopy 463

second virial coefficient 44

and time delay 146

in terms of the potential 46

selectivity of energy requirements 9, 249

for reactions with a barrier 182

sense of rotation 411

sensitivity to initial conditions 174

sequential coupling 276

shadow scattering 134

single molecule spectroscopy 229

size effects in cluster dynamics 473

Smoluchowski limit 472

SN1 reactions 154

SN2 ion-molecule reactions 188

gas phase 225

in solution 427

solvation 18, 90, 428

in Marcus theory 437

solvent-aided intramolecular energy

transfer 448

solvent hindered barrier crossing 455,

459

solvent-modified reaction

coordinate 457, 459

solvent reorganization 18, 435

solvent-separated (ion) pair 445

solvent viscosity, the strength of the

solvent-solute coupling 442

spatial control 326

spatiotemporal aspects of surface

chemistry 491

specificity of the energy disposal 9, 249

spectator bond 24

spectator limit 406

spectator model 7, 8

spectator stripping 8, 23, 138

K + I2 stripping reaction 138

spectroscopy of elastic collisions 310,

317

of the transition state 13, 27, 319

specular scattering 478

spherical harmonic addition theorem 421

spherical basis vectors 408

spiral patterns in catalytic oxidation 495

spreading of wave-packets 338, 353

sprinkler model 139, 140, 422

Sr + aligned HF 399

Sr + HF stereodynamics 425

Stark effect 331

statistical adiabatic channel model,

SACM 252, 292

steady state approximation 216

steering 188

orbital steering 165

steering forces 413

stepped surface dissociative adsorption

487

blocking the steps 498

stereodynamics 13, 187

early history of 394

inelastic collisions 411

structural adaptation during reaction

188

steric effect 163

in surface reactions 488

steric factor 94, 95, 99, 210

H + H2 reaction 95

in transition state theory 254

steric hindrance 97, 99

steric requirements of chemical reactions

13, 94

complex formation 262

sticky collisions 257

at interfaces 479

stilbene cis-trans photoisomerization 393

stimulated emission pumping, SEP 277,

351, 359

stripping 138

limit 405

strong coupling regime 263

strong field alignment 323

strong laser field control 25, 322

structural adaptation during reaction 188

structure-reactivity correlations 474

sudden approximation 406

sudden limit 265, 372

super-alkali atom 107
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super collisions 370, 389

super-halogen atom 107

superposition principle 125

supersonic expansion rotational cooling

289

surface aligned reaction 490

surface chemistry 29, 485

corrosion 486

direct reactions 487

dynamics 475, 488, 498

Eley–Rideal mechanism 485

kinetics 492, 495

Langmuir-Hinshelwood mechanism

485

laser-induced 490

surface corrugation 485

steering 413

surface coverage 476

surface electrons 490

surface reactions

direct 487

dissociative adsorption 90, 482

curve-crossing model 90

on stepped surfaces 486, 487

potential energy surface 484

role of internal energy 483

steric aspects 489

rough surfaces do the chemistry 477

trapping-desorption 479

surface reconstruction 476

adsorbate-induced 476

coverage dependence 493

surface scattering

electron-hole pair excitation 479, 489

hard-cube model 478, 496

specular 478

see trapping-desorption

surface steps

blocking the steps 498

dissociative adsorption 487

surface-aligned photochemistry 491

surprisal 240, 261

from consistency conditions 244

role of prior distribution 246

surprisal analysis from maximal entropy

247

surprisal analysis of energy disposal 246

CO vibrational distribution 184

HD vibrotational distribution 11

HF vibrational distribution 241

surprisal analysis of energy

requirements 245

temperature dependence of rate

constant 1

by saddle-point integration 101

Landau–Teller V T transfer 375

termolecular processes 257

tetramethyl dioxane (TMD)

photodissociation 300

thermal-like final state distribution 261

thermal-like prior distribution 255

thermionic electron emission 324

third atom-assisted recombination 257

to form ozone 282

three-step mechanism in the unified

model 469

threshold energy 76

collisional ionization 87

time correlation function 472

time delay 134

and second virial coefficient 146

from scattering phase 134

in resonance scattering 135

in direct reactions 145

time-delayed mass spectrum 345

time-dependent view of

spectroscopy 326

time domain experiments 334

time-energy uncertainty principle 15, 28,

311, 335

time it takes to break a bond 352

time of flight arrangement 12, 70

time-resolved experiments 334

time reversal 27

time scales of molecular processes 16

Ti-sapphire laser 335

Tolman expression activation energy 79,

103

total collision cross-section 34

as a function of velocity 40

conservation 85

total reaction cross-section 75, 140

trajectory computations 170

trajectory surface hopping 223, 387

transformation of coordinates from

reactants to products 423

transient dipole 311

transition dipole moment 43, 70

orientation 280

transition state as bottleneck to reaction

212

transition state region 12

transition state spectroscopy 13, 27, 319

organic anions 27

transition state switching 212

transition state theory 202

adsorption and desorption 497

desorption from surfaces 480

failure for photodissociation 301

for energy selected reactants 208

for thermal reactants 209

for unimolecular reactions 254

reactions in solution 471

the steric factor 210

variational 212

yield function 209

transitory modes 252

translational energy release 237, 357

translational energy requirements 78, 94

translational spectroscopy 285

transmission coefficient 455

trapping-desorption 479

energy distribution 480

in angular distribution 481

law of cosines 481

mechanism 480

Treanor distribution 364, 391

tunneling 71

resonance 137

width 137

turning point 53

see also distance of closest approach

uncertainty principle 16, 124, 137, 173

action–angle 198

position–momentum 124

time–energy 16, 28, 311, 337

unified model for chemical reactivity in

solution 464

rate of barrier crossing in solution 472

three-step mechanism 469

unimolecular dissociation 187

energy-averaged rate 293

picket-fence model 275

RRKM theory 215

unimolecular reactions 199, 215

chemical activation 216

clocking by collisions 217

competitive decay channels 326
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unimolecular reactions (cont.)

for ion-molecule reactions 226

Lindemann mechanism 215

exact kinetics 196

RRK rate constant for

dissociation 221

RRKM hypothesis 215, 218

failure for photodissociation 301

super-collisions 370

the bulk high pressure limit 220

transition state theory 254

unstacking of DNA base pairs 189

v, v’ correlation 419

for a collision complex 421

van der Waals long-range force

well 40

van der Waals clusters 58, 301, 375

variational transition state theory, VTST

252

vector alignment in K + HBr 403

vector correlation 281, 419, 422

in photodissociation 422

vector model 407

vertical transition 266

vibrational energy disposal 6, 10

attractive vs. repulsive potential 179

surprisal plot 241, 245

trajectory computations 181

bobsled effect 179

vibrational energy redistribution 218

picket-fence model 275

vibrational energy requirements 9, 10,

183, 249

vibrational predissociation 291

vibrational quasi-continuum 221

vibrational relaxation 358, 376

facile, of ions in solution 448

in solution 447

vibrational relaxation to intramolecular

solvent modes 448

vibrational relaxation coherence

448

vibrational resonance 331

vibrational state counting 220

vibrational wave functions in an

anharmonic potential 266

vibrationally mediated photodissociation

295

vibrational-vibrational energy transfer

363

virial expansion 45

vision as light-induced isomerization

385

V T processes 357

propensity 359

temperature dependence 375

V V processes in diatomics 364

in polyatomics 366

role of energy gap 365

Walden inversion 187

Walsh diagrams 167

wave function scattering 128

boundary conditions 129

in an anharmonic potential

266

nodes, number of 266

radial 129

rotation 407

wave-packet 17, 336

as a linear combination of stationary

states 17, 24

delocalization 24

dephasing 338

width of a resonance 135

width of a spectrum and the uncertainty

principle 312

Wigner–Witmer rules 329

Woodward–Hoffmann

correlation diagrams 352

four-center reactions 25

work function 494

Xe∗ + HX alignment of Xe∗X

415

Xe∗ + Cl2 laser-assisted 320

yield function 209

zero-point energy 198, 199, 391
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